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Abstract—The dense deployment of small cells is a promising
approach to realize the ever-growing rate demand in future
wireless communication systems and centralizing RAN function-
ality permits joint multi-cell processing at the cost of backhaul
traffic. In order to limit the backhaul requirements, cooperative
processing among distributed radio access points is an interesting
alternative for, e.g., advanced radio resource management, joint
cooperative transmission, or joint reception. This paper focusses
on cooperative multi-user detection by applying the Distributed
Consensus-based Estimation (DiCE) algorithm and two recently
proposed modifications for accelerating the iterative approach
and to reduce communication overhead. The proposed schemes
are investigated by means of computational complexity, commu-
nication overhead, and estimation performance.

I. INTRODUCTION

Ultra dense deployment of low-power small cells is a
promising candidate to deal with the exponential growth of
traffic in 5G mobile networks. Small cells reduce the distance
between the radio access points (RAP) and the user terminals
(UEs) and allows for reusing the spectrum by neighboring
RAPs [1]. In order to cope with the strong interference sce-
nario, multi-cell processing is needed and centralized RAN (C-
RAN) utilizing base-band pooling units (BBU) is currently un-
der discussion for joint processing among RAPs [2]. However,
the exchange of in-phase/quadrature (I/Q) samples between
RAPs and BBUs requires deployment of fibre links over larger
distances, as the central processing nodes are usually far away
from RAPs. To reduce high-capacity, long-distance backhaul
(BH) links it would be beneficial to interconnect the RAPs
within a geometrical area and perform cooperative processing
[3]. Due to the rather short distances between RAPs, the
deployment of low-cost wireless links offering huge data rates,
e.g., offered by mmWave transmissions, becomes feasible.

In recent publications we proposed the Distributed
Consensus-based Estimation (DiCE) algorithm [4] and applied
the method for joint multi-user detection by iteratively ex-
changing local estimates between RAPs [5]. Furthermore, we
proposed the RO-DiCE (Reduced Overhead DiCE) [6] and
the Fast-DiCE [7] modifications to reduce the communication
overhead among RAPs and to improve the convergence speed.
In this paper, we oppose the DiCE and its modifications and
investigate in particular the required communication overhead
for different backhaul topologies and the computational com-
plexity.

The remainder of this paper is organized as follows. The
system model is introduced in Section II and the considered
distributed approaches for signal estimation are discussed in
Section III. The performance of these approaches are inves-
tigated in Section IV, where also the analytical comparison
w.r.t computational complexity and communication overhead
is presented. The paper is concluded in Section V.

II. SYSTEM MODEL
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Fig. 1. Small-cell network where NUE mobile users are served by NRAP
radio access points with information exchange between neighboring nodes.

Fig. 1 shows the small cell uplink scenario where the data
vectors xu transmitted by the NUE users is received by a
set of NRAP radio access points (RAPs) interconnected by
some kind of BH network. These RAPs represent the nodes
of a network described by the geometric graph G := {J , E},
where J := {1, . . . , NRAP} denotes the set of nodes and E
represents the set of edges for the linked nodes. For exchang-
ing information, each node j ∈ J communicates with its
neighboring nodes i ∈ Nj ⊆ J (i.e., (i, j) ∈ G). Without loss
of generality, it is assumed that each user u uses NT antennas
to transmit complex-valued symbol vectors xu ∈ ANT×1 with
elements of the modulation alphabet A and we can construct
an overall message vector x = [xH

1 . . . xH
NUE

]H containing
NI = NUE ·NT input components per time instant.

The received signal vector yj ∈ CNR×1 at RAP j equipped
with NR receive antennas is given by

yj = Hjx + nj (1)

with the complex-valued channel matrix Hj ∈ CNR×NI and
the nj additive Gaussian noise vector containing i.i.d. elements
with variance σ2

n.



In general, each RAP could separately perform a local
estimation for x. However, improved estimation performance
can be achieved by processing all receive signals yj , j ∈ J ,
jointly by, e.g., forwarding all observations yj and all channel
matrices Hj to a central node (fusion center). By constructing
the stacked observation vector y = [yH

1 . . . yH
NRAP

]H, stacked
channel matrix H = [HH

1 . . . HH
NRAP

]H, and stacked noise
vector n = [nH

1 . . . nH
NRAP

]H, the system equation

y = Hx + n (2)

for the general NI × NO MIMO system with NI = NUENT
input and NO = NRAPNR output signals can be set up
facilitating central estimation. As an example, we consider the
central Least Squares (LS) problem

x̃ = arg min
x′∈CNI×1

‖y−Hx′‖2 (3)

achieving the estimate x̃ based on all observations y. The
solution is given by the Zero-Forcing (ZF) linear equalizer

x̃ZF = (HHH)−1HHy = H+y , (4)

which filters the observation vector y with the Moore-Penrose
Pseudo-Inverse of the channel matrix H+ = (HHH)−1HH.
It is well known, that the ZF equalizer suffers from noise
amplification and better results can generally be achieved by
applying the Minimum Mean Square Error (MMSE) criterion.
The MMSE criterion reduces the overall estimation error and
calculates as

x̃MMSE = (HHH+σ2
nINI)

−1HHy = H+y , (5)

with the augmented channel matrix H = [HH σnINI ]
H and the

augmented receive vector y = [yH 01,NI ]
H [8].

In order to reduce the required communication overhead
of forwarding all local observations to the central node being
usually far away, distributed estimation approaches are of par-
ticular interest. If NR ≥ NI holds, also local linear estimation
can be performed with respect to (1) leading to the local ZF
estimate x̃j,ZF = H+

j yj or MMSE estimate x̃j,MMSE = H+
j y

j
at node j. However, in general these local estimates will be
differ at the different RAPs and lead to worse performance
compared to the central solution.

III. DISTRIBUTED DETECTION SCHEMES

A. DiCE Algorithm

In [4], the authors proposed an approach that solves the
LS problem (3) in a distributed fashion following the idea
in [9]. This is facilitated by reformulating the optimization
problem into a set of optimizations over local estimates
xj with coupling through a consensus constraint xi = xj
for i ∈ Nj . This constraint enforces equality between the
local variable of node j and the variables of its neighboring
nodes i ∈ Nj . However, due to the direct coupling of the
variables xj , j ∈ J , this set of estimation problems cannot
be solved in parallel as is. Introducing auxiliary variables zj
per node j, an iterative, distributed solution employing the
Alternating Direction Method of Multipliers (ADMM) [10]

becomes possible, resulting in the update equations in iteration
k for every node j ∈ J [4]:

zkj =
µ

|N+
j |

∑
i∈N+

j

[
1
µxik−1 − λk−1ij

]
(6a)

λkji =λ
k−1
ji − 1

µ

(
xk−1j − zki

)
∀i ∈ N+

j (6b)

λkij =λ
k−1
ij − 1

µ

(
xk−1i − zkj

)
∀i ∈ Nj (6c)

xkj =

(
HH
j Hj+

|N+
j |
µ

INI

)−1
·

HH
j yj+

∑
i∈N+

j

(
zki
µ +λkji

) . (6d)

Here, N+
j = Nj ∪ {j} contains the neighboring nodes of

RAP j and itself. Variables xkj and zkj represent intermediate
estimates at node j after iteration k, and λkji and λkij denote
Lagrangian multipliers. The optimization of the step size µ
is intended in further studies and is currently fixed to 1 in
numerical evaluations.

Initializing the variables z0j and λ0
ij with zeros, the initial

estimate x0j at node j depends only on the local observation
yj and the channel matrix Hj following (6d):

x0j =

(
HH
j Hj +

|N+
j |
µ

INI

)−1
·HH

j yj . (7)

This expression can be interpreted as filtering yj with a
regularized inverse. Each iteration k starts with the update
of the auxiliary variables zkj according to (6a) which are
then shared with the neighbouring nodes. After this exchange,
the Lagrangian multipliers are updated using (6b) and (6c)
and, finally, the update of xkj takes place. This intermediate
estimate xkj is again exchanged with the neighbors i ∈ Nj .
Thus, in each iteration the local estimates xkj and the auxiliary
variables zkj are updated by considering information from
the neighboring nodes and the previous own estimates, i.e.,
incorporating information from all nodes i ∈ N+

j .
Generally, the Lagrangian multipliers λji and λij required

for the update equations (6d) and (6a) can be calculated for
all i ∈ N+

j locally at node j using (6b) and (6c) as the
required variables xk−1i and zki have been forwarded by the
neighbors i ∈ Nj . However, in case of erroneous inter-node
links (i.e., errors on the BH channels indicated by the edges
E) these exchanged variables are corrupted differently at the
RAPs prohibiting the convergence of the DiCE algorithm [11].
Nevertheless, a simple modification leads to convergence in the
mean sense. To this end, only the Lagrangian λkji for i ∈ Nj
are calculated at node j and transmitted to the neighbors as
well. Correspondingly, node j collects the Lagrangian λkij
from the other RAPs such that (6c) is obsolete. Subsequently,
we will always consider this more general implementation of
the DiCE algorithm.

In each iteration of the DiCE algorithm node j has to ex-
change the variables xkj , zkj , and λkji with its neighboring nodes
leading to considerable communication overhead as elaborated
in Section IV-C. In order to reduce the total communication
overhead one may either reduce the number of iterations while



maintaining performance or reduce the number of signals to
be exchanged within an iteration. Both approaches are tackled
by the modifications discussed subsequently.

B. Fast-DiCE Algorithm

The Fast-DiCE algorithm proposed in [7] introduces a pre-
diction step for the auxiliary variables zki and the Lagrangian
λkji to accelerate the iterative detection algorithm by adopting
Nesterov’s optimal gradient descend method [12]. The main
idea is to calculate at node j a predictor z̃kji for the auxiliary
variable of node i based on the two latest received estimates
zki and zk−1i by z̃kji = zki + γk

(
zki − zk−1i

)
. Thus, the newest

received estimate zki is extended by the gradient of the auxil-
iary variable zki − zk−1i weighted by the step size parameter
γk. Similarly, the predictors λ̃kji are calculated based on λkji
and λk−1ji . These predictors are then used for calculating the
local variables leading to modified update equations at node j

zkj =
µ

|N+
j |

∑
i∈N+

j

[
1
µxik−1 − λ̃k−1ij

]
(8a)

λkji = λ̃
k−1
ji − 1

µ

(
xk−1j − zki

)
∀i ∈ N+

j (8b)

z̃kji = zki + γk
(
zki − zk−1i

)
∀i ∈ N+

j (8c)

λ̃kji =λ
k
ji + γk

(
λkji − λ

k−1
ji

)
∀i ∈ N+

j (8d)

xkj =

(
HH
j Hj+

|N+
j |
µ

INI

)−1
·

HH
j yj+

∑
i∈N+

j

(
z̃kji
µ +λ̃kji

) . (8e)

The predictors are initialized as z̃0ji = λ̃0
ji = 0 and the step

size parameter in iteration k is given by

γk =
αk−1 − 1

αk
and αk =

1 +
√
1 + 4(αk−1)2

2
. (9)

with α0 = 1. In the first iteration, the Fast-DiCE equals
DiCE as no prediction step is possible. However, for k ≥ 2
the estimates zk−1i and λk−1ji from last iteration can be used
together with the latest estimates zki and λkji to calculate the
predictors z̃kji and λ̃kji according to (8c) and (8d), respectively.
Similar to the DiCE algorithm, the auxiliary variable zkj and
the multipliers λkji are calculated at node j and delivered to the
neighbors i ∈ Nj . After receiving these exchanged variables,
predictors z̃kji and λ̃kji are then calculated at every RAP j ∈ J
improving the estimation of xkj as well as zk+1

j and λk+1
ji in

the following step. Unlike other variables, the predictors are
calculated locally and do not have to be exchanged among
RAPs, such that the communication overhead per iteration
compared to DiCE remains the same. Nevertheless, as demon-
strated in Section IV, fewer iterations are required by Fast-
DiCE to achieve the same estimation quality as DiCE leading
to a considerable reduction of the overall communication effort
at the expense of a slightly higher computational complexity.

C. Reduced Overhead DiCE

As mentioned, the variables xj , zj , and λji have to be
transmitted by node j to its neighboring RAPs i ∈ Nj in

each iteration of the DiCE algorithm. Obviously, this data
transmission causes a high communication overhead among
the RAPs as detailed in Section IV-C. In order to reduce this
overhead, the Reduced Overhead DiCE (RO-DiCE) proposed
in [6] introduces the approximations

1

|N+
j |

∑
i∈N+

j

λk−1ij ≈ λk−1jj ≈ 1

|N+
j |

∑
i∈N+

j

λk−1ji (10)

in the update equation for the auxiliary variable zkj in (6a)
and the estimate xkj in (6d). Thus, the sums of multipliers are
approximated by the locally available multiplier λk−1jj which
omits the exchange of multipliers among nodes at all. This
approximation is motivated by a relaxed optimization problem,
which only achieves consensus in the mean sense. For RO-
DiCE the update equations for RAP j are given by

zkj =− µλk−1jj +
1

|N+
j |

∑
i∈N+

j

xk−1i (11a)

λkjj =λ
k−1
jj − 1

µ (x
k−1
j − zkj ) (11b)

xkj =

(
HH
j Hj+

|N+
j |
µ

INI

)−1
·

HH
j yj+|N+

j |λ
k
jj+

1
µ

∑
i∈N+

j

zki

 .

(11c)

Note that in DiCE each node j forwards different multipliers
λkji to each of its neighbors i ∈ Nj in a unicast fashion.
Thus, avoiding the exchange of multipliers reduces the com-
munication overhead significantly. In contrast, the intermediate
estimates zkj and xkj could be broadcasted in principle leading
to smaller burden. In the next section we will investigate the
communication overhead in detail for different BH topologies
based on unicast and broadcast transmissions. Furthermore,
the performance degradation caused by the systematic error
due to the approximation (10) will be investigated.

IV. PERFORMANCE EVALUATION

A. Bit Error Rate

In order to investigate the performance of the presented
distributed estimation algorithms in a small cell scenario,
Monte-Carlo simulations for a system with NRAP = 4 RAPs
each equipped with NR = 2 receive antennas serving NUE = 2
UEs with NT = 2 transmit antennas have been performed.

Fig. 2 shows the average bit error rate (BER) over all RAPs
for uncoded QPSK transmissions over i.i.d. Rayleigh fading
channels, where the central ZF (cZF) and MMSE (cMMSE)
solutions are shown for reference. Here, a fully meshed BH
network is assumed with either ideal or noisy BH connections,
where AWGN channels with fixed SNRBH = 30 dB are
assumed. The DiCE algorithms were terminated after NIt = 20
iterations, leading to an error floor. In general, this error floor
can be decreased by allowing more iterations as convergence
of the DiCE algorithm to the cental solution is guaranteed [4].
In case of error-free BH links only a small loss is visible for
RO-DiCE due to the introduced approximation (10). However,
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Fig. 2. Average BER over all RAPs for a system with NRAP = 4, NR = 2,
NUE = 2, NT = 2 using QPSK modulation, with perfect ( ) and noisy ( )
inter-node links, NIt = 20 iterations for DiCE algorithms.

the loss increases for disturbed BH links as consensus is only
achieved in the mean sense. The Fast-DiCE outperforms both
DiCE and RO-DiCE significantly because of its accelerated
convergence due to the applied prediction step. Thus, with the
same number of iterations the error floor is reduced by an
order of magnitude.

B. Computational Complexity

In Table I we list the number of floating point operations
F (FLOPS) of the linear equalization approaches, DiCE, Fast-
DiCE and RO-DiCE per processing node. The complexity of
the central linear equalization schemes depends on the number
of input signals NI = NUENT, the number of output signals
NO = NRAPNR as well as the frame length L. In contrast,
the number of output signals for local linear equalization (lZF
and lMMSE) and DiCE reduces to NR. The complexity of the
DiCE approaches further depend on the number of iterations
NIt as well as the number of neighboring nodes per RAP j
given by |Nj |.

TABLE I
NUMBER OF FLOATING POINT OPERATIONS PER NODE

Scheme FLOPS F
cZF 2

3
N3

I + (6NO − 1
2
)N2

I + ( 4
3
− 3

2
NO)NI

cMMSE 2N3
I + (6NO − 2)N2

I + (3− 3
2
NO)NI + 4NINOL

lZF 2
3
N3

I + (6NR − 1
2
)N2

I + ( 4
3
− 3

2
NR)NI + 4LNINR

lMMSE 2N3
I + (6NR − 2)N2

I + (3− 3
2
NO)NI + 4NINRL

DiCE 4
3
N3

R + (6NI+5)N2
R + (2N2

I −
3
2
NI+4LNI−L− 17

6
)NR

+(4LNIt − 4L− 1
2
)N2

I + (6|Nj |+ 6)LNItNI
−(8|Nj |+ 8)LNI + 1

Fast-DiCE 4
3
N3

R + (6NI+5)N2
R + (2N2

I −
3
2
NI+4LNI−L−17

6
)NR

+(4LNIt − 4L− 1
2
)N2

I + (8|Nj |+ 12)LNItNI
−(12|Nj |+ 20)LNI + 1

Ro-DiCE 4
3
N3

R + (6NI+5)N2
R + (2N2

I −
3
2
NI+4LNI−L−17

6
)NR

+(4LNIt − 4L− 1
2
)N2

I + (2|Nj |+ 6)LNItNI
−(2|Nj |+ 7)LNI + 1

Fig. 3 depicts the number of FLOPS of the DiCE approaches
with varying number of iterations for the introduced system
configuration and a full meshed network, i.e., |Nj | = NRAP−
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Fig. 3. Floating points operations per node for a system with NRAP = 4,
NR = 2, NUE = 2, NT = 2.

1 = 3. For comparison, the complexity of the linear local and
centralized equalizations are depicted as well.

In the first iteration, the complexity of DiCE is comparable
to the complexity of local MMSE. For each iteration k, DiCE
is updating the auxiliary variables zkj , λkji and xkj based on the
update equations (6) leading to an increased complexity. For
this system setup, the complexity per node of DiCE approaches
the complexity of the linear equalization in a central node at
approximately k = 8 iterations. Furthermore, the complexity
of RO-DiCE compared to DiCE is remarkably reduced, as only
the local Lagrangian λkjj is considered for the update of zkj
in (11a) and xkj in (11c), respectively. In contrast, Fast-DiCE
increases the complexity per iteration due to the prediction
steps (8c) and (8d). However, as shown in the following
subsection, Fast-DiCE requires fewer iterations to achieve the
same estimation performance.

C. Communication Overhead

As detailed above, the information exchange on the links
between RAPs contains variables which need to be made
available to all neighbors and variables which are specific to
certain neighbors. In case of omnidirectional wireless inter-
node communication, the broadcast nature allows to trans-
mit the intermediate estimates zkj and xkj conveniently to
all neighbors i ∈ Nj , while the exchange of λkji requires
dedicated transmissions to each neighbor (unicast). In such
a scenario, the RO-DiCE offers significant reductions due to
the omitted exchange of Lagrangian multipliers. However, in
case of point-to-point (P2P) links between RAPs only unicast
transmissions are possible. Thus, for investigating the actual
communication overhead the applied BH approach has to be
considered. To this end, we will consider an arbitrary network
topology with NRAP nodes and logical BH topology defined
by E (e.g., a full mesh) which is realized by different physical
variants. As examples, we discuss point-to-point (P2P) links
(e.g., mmWave, fiber or copper connections between RAPs),
point-to-multi-point (P2MP) links (e.g. omnidirectional wire-
less transmissions), and a physical star topology where the
communication between RAPs is routed over a transport node
(TN) as depicted in Fig. 4.
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Fig. 4. Backhaul topologies for NRAP = 4 RAPs.

In case of P2P links, in each DiCE iteration the RAP j has
to transmit the local variables to each of its neighbor i ∈ Nj
and receives the current variables of that RAP leading to an
overall link load of DP2P

j→i = 6NIL for this particular inter-
node link between RAP j and RAP i. In case of P2MP links,
RAP j has to transmit DP2MP

j→Nj
= (2 + |Nj |)NIL signals and

the overall broadcast rate equals DP2MP = NRAPDP2MP
j→Nj

. In
case of RO-DiCE only reduced link load DP2P

j→i = 4NIL or
DP2MP
j→Nj

= 2NIL have to be supported.
Table II lists for DiCE and RO-DiCE the total amount of ex-

changed variables per iteration considering different physical
BH topologies. For an arbitrary physical topology (i.e., each
logical link is realized by dedicated physical link) the total
number of exchanged signals are defined for P2P and P2MP
connections in the first two rows demonstrating a significant
reduction for P2MP transmission. Regarding the case of a TN,
we assume that the hub is able to multicast packets to multiple
destinations. Thus, variables xkj and zkj have to be transmitted
only once to the TN, which then duplicates this information
when forwarding to the logical neighbors i ∈ Nj .

TABLE II
TOTAL COMMUNICATION OVERHEAD FOR DIFFERENT TOPOLOGIES

PHY
Topology

Links DDiCE DRo-DiCE

Arbitrary P2P 6|E|NIL 4|E|NIL
Arbitrary P2MP 2(|E|+NRAP)NIL 2NRAPNIL
TN P2P (2NRAP +8|E|)NIL (2NRAP +4|E|)NIL

Fig. 5 shows the average BER versus the total communi-
cation overhead assuming the same system configuration as
before for a fixed Eb/N0 = 10 dB and SNRBH = 30 dB.
Notice, that the error rates after k = {1, 5, 10, 15, 20} itera-
tions are labeled by markers. Depicted are the results for P2P
links, P2MP links and star topology for realizing a logical
full-meshed network.

The graphs indicate, that the RO-DiCE reduces significantly
the communication overhead compared to the original DiCE
approach. However, due to the introduced approximation the
estimation performance is slightly deteriorated considering the
same number of iterations. Fast-DiCE and DiCE require the
same communication overhead per iteration, but Fast-DiCE is
able to achieve the same BER with fewer iterations leading to
a reduced communication overhead as well. For example, to
achieve a BER of 10−3 in case of P2P links the Fast-DiCE
requires on average 10 iterations, whereas the DiCE approach
needs about 16 iterations. Contrary, the approximation intro-
duced for RO-DiCE derogates the performance and requires on
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Fig. 5. Total communication overhead for a) physical unicast, b) physical
broadcast, and c) multicast star topology.

average 18 iterations for the same BER. Thus, in case of P2P
BH links, the Fast-DiCE algorithm achieves the best overhead-
performance trade-off.

When considering P2MP links, a significant reduction of
communication overhead is visible for all approaches as the
variables xkj and zkj can be broadcasted. As costly unicast
transmissions of Lagrangian multipliers are avoided by RO-
DiCE, this approach leads here to the best trade-off. Finally,
the TN-assisted topology performs similarly to the arbitrary
topology with P2P links with only slightly increased overhead
on a reduced number of physical links.

V. CONCLUSION

For a small cell network we proposed the Distributed
Consensus-based Estimation (DiCE) algorithm for coopera-
tively solving optimization problems. We discussed the two
DiCE modifications Fast-DiCE and Reduced Overhead DiCE
(RO-DiCE) and compared the performance of these schemes
by means of error rate, computational complexity and com-
munication overhead when applied for multi-user detection.
However, as the considered problem is quite general, the
presented framework can be applied also for other tasks in
distributed systems. In the future, these approaches will be
compared with respect to quantization effects on the backhaul
links, latency requirements, and combined with forward error
correction techniques.
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