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Abstract— In this paper, two-way relaying networks using
physical layer network coding under practical constraints are
considered. In the multiple access phase, both users transmit
their messages simultaneously on the same resources. At
the relay a superposition of both massages is received
containing the influence of the channel as well as the
impact of Carrier Frequency Offsets (CFOs) and Timing
Offsets (TOs), respectively. To be more robust against these
impacts, a combination of a generalized Frequency Division
Multiplexing (FDM) system, which uses Gaussian waveforms
is analyzed in comparison to classical Orthogonal Frequency
Division Multiplexing (OFDM). The additional interference
introduced by the non-orthogonal impulse shape is treated
by an additional linear equalizer. The overall system per-
formance of the classical OFDM system and non-orthogonal
waveforms is compared for Physical-Layer Network Coding
(PLNC) with respect to the Signal to Interference and Noise
Ratio (SINR) and the achievable mutual information in the
PLNC system. The obtained simulation results show that a
well designed Gaussian waveform outperforms the classical
OFDM system with guard interval.

Index Terms— synchronization offsets, generalized FDM,
linear MMSE equalizer, Physical-Layer Network Coding
(PLNC), Two Way Relay Channel (TWRC).

I. INTRODUCTION

In a Two Way Relay Channel (TWRC) the spectral
efficiency can be improved significantly by Physical-
Layer Network Coding (PLNC), where the data of two
users is transmitted to an assisting relay in a Multiple
Access Channel (MAC) phase, and the network coded
signal is broadcasted by the relay in a second time slot
(broadcast phase) [1], [2]. As the user terminals are aware
of their own messages, they can extract the message
of the other user from the received relay message. The
superposition of the two messages at the relay contains
inherent interference due to the influence of the channel
as well as impairments like CFO and TO, even if an
orthogonal system is used. Since OFDM is widely used
in current mobile transmission standards, the combina-
tion of OFDM and PLNC has been proposed in [3]–
[7]. However, OFDM has some considerable drawbacks
like high out-of-band radiation, sensitivity to CFOs and
high Peak to Average Power Ratio (PAPR). Recently
much research has been done to improve the robust-
ness of multicarrier systems regarding these effects. In
[8] subcarrier-wise filtering is considered named Offset-
QAM/Filter Bank Multi-Carrier (OQAM/FBMC). Here,
well-localized filters can be used to generate an orthogonal
transmit scheme. Another scheme is Universal Filtered
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Fig. 1: A TWRC with MAC phase (solid lines) and BC
phase (dashed lines).

Multicarrier (UFMC), which is a subblock-based filtered
OFDM system introduced in [9]. More general schemes,
which introduce non-orthogonal multicarrier transmission
are given in [10], [11]. In thesis [10] a general view
on generalized FDM is given, whereas the paper [11]
deals with a block-based realization, similar to OFDM.
An overview of non-orthogonal waveforms in mobile
applications is given in [12].

In general, different names are given for the sim-
ilar schemes in literature. In most cases Filter Bank
Multi-Carrier (FBMC) refers to OQAM/FBMC or
OQAM/OFDM, but the term FBMC might also be used
more general. The authors in [10], [11] use the term
GFDM, but the meaning is different. Similar to the work
of Du [10], we will use Generalized FDM (GFDM)
as a term for a general multicarrier scheme with non-
orthogonal transmit filters. Contrary to OFDM that is
based on orthogonal rectangular filters, GFDM systems
can also utilize non-orthogonal waveforms to enable more
flexible spectrum shaping. By this means, the spectral
efficiency, the influence of doubly dispersive channels,
or sensitivity to synchronization offsets can be improved
as shown in [13]. Nevertheless, this comes at the cost
of additional interference and increased computational
complexity.

A common example is the application of a Gaussian
prototype filter. Even if it does not satisfy the first Nyquist
criterion, the interference is mainly limited to neighboring
symbols in the time frequency grid as it decays fast.
Furthermore, the Gaussian impulse has the same shape
in time and frequency and it is optimally concentrated
[8], [14]. Compared to an orthogonal scheme, however,
equalization is more complex.

Due to these properties, we propose a combination of
GFDM and PLNC to be more robust against channel
influence and practical impairments. Within this paper,
we will investigate the robustness of Gaussian prototype
filters in a PLNC system. The Inter-Symbol Interference
(ISI) and Inter-Carrier Interference (ICI) that is caused
by the non-orthogonal design is treated by a Minimum
Mean Square Error (MMSE) equalizer. We will show
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Fig. 2: Block diagram of a P2P link for a GFDM system with equalizer.

that the application of Gaussian waveform and subsequent
equalizer leads to a system that is less sensitive to syn-
chronization errors than OFDM. To evaluate the overall
system performance we will provide simulation results for
a PLNC system.

The paper is organized as follows. In Sec. II, a reca-
pitulation of the GFDM system model is given for a P2P
system. Sec. III extends the system model to a PLNC
scheme in a TWRC. Afterwards, Sec. IV introduces Signal
to Interference and Noise Ratio (SINR) and mutual infor-
mation that are used to evaluate the system performance.
Finally, Sec. V shows some numerical results and Sec. VI
concludes the paper.

Notations: In this paper, lower case bold characters
are used to denote vectors, upper case bold characters
denote matrices. ( · )T denotes the transpose of a vector,
( · )∗ is the conjugate complex, Pr ( · ) denotes some
probability and p ( · ) is a Probability Density Function
(PDF).

II. GFDM FOR P2P (RECAP)

Within this section we provide a short recapitulation
of the GFDM system model for a P2P link as depicted
in Fig. 2. Later, this system model will be extended for
the TWRC. We assume that transmitter and receiver are
equipped with a single antenna and the transmission is
done on several subcarriers k in successive time slots `.

A. System Model

The transmit signal x (t) at the transmitter is given by

x (t) =
∑
k

∑
`

d(k,`)g
(k,`)
Tx (t) , (1)

where d(k,`) is the transmit symbol on the kth subcarrier
in the `th time slot, and g

(k,`)
Tx (t) is the transmit filter

gTx (t) shifted to lattice point (k, `)

g
(k,`)
Tx (t) = g (t− `T ) ej2π(kF )t . (2)

In general, a lattice point (k, `) defines the position of the
modulated pulse in the time-frequency grid as well as the
sampling position at the receiver. The lattice points of a
rectangular grid are visualized in Fig. 3, where the data
symbols are transmitted on frequency carrier k during time
slot `. The spectral efficiency β/ (TF ) of the system can
be defined by subcarrier spacing F and symbol length T ,
with β bits per symbol.

k

`

Fig. 3: Rectangular lattice grid in time-frequency plane
with subcarriers k and time slots `.

After passing channel h (τ, t) the received signal is
given by [10]

y (t) =

∫
h (τ, t)x (t− τ) dτ + w (t) (3)

=
∑
k

∑
`

d(k,`)

∫∫
H (τ, ν) g

(k,`)
Tx (t− τ)

· ej2πtνdνdτ + w (t) , (4)

where h (τ, t), H (τ, ν) and w (t) denote the time-variant
channel impulse response, the Delay-Doppler function
and Additive White Gaussian Noise (AWGN) with w ∼
CN (0, σ2

W ).
According to the matched filter condition gRx (t) =

g∗Tx (−t), the receive filter is given by

g
(k′,`′)
Rx (t) =g∗ (−t− `′T −∆τ)

· e−j2π(k′F+∆ν)(−t) , (5)

where the position of the receive filter in the time-
frequency grid is defined by lattice point (k′, `′). The
CFO ∆ν and TO ∆τ lead to additional shifts of the
receive filter in time or frequency such that the optimal
sampling position cannot be met. If the receiver of the
P2P system is aware of these synchronization offsets, the
offsets might be compensated by shifting the sampling
position in the time-frequency grid. Note that this will not
be possible in the TWRC that is considered later. Due to
the superposition of signal in the MAC phase of a PLNC
system, the relay cannot compensate the offsets to both
users even if it would be aware of them [15].

After sampling at position t = 0, we obtain the received
P2P symbol

y(k′,`′) =

+∞∫
−∞

y (λ) g
(k′,`′)
Rx (t− λ)dλ

∣∣∣∣∣∣
t=0

. (6)



y(k′,`′) =
∑
k

∑
`

d(k,`)

∫∫
H (τ, ν) e−2jπ((kF )τ+(F(k′−k)+∆ν−ν)( 1

2 ((`′+`)T+∆τ+τ)))

·A∗ (T (`− `′)−∆τ + τ, F (k − k′)−∆ν + ν) dνdτ +

∫ +∞

−∞
w∗ (λ) g

(k′,`′)
Rx (−λ) dλ (7)

By inserting (4), (5) into (6) we obtain (7), where
A (τ, ν) is the ambiguity function

A (τ, ν) =

∫
g∗
(
t+

τ

2

)
g
(
t− τ

2

)
ej2πνtdt . (8)

Equation (7) is similar to the result in [13], but it takes
synchronization offsets into account. Analytical expres-
sions of the ambiguity functions are given in [10] for
several pulse shapes. For a multi-path channel with sta-
tistically independent paths, the Delay-Doppler function
H (τ, ν) is given by a summation over time and frequency
shifted Dirac functions. Thus, the double integral in (7)

ϑ(k,`,k′,`′) =

∫∫
H (τ, ν) e−2jπ(···)A∗ (· · ·) dνdτ (9)

can be solved analytically for specific transmit filters.
For ease of notation, the double integral is substituted by
coefficient ϑ(k,`,k′,`′). Then the received symbol is given
by

y(k′,`′) =
∑
k

∑
`

d(k,`)ϑ(k,`,k′,`′) + w̃ (10)

with w̃ as filtered noise term. The summations in (10) need
to be done over all lattice points (k, `) that might have an
influence on the received symbol at (k′, `′). Note that the
coefficients ϑ(k,`,k′,`′) depend on the utilized waveform,
the instantaneous channel, the considered lattice points, as
well as synchronization offsets ∆ν and ∆τ .

B. Matrix Representation

Next, we will introduce an alternative notation for
received symbol y(k′,`′) that will be used to compute
equalizer coefficients. We will use an approximation that
only considers the influence of Nd neighboring transmit
symbols

y(k′,`′) ≈ ϑ(k′,`′)Td(k′,`′) + w̃ , (11)

where ϑ(k′,`′) is a stacked vector of Nd channel coeffi-
cients that describe the influence of Nd transmit symbols
on received symbol y(k′,`′). Vector d(k′,`′) consists of the
Nd corresponding transmit symbols. Interference that is
caused by lattice points that are not stacked in ϑ(k′,`′)

is ignored. Fig. 4 depicts an example for ϑ(0,0) and
Nd = 49 neighboring lattice points. The outer rectangular
area covers the Nd = 49 neighboring lattice points whose
coefficients are stacked in vector ϑ(0,0). Note that (11)
is an approximation of the received symbol y(k′,`′) that
is only tight if Nd is chosen appropriately large and all
the significant interference terms from neighboring lattice
points are considered. For the sake of simplicity, the

k′

`′

Fig. 4: Visualization of the time-frequency grid around
lattice point (k′, `′) = (0, 0). The inner area covers the
Ny = 9 received symbols in y. The outer rectangle covers
the Nd = 49 neighboring symbols in d whose influence
is still considered at the Ny = 9 received symbols.

superscript in vectors ϑ(k′,`′) and d(k′,`′) will be omitted
subsequently.

With above definitions we can also define vector
y(k′,`′) that stacks the Ny adjacent received symbols
around lattice point (k′, `′), i.e.

y(k′,`′) ≈ V ·d + w . (12)

Matrix V contains the coefficients of the links from the
Nd transmit symbols towards the Ny received symbols.
Thus, V is of size Ny × Nd. Vector w consists of the
noise terms that correspond to the Ny received signals.
Fig. 4 visualizes an example for y(0,0) and Ny = 9, where
the inner rectangle covers the Ny = 9 received symbols
around lattice point (0, 0). A specific example of (12) for
Nd = 9, Ny = 9, and (k′, `′) = (0, 0) is given in (13) and
(14).

Finally, we can define equalizer zT that estimates
symbol (k′, `′) based upon the Ny received symbols.

y
(k′,`′)
Eq = zTy(k′,`′) . (15)

The equalizer coefficients stacked in vector zT will be
denoted z(k,`,k

′,`′). Inserting (12) in (15) we can also
find a matrix representation that incorporates channel,
waveform and equalizer

y
(k′,`′)
Eq = ϑT

Eq ·d + zTw , (16)

where vector ϑT
Eq = zTV consists of elements ϑ(k,`,k′,`′)

Eq .





y(−1,−1)

y(−1,±0)

y(−1,+1)


y(±0,−1)

y(±0,±0)

y(±0,+1)


y(+1,−1)

y(+1,±0)

y(+1,+1)




=


Ṽ (−1,−1) Ṽ (−1,±0) Ṽ (−1,+1)

Ṽ (±0,−1) Ṽ (±0,±0) Ṽ (±0,+1)

Ṽ (+1,−1) Ṽ (+1,±0) Ṽ (+1,+1)

 ·



d(−1,−1)

d(−1,±0)

d(−1,+1)


d(±0,−1)

d(±0,±0)

d(±0,+1)


d(+1,−1)

d(+1,±0)

d(+1,+1)




+



w(−1,−1)

w(−1,±0)

w(−1,+1)


w(±0,−1)

w(±0,±0)

w(±0,+1)


w(+1,−1)

w(+1,±0)

w(+1,+1)




(13)

Ṽ (κ′,κ) =


ϑ(κ,−1,κ′,−1) ϑ(κ,±0,κ′,−1) ϑ(κ,+1,κ′,−1)

ϑ(κ,−1,κ′,±0) ϑ(κ,±0,κ′,±0) ϑ(κ,+1,κ′,±0)

ϑ(κ,−1,κ′,+1) ϑ(κ,±0,κ′,+1) ϑ(κ,+1,κ′,+1)

 (14)

C. Waveforms

Within this paper two different schemes will be com-
pared, a classical Cyclic Prefix (CP)-OFDM scheme,
and a generalized scheme with Gaussian prototype filter
[10]. The transmit and receive filters for the rectangular
waveform with a guard interval in CP-OFDM are given
by

gTx (t) =

{
1√
T

for |t| ≤ T
2

0 else
(17)

gRx (t) =

{
1√
T

for |t| ≤ T−TG
2

0 else
, (18)

where TG is the duration of the guard interval. In case of a
perfectly synchronized OFDM system (∆ν = 0, ∆τ = 0),
the coefficients become ϑ = 1 for the desired signal part
and ϑ = 0 for all interference terms.

If non-orthogonal waveforms are applied or if the
channel is dispersive in time or frequency, there might
be ICI as well as ISI. Within this paper we will consider
a Gaussian impulse shape [14]

gTx (t) = gRx (t) = (2α)
1
4 e−παt

2

. (19)

Note that the Fourier transform of (19) is the Gaus-
sian function again, where parameter α influences the
localization in time and frequency domain. For α = 1
the Gaussian waveform has identical response in time
and frequency. Contrary to the rectangular waveform, the
Gaussian function leads to a non-orthogonal system, i.e.,
the first Nyquist criterion is not fulfilled. Thus, there is
always interference from neighboring lattice points even
if the system is perfectly synchronized. On the other hand,
it is optimally concentrated [14] and most interference is
restricted to direct neighbors.

If the system is perfectly synchronized (∆ν = 0,
∆τ = 0), for the Gaussian prototype filter the coefficients

become

ϑ
(k,`,k′,`′)
Gaussian =e

− 1
2π

(
(k′−k)

2
F 2+(`′−`)

2
T 2

)
· e−jπ(k′−k)F(`′+`)T (20)

III. GFDM FOR TWRC

Next, we will extend the system model according to
the TWRC, where two users A and B that are assisted by
relay R intend to exchange messages. In a PLNC scheme
[16], [17] two phases are required for transmission. First,
both users A, B transmit simultaneously to relay node
R in the MAC-phase. Second, the relay node forwards a
combination of both user signals in the broadcast phase.
Afterwards the users are able to remove the original
signals from the received relay signal.

Subsequently, we will focus on the MAC phase of
the PLNC scheme as this is the critical phase where
synchronization offsets might have severe influence. A
block diagram of the MAC phase is depicted in Fig. 5.
If the second user is ignored, it is equivalent to the P2P
system in Fig. 2. As in the P2P system we assume that
there are TOs and CFOs between the relay and the users.
These synchronization offsets are independent random
variables, i.e., the relay has to deal with different offsets
towards users A and B. Furthermore, we assume that the
relay is unaware of these offsets.

Equivalently to the above definitions for the P2P sys-
tem, we can define the received symbol at relay R

y
(k′,`′)
R =

∑
k

∑
`

d
(k,`)
A ϑ

(k,`,k′,`′)
A +

∑
k

∑
`

d
(k,`)
B ϑ

(k,`,k′,`′)
B + w̃ . (21)

As depicted in Fig. 5, it is the superposition of individual
signals from user A and B. If again only the interference
from the Nd adjacent lattice points is considered, the Ny
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Fig. 5: Block diagram of the MAC phase of a PLNC system with GFDM.

received symbols around (k′, `′) are given by vector

y
(k′,`′)
R ≈ VA ·dA + VB ·dB + w (22)

As said above, there is no equalizer zT

y
(k′,`′)
Eq = zTyR

= ϑT
Eq,A ·dA + ϑT

Eq,B ·dB + zTw , (23)

that eliminates VA as well as VB if VA 6= VB [15], [18].
Nonetheless, we can compute equalizer coefficients to es-
timate the superposition of the individual transmit signals.
Assuming MMSE criterion, the equalizer coefficients to
estimate

d̃
(k′,`′)
R = d

(k′,`′)
A + d

(k′,`′)
B ej2πφ (24)

are determined by solving the optimization problem

zTMMSE = argmin
zT

E

{∣∣∣∣y(k′,`′)
Eq − d̃(k′,`′)

R

∣∣∣∣2
}

. (25)

The optimal choice of phase difference φ is not obvious
but out of the scope of this paper. It depends on the
transmit power, the actual modulation scheme, and the
used detection scheme at the relay [19]. To simplify
matters, we will assume phase difference φ = 0 as in
[20]. Then the solution of problem (25) is given by [20]

zTMMSE =
(
V H
A + V H

B

)(
VA V H

A + VB V H
B +

σ2
W

σ2
S

I

)−1

·1 , (26)

where vector 1 = [0, · · · , 0, 1, 0, · · · , 0]
T selects the

central row. For non-orthogonal waveforms the obtained
linear equalizer can be used to reduce the interference
caused by the non-orthogonal waveforms, even if there is
no Zero Forcing (ZF) solution. As discussed in [18], [20],
linear equalizers might be outperformed by non-linear
approaches if PLNC is used. Nonetheless, we will stick
to the linear MMSE equalizer (26), as implementation is
straightforward. Note, however, that the performance of
the non-orthogonal scheme might be improved further, if
non-linear equalizers are applied.

IV. EVALUATION METRICS

Within this paper, the application of non-orthogonal
waveforms is proposed to improve the robustness of PLNC
transmission schemes to CFOs and TOs. To show the
improvement, compared to classical CP-OFDM schemes,
an appropriate evaluation metric is required.

A. SINR

One possible metric is the Signal to Interference and
Noise Ratio (SINR). In general, the received signal can
be divided into the three components, the desired signal
parts of users A and B

y
(k′,`′)
S,A = ϑ

(k,`,k′,`′)
Eq,A d

(k′,`′)
A with (k, `) = (k′, `′) , (27)

the interference terms of users A and B

y
(k′,`′)
I,A =

∑
k

∑
`

(k,`)6=(k′,`′)

ϑ
(k,`,k′,`′)
Eq,A d

(k,`)
A (28)

and a noise term.
With above definitions we can define an SINR of the

PLNC system

SINR(k′,`′) =
P

(k′,`′)
S,A + P

(k′,`′)
S,B

P
(k′,`′)
I,A + P

(k′,`′)
I,B + P

(k′,`′)
W

. (29)

where

P
(k′,`′)
S,A = E

{∣∣∣∣y(k′,`′)
S,A

∣∣∣∣2
}

= σ2
S

∣∣∣∣ϑ(k,`,k′,`′)
Eq,A

∣∣∣∣2 for (k, `) = (k′, `′) (30)

P
(k′,`′)
I,A = E

{∣∣∣∣y(k′,`′)
I,A

∣∣∣∣2
}

= σ2
S

∑
k

∑
`

(k,`)6=(k′,`′)

∣∣∣∣ϑ(k,`,k′,`′)
Eq,A

∣∣∣∣2 (31)

P
(k′,`′)
W = σ2

W

∑
k

∑
`

∣∣∣z(k,`,k′,`′)∣∣∣2 ∫ +∞

−∞
g2

Rx (λ) dλ .

(32)

Parameter σ2
S denotes the transmit power and σ2

W is the
noise power at the relay assuming uncorrelated noise
samples.

SINR (29) is an intuitive measure to illustrate the
relation of the received signal, interference and noise
powers in the MAC phase of the PLNC system. Note,
however, that there are some drawbacks. First, it is not
necessarily meaningful in the PLNC context. Two users
with average link quality can lead to the same SINR values
as two users with one good and one bad link. The overall
performance of the PLNC system, however, can differ



significantly for these two cases. Secondly, the SINR does
not consider the spectral efficiency of the system.

B. Mutual Information

As the SINR is not necessarily meaningful in the MAC
phase of the PLNC scheme, we will also compute the
mutual information of a PLNC system with GFDM to
evaluate the system performance. Without loss of gen-
erality, it is assumed that lattice (k′, `′) = (0, 0) is
considered at the receiver. In the following illustrations
the superscripts (0, 0) will be omitted for the sake of
simplicity.

In [19], [21] different decoding and detection schemes
for PLNC are analyzed. Especially, the detection scheme
in higher Galois Fields called Generalized Joint Channel
decoding and Network Coding (G-JCNC) exploits the
maximum mutual information for discrete input alphabets
of cardinality M and the received superposition, which is
based on estimating the relay codeword, directly. Here, the
mutual information between the tuple dAB = (dA, dB) of
cardinality M2 and the received superposition at the relay
is given by [21]

I ′ (dAB; yR) =
∑
dAB

∫
p (yR | dAB) Pr (dAB)

· log2

 p (yR | dAB)∑̃
dAB

(
p
(
yR | d̃AB

)
Pr
(
d̃AB

))
 dyR (33)

where equal a-priori probabilities Pr (dA) = Pr (dB) =
1
M are assumed at the sources so that Pr (dAB) = 1

M2 .
Mutual information I ′ (dAB; yR) corresponds to the max-
imum sum-rate in the MAC phase of the PLNC scheme.
In order to recover the individual messages successfully,
the code rate of users A and B has to be smaller than
I = I′(dAB;yR)

2 [19]. For dAB = (dA, dB), the PDF of the
received symbol can be approximated by

p (yR | dAB) ≈ 1

π (σ2
W + σ2

I )
e
−‖yR−ϑ

(S)
A
dA−ϑ

(S)
B
dB‖2

σ2
W

+σ2
I

(34)

This approximation assumes that interference is normal
distributed. Note that the interference in the considered
system is not necessarily normal distributed. However,
the PDF of the interference is given by a convolution
of the PDFs of the individual interference terms from all
neighboring lattice points. According to the central limit
theorem, such a PDF tends towards a normal distribution,
if many terms are accumulated. For low Signal to Noise
Ratios (SNRs), the approximation is also tight as the noise
power is much larger than the interference power.

V. RESULTS

Within this section, the robustness with respect to CFOs
and TOs will be analyzed for the MAC phase of a PLNC
system with orthogonal and non-orthogonal waveforms.
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Fig. 6: Average SINR without CFOs (∆νmax = 0, solid)
and with CFOs (∆νmax = 0.2F , dashed).

The interference caused by the non-orthogonal waveform
is treated by the linear MMSE equalizer. In case of the
CP-OFDM system, no equalizer is used at the relay node.

A. Simulation Parameters

The SINR, as well as the mutual information, will be
analyzed for a rectangular waveform with guard interval
(CP-OFDM), and a Gaussian transmit filter with subse-
quent MMSE equalizer. For the non-orthogonal Gaus-
sian waveform two different modifications Gaussian1 and
Gaussian2 will be compared. For Gaussian1, the distance
of Gaussian lattice points is chosen such that the spectral
efficiency is the same as for CP-OFDM. For Gaussian2,
the distance between the Gaussian lattice points is reduced
by 25% in each direction to increase spectral efficiency
at the cost of additional interference. For both non-
orthogonal setups, the localization parameter α = F 2 was
chosen such that the interference to adjacent lattice points
in time domain is the same as the interference to adjacent
lattice points in frequency domain.

If synchronization offsets occur in time or frequency,
the receiver will no longer match the perfect sam-
pling point, additional interference occurs, and the sys-
tem performance degrades. For simulation we assume
that the synchronization offsets are uniformly distributed
random variables in the interval [−∆νmax,∆νmax], and
[−∆τmax,∆τmax], respectively. Furthermore, the offsets of
both users are assumed to be independent and the relay
is unaware of the synchronization offsets. As the relay
is unaware of the offsets, the MMSE equalizer of the
non-orthogonal system is designed for the synchronized
case ∆ν = 0, ∆τ = 0. The interference caused by the
synchronization offsets is ignored in the orthogonal and
non-orthogonal systems.

Tab. I summarizes the specific simulation parameters
for the considered waveforms.

B. SINR

Fig. 6 depicts the SINR of the TWRC at the equalizer
output over SNR 2σ2

S/σ
2
W . The solid lines correspond



TABLE I: Applied simulation parameter.

Parameter CP-OFDM Gaussian1 Gaussian2
modulation scheme BPSK

channel AWGN
considered interference terms from neighboring lattice points Nd 441 (= 21× 21)

lattice spacing in frequency domain F 15kHz 15.52kHz 11.64kHz
lattice spacing in time domain T 71.4µs 68.97µs 51.73µs

guard interval TG 4.7µs ≈ 6.5% –
number of equalizer coefficients Ny – 25 (= 5× 5)

normalized distortion parameter of Gaussian waveform α/F 2 – 1
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Fig. 7: Average SINR without TOs (∆τmax = 0, solid)
and with TOs (∆τmax = 0.2T , dashed).

to perfectly synchronized systems. As there is no in-
terference in the synchronized orthogonal system, CP-
OFDM performs best with SINR = SNR. Contrary, the
SINR of non-orthogonal systems is interference limited
in the high SNR region. As the interference becomes
larger for smaller lattice spacings, Gaussian2 is worse than
Gaussian1. For low SNRs, the non-orthogonal waveforms
reach the performance of the orthogonal scheme as the
noise is much larger than the interference terms.

The dashed lines correspond to the average SINR if
the CFOs do not exceed ∆νmax = 0.2F . As expected,
the Gaussian waveform behaves more robust with respect
to CFOs. The loss of the non-orthogonal waveforms is
smaller than the loss of CP-OFDM. Nonetheless, even
Gaussian1 is outperformed by the CP-OFDM scheme at
the high SNR region for ∆νmax = 0.2F , as the residual
interference at the output of the MMSE equalizer is worse
than the additional interference caused by the CFOs.

Fig. 7 visualizes average SINR results for ∆τmax =
0.2T . Compared to Fig. 6, the SINR values of the non-
orthogonal waveforms do not change, as the Gaussian
waveforms have the same shape in time and frequency.
For CP-OFDM, however, the influence of CFOs and TOs
is different. If the TO can be compensated by the guard
interval, the SINR does not change at all, i.e., SINR =
SNR again. If the guard interval is not sufficient, severe
ISI will be generated and the SINR goes down. Note that
both cases might occur for ∆τmax = 0.2T .
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Fig. 8: Normalized mutual information without CFOs
(∆νmax = 0, solid) and with CFOs (∆νmax = 0.2F ,
dashed).
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Fig. 9: Normalized mutual information without TOs
(∆τmax = 0, solid) and with TOs (∆τmax = 0.2T ,
dashed).

C. Mutual Information

As mentioned above, the SINR results need to be
interpreted carefully as the SINR might not be a good
performance metric for the PLNC system. Thus, the
achievable mutual information (33) will be considered
next. The influence of CFOs is shown in Fig. 8, and
Fig. 9 visualizes the impact of TOs. Note that the
mutual information has been normalized according to the
distances of the lattice points.

In terms of mutual information, the Gaussian wave-
forms can be superior in the PLNC system. For Gaussian1,
the increased complexity of the non-orthogonal scheme
might not necessarily pay off, as too much residual



interference is left at the output of the linear equalizer.
Contrary, Gaussian2 outperforms the other schemes due
to the increased spectral efficiency.

The performance gain of the Gaussian waveform can
be improved further, if larger synchronization offsets
∆νmax > 0.2T are assumed. In that case, however, it
might be much more reasonable to spend some more effort
to improve the synchronization process.

Reducing lattice distances further will not improve the
system performance much. Even if this increases spectral
efficiency further, the amount of introduced interference
increases considerably. The significant interference is no
longer limited to adjacent lattice points and the linear
equalizer is no longer able to handle it. Increasing param-
eter Ny of the equalizer will only help to a certain extent,
as there is no ZF solution for the PLNC case. Here, non-
linear equalizers [22], [23] might be able to improve the
PLNC system with non-orthogonal waveforms further.

VI. CONCLUSION

In this paper the sensitivity of a Physical-Layer Network
Coding scheme to synchronization offsets has been inves-
tigated for Generalized FDM systems. The system model
of the Generalized FDM system has been recapitulated
and extended for the PLNC system. Afterwards a matrix
notation was introduced to determine a linear MMSE
equalizer for the interference caused by neighboring lattice
points. Finally, numerical results have been presented,
which indicate that the combination of Gaussian waveform
and linear MMSE equalizer can outperform classical CP-
OFDM systems in PLNC schemes.
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