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Abstract—Compressed sensing based multiuser detection is
a novel research field in massive machine to machine com-
munication. Mainly focusing at decreasing signaling overhead,
this approach implements sophisticated detection algorithms at
the physical layer that jointly estimate activity and data. As a
consequence, the reliability of the activity detection is crucial for
the system performance as data is lost if users are erroneously
classified as inactive. This paper introduces a novel approach to
estimate node activity on a per frame basis by Multiple Mea-
surement Vector Compressed Sensing approaches. This approach
allows for reliable activity detection with complexity invariant of
the length of the transmitted frame. Moreover, we are able to
show that this approach works with only a few measurements
available to the detector. In particular we demonstrate that
reliable activity detection is possible if the number of observations
is larger than the square root of the number of nodes in the
system.

I. INTRODUCTION

Machine Type Communication (MTC) is one of the emerg-
ing fields for future communication systems. Besides human
driven communications, MTC involves traffic between au-
tonomous entities without human interaction in mind. MTC
traffic differs in a variety of parameters from traffic caused by
humans. Exemplary, many MTC applications such as sensor
networks, smart meters or medical applications are of very
low data rate and MTC devices are inactive for most of the
time [1]. This renders MTC traffic to be sporadic in time
which complicates the integration of MTC in high data rate
cellular systems such as LTE. Sporadic and low data rate traffic
easily leads to situations where signaling overhead is higher
than the payload. A novel physical layer technique to reduce
signaling for low data rate and sporadic MTC is to perform
joint activity and data detection [2], [3], also summarized as
Compressed Sensing based Multiuser Detection (CS-MUD).
This method utilizes algorithms from sparse signal processing
and Compressed Sensing to estimate the activity of MTC
terminals and the corresponding data.

The core part of CS-MUD is to estimate the activity and the
data of the nodes at the physical layer, which is a challenging
task. The performance of the scheme with respect to correct
activity detection is crucial for the system performance as data
is lost if nodes are erroneously classified as inactive. A variety
of works have analyzed the so-called false alarm and missed
detection activity errors and some approaches to control these

errors exist [4], [3]. In [4] the authors introduced a Bayes-
Risk based detector as a generalized maximum-a-posteriori
(MAP) detector that allows a weighting between false alarm
and missed detection activity errors. In [5] the authors utilize
coding of the data to improve the activity detection performed
by a modified Orthogonal Matching Pursuit (OMP) algorithm.

Similar to [5] this paper focuses on improving the ac-
tivity detection by exploiting knowledge about frame based
transmissions. More specifically we utilize the knowledge that
nodes are either active or inactive for the duration of a whole
frame. The novelty of this approach is to cast the activity
estimation as a Multiple Measurement Vector Compressed
Sensing (MMV-CS) problem. Based on MMV-CS we show
how activity estimation is done with very low complexity
detection schemes. The major advantage of this approach
is that the complexity does not depend on the length of
the frame transmitted by the nodes. This reduces the com-
plexity compared to previous schemes that estimated frame
(in)activity on a symbol-by-symbol fashion. In [6] the authors
used L consecutive symbol-by-symbol MAP estimators and
combined the result to obtain a per frame estimate for node
(in)activity, which leads to high complexity especially for long
frames. Besides its low complexity, MMV-CS allows us to
derive bounds on the parameters for which activity estimation
will succeed. We show in this paper that successful activity
estimation is possible as long as the number of observations
at the detector is larger than the square root of the number of
nodes in the system. Most interestingly this relationship holds
even if the activity in the system increases.

For reliable activity estimation, this paper introduces two
different detection schemes. First, we set up a Matrix Match-
ing Pursuit (MMP) algorithm as an extension of the well
known Orthogonal Matching Pursuit (OMP) for solving under-
determined matrix problems. Compared to the OMP, the MMP
does not require a matrix inversion. Beyond that and as the
major contribution, we set up an approximate MAP detection
scheme that refers to the solution of a regularized least-
squares problem, which is fully or even overdetermined if
the square root of the number of nodes is larger than the
observations available at the detector. This relation allows
for low-complexity solvers such as Successive Interference
Cancellation (SIC).
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Fig. 1. Machine to machine uplink scenario with K nodes transmitting a
frames of length L to a central aggregation node.

Finally, we demonstrate the performance of our schemes in
different simulation setups. To demonstrate the performance
with respect to varying node activity we use so called phase
transition diagrams. Moreover, we investigate the stability with
respect to frame asynchronicity and show that the performance
is preserved even if nodes transmit asynchronously. We also
compare the reliability with algorithms from literature.

II. SYSTEM MODEL

Throughout this work, the following detection model, also
depicted in figure 1 is assumed. A set of K nodes sporadically
accesses the wireless channel to transmit modulation symbols
to a central aggregation node. The sporadic nature of the nodes
is captured using a simple traffic model parametrized by the
node activity probability pa, that we assume to be the same for
all nodes. With this model a node starts transmitting at the be-
ginning of a frame with probability pa. With probability 1−pa
the node is silent for the duration of the whole frame. Active
nodes modulate their data by using some type of modulation
alphabet A ∈ C which is of cardinality M such as Phase Shift
Keying (PSK) or Quadrature Amplitude Modulation (QAM).
For joint detection of activity and data, we model inactive
nodes as transmitting zeros instead of modulation symbols.
More precise, we capture inactivity at the detector by using an
augmented modulation alphabet, A0 := A∪{0} that accounts
for active and inactive nodes. Stacking the modulation symbols
from active and inactive nodes together yields a multi-user
vector x ∈ AK0 , which is sparse if pa is sufficiently low.
We further assume that nodes transmit frames of length L
to the central aggregation node. Collecting L consecutive
multiuser vectors yields the sparse matrix X ∈ AK×L. Here
the lth column vector contains the modulation symbols for
the K nodes at time instance l. The kth row contains one
transmitted frame from node k, respectively. As for medium
access and for multiuser detection we assume user specific
random spreading via constant modulus sequences of the form
tk ∼ exp (j2πU) ∈ CK , with U ∼ U (0, 1) being uniformly
distributed. The spreading sequences are of constant modulus
which simplifies transmission via low cost amplifiers. For the
detection model, we collect the spreading sequences of length
m in the columns of the matrix T ∈ Cm×K . This allows to

state a per-frame detection model as follows

Y = TX + W. (1)

Here we have omitted any time indexing for multiple frames to
preserve clarity. The matrix W ∈ Cm×L contains i.i.d. sam-
ples from a symmetric circularly distributed white Gaussian
noise process with variance σ2

n. In cases where m < K, the
system is underdetermined and relates to the theory of Com-
pressed Sensing. More specifically, Y contains L measurement
vectors that carry information about the pattern of non-zero
and zero elements in X. In Compressed Sensing this relates
to the the class of MMV-CS problems [7]. The formulation
of (1) implicitly contains an assumption about synchronicity.
Nodes are assumed to be synchronized in the network such
that all frames start and end at the same time. In section IV we
also demonstrate that the introduced algorithms are to some
extent robust against frame asynchronicity.

A. Activity Detection Model

In the following we sketch the detection model for the
system described in (1). Our goal is to estimate node activity
without estimating the underlying data. Data detection can
be done after the set of active nodes has been estimated
correctly. For activity estimation, we focus on the covariance
matrix of the received signal E

(
YYH

)
= TDTH + σ2

nIm,
where D = E

(
XXH

)
is a diagonal matrix whose dk,kth

entry is one if the kth node is active and zero otherwise.
This assumption implicitly assumes uncorrelated data symbols
with power σ2

k = 1 at the nodes. Our goal is to estimate
the activity of the nodes, which is fully determined by the
diagonal elements of the matrix D. Thus, the detection task is
to recover the position of the non-zero diagonal elements in
D. In this work we denote the sparsity S ≤ K for the number
of active nodes within one frame. The covariance matrix is
not available at the detector and we use the sample covariance
matrix denoted as ΦY Y calculated over a frame of length L
to achieve a proper detection model

ΦY Y =
1

L
YYH = TDTH + ΦWW . (2)

Here, the matrix ΦWW = 1
LWWH models the sample noise

covariance matrix. This matrix obeys the class of Wishart
distributions and can be separated as ΦWW = σ2

nIm + N,
where σ2

nIm corresponds to the mean of the covariance matrix
and N is a random variable with zero mean and variance
σ4
n/L. In the limit, L → ∞, ΦWW converges to its mean
σ2
nIm while the remaining error, modeled by N converges to

zero.

III. ALGORITHMS

In this section we introduce two algorithms for solving (2)
in terms of finding the diagonal elements of D.



A. Matrix-Matching Pursuit

A very simple and straightforward approach is to incorpo-
rate a Matching Pursuit [8] (MP) algorithm that iteratively es-
timates the non-zero diagonal elements of D. We subsequently
denote this algorithms as Matrix Matching Pursuit (MMP) as
the underlying estimation task is over matrix dictionaries and
not as usually over vector dictionaries. To illustrate this idea
we rewrite the detection model (2) by neglecting the noise at
this point as

ΦY Y = TDTH =

K∑
k=1

dk,ktkt
H
k . (3)

Here dk,k denotes the kth diagonal element of the matrix D.
The outer product tkt

H
k corresponding to an entry of an over

complete dictionary also known as atom. The MMP algorithm
correlates the atoms with the sample covariance matrix ΦY Y
and selects the atom with the highest correlation as active.
As we a-priori know that the amplitude of dk,k = 1 for
active elements, we can avoid estimation. In the next step
the MMP subtracts the contribution of the selected atom from
the received signal. The algorithm repeats this procedure and
correlates the atoms with the updated received signal and
selects the next atom in the same manner as described before.
The MP algorithm repeats this procedure until a pre-defined
stopping criterion is met. The pseudo-code of this algorithm
is demonstrated in listing 1. In this paper we assume that
the algorithm has a-priori knowledge about the instantaneous
sparsity S, which leads to the benchmark performance of the
algorithm.

brings us the benchmark performance of the algorithm.
The main advantage of the MMP is its low complexity and

Algorithm 1 Matrix Matching Pursuit (MMP)
R0 = ΦY Y , Γ0 = ∅, v = 0
repeat
v = v + 1
imax = arg max

i
tHi Rv−1ti {Matrix Correlation}

D̂v
i,i = 1

Rv = ΦY Y −TD̂vTH

until v = S

simplicity. The pseudo code of this algorithm shows that it
mainly consists of a correlator bank composed of K different
correlators identifying the strongest user. In this setting we
save the estimation of the value of the diagonal elements dk,k
which we know to be either one or zero. If the amplitude
of dk,k has to be estimated as well,e.g, in one tap fading
channels, the MMP can easily be augmented by performing
an estimation step after the matrix correlation.

B. Approximate MAP Detection

In this section we formally state the MAP estimation
problem (3) which we later solve via a suboptimal but ef-
ficient detector. To ease notation, we first note that D is

solely determined by its main diagonal elements denoted as
d := diag (D). We formulate the MAP estimator for the
problem

ΦY Y = TDTH + ΦWW

= TDTH + σ2
nIm + N (4)

Here, the remaining noise N is of zero mean. The statistical
properties of N are determined by ΦWW which obeys a
Wishart distributions as stated previously. Instead of using
the Wishart variate, we employ a simpler Gaussian model as
approximation for the remaining noise N to ease further cal-
culations. Thus, we model the elements of N to be symmetric
circular Gaussian distributed with variance σ4

n/L. Note, that
this approximation keeps mean and variance, but changes the
type of the distribution.

The MAP estimate D̂ maximizes the a-posterori probability
p (D|ΦY Y ) which is usually reformulated via the Bayes-Rule
to

D̂ = arg max
d∈{0,1}K

p (ΦY Y |D) Pr (D) . (5)

The likelihood function p (ΦY Y |D) is solely determined by
the statistics of the remaining noise N which we approximate
by a Gaussian distribution as stated previously. With this
assumption the likelihood function is proportional to a matrix
variate Gaussian distribution

p (ΦY Y |D) ∝ exp

[
− L

σ4
n

‖ΦY Y − σ2
nIm −TDTH‖2F

]
.

(6)
From now on we summarize Φ̄Y Y = ΦY Y −σ2

nIm to preserve
clarity. Additionally, we can write the prior in terms of the
diagonal elements of D via

Pr (D) = (1− pa)
K−‖d‖0 · p‖d‖0a , (7)

where ‖d‖0 is the so-called zero-”norm”1 that simply counts
the non-zero elements in d. Taking log of the functional in (5)
yields with likelihood function (6) and prior (7)

D̂ = arg min
d∈{0,1}K

‖Φ̄Y Y −TDTH‖2F + λ‖d‖0 (8)

with λ =
σ4
n

L log
(

1−pa
pa

)
.

The optimization problem (8) is still dependent on the
matrix D even though D is solely determined by its main
diagonal elements. The main focus now is to reformulate (8)
into a vector optimization problem only depending on d. To
do so, we introduce the following augmented descriptions to
come to an equivalent real system description

D̂ = arg min
d∈{0,1}K

‖Φ̃Y Y − T̃1D̃T̃T
2 ‖2F + λ‖d‖0, (9)

where Φ̃Y Y =
[
Re{Φ̄TY Y }, Im{Φ̄TY Y }

]T
is the stacked matrix

composed of real and imaginary part of Φ̄Y Y . The matrices

1In fact the zero-”norm” is neither a norm nor a pseudo norm. However, the
expression zero-”norm” is commonly used in Compressed Sensing contexts



T̃1 and T̃2 are

T̃1 =

[
Re{T} − Im{T}
Im{T} Re{T}

]
, T̃2 =

[
Re{T} − Im{T}

]
.

(10)
The matrix D̃ is composed of

D̃ =

[
D 0K,K

0K,K D

]
. (11)

We now rewrite (9) using the vec (·) operator which stacks the
columns of a matrix. This turns the Frobenius matrix norm
into an `2 vector norm. Additionally, we make use of the
identity vec (XYZ) = ZT ⊗X vec (Y) [9] which allows us
to reformulate (9) to

D̂ = arg min
d∈{0,1}K

∥∥∥vec
(

Φ̃Y Y

)
− T̃2 ⊗ T̃1 vec

(
D̃
)∥∥∥2

2
+λ‖d‖0.

(12)
Writing ϕY Y = vec (ΦY Y ) and Υ = T̃2⊗ T̃1 expresses (12)
finally as

D̂ = arg min
d∈{0,1}K

‖ϕY Y −ΥBd‖22 + λ‖d‖0. (13)

Here, the matrix B is used to obtain the transformation
vec(D̃) = Bd. This matrix is composed of two stacked
matrices as

B =

 B1

02K,K

B1

 (14)

Where the row [i(2K + 1)− 2K] , i = 1, ...K of B1 contains
the ith row of the K×K identity matrix, while the remaining
entries are zeros yielding the matrix B ∈ {0, 1}4K2×K .

The matrix ΥB ∈ R2m2×K is of rank min
[
m2,K

]
[10].

This fact plays a key role in our scheme as it shows that as long
as K ≤ m2 holds, ΥB is of full rank which allows for fast
implementation. To solve this problem efficiently, we employ
SIC with sorted QR decomposition as pre-processing which
has been shown to nearly achieve MAP performance [11] at
low complexity.

We therefore assume K ≤ m2 which allows us to de-
compose ΥB using the skinny QR decomposition yielding
the matrix Q ∈ R2m2×K and the upper triangular matrix
R ∈ RK×K such that ΥB = QR holds. Multiplying the
argument of the `2 norm in (12) with QT triangulizes the
system to

d̂ = arg max
d∈{0,1}

‖ϕ̃Y Y −Rd‖22 + λ‖d‖0, (15)

with ϕ̃Y Y = QTϕY Y . The regularization term involving the
calculation of a zero-”norm” can easily be scalarized and used
as an additional penalty term in the calculation of the SIC. For
further details on this approach the reader is referred to [4] Sec.
II-C. The result of the optimization problem d is the estimate
of the support set of active nodes and contains no information
about the data transmitted. In the following, we summarize
the pre-processing steps and SIC as MMV-SIC algorithm.

IV. PERFORMANCE ANALYSIS

In the following, we exemplary show the performance of
the algorithms with respect to activity errors by investigating
an overloaded multiuser system analogous to the setup in
section II. The activity error rate can easily be defined via
the zero-”norm” as

η =
1

K
E
(
‖d− d̂‖0

)
, (16)

where d is the true activity pattern and d̂ is the estimate at the
output of the detector. Our results restrict to the performance
with respect to activity detection. Once the set of active nodes
is found by the activity detector, the underlying data can be
estimated by known techniques from communications.

We perform our simulations using a 4-PSK modulation.
However, the performance of the algorithm is independent of
the cardinality of the modulation alphabet. Further, the channel
is assumed to be AWGN at this point. The channel impulse
responses can be easily incorporated in the formulation of the
system (1) via the matrix T. Some approaches for channel
estimation in the context of CS-MUD exist [12] but are out
of the scope of this paper and subject to further research.

−10 0 10 20 30
10−4

10−3

10−2

10−1

100

1/σ2
n in dB→

A
ct

iv
ity

E
rr

or
ra

te
→

GOMP
MMP
MMV-SIC
pa,1 = 0.1

pa,2 = 0.35

Fig. 2. Activity error rates in a setup with m = 15 observations, K =
100 nodes transmitting frames of L = 1000 symbols for different activity
probabilities.

Figure 2 compares the activity error rates of the MMP
and MMV-SIC with a Group Orthogonal Matching Pursuit
(GOMP) [13] for a system with K = 100 nodes that are spo-
radically active and transmit data using spreading sequences
of length m = 15. Conventionally, the system is overloaded
by a factor of β = 6.6. Performance is investigated for two
different node activity probabilities pa1 = 0.1 and pa2 = 0.35.
In the first case nodes have a quite low activity probability and
only 10% of the nodes are simultaneously active on average.
It can be seen that the performance of MMP and MMV-SIC is
nearly the same for this setting. The GOMP algorithm does not
achieve error rates below ≈ 4× 10−2. In the next setting, the
activity probability has increased to pa2 = 0.35. In this setting,



the MMP exhibits an error floor below 10−2. In contrast the
MMV-SIC suffers only from a small SNR loss by ≈ 5dB.
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Fig. 3. Phase transition diagram for different frame length. The area above
the curve denotes the tuples of m and pa where the detector is able to achieve
an activity error rate of η ≤ 10−2

To get a better overview regarding pa and m, Fig. 3 shows
a so-called phase transition diagram which is loosely based on
the Donoho Tanner phase transition diagrams. The diagram is
simulated at 1/σ2

n = 10dB for two different frame lengths
L1 = 103 and L2 = 104. The area above each curve denotes
the tuples of pa and m, where the corresponding detector
achieves at least an activity error rate of 10−2. The GOMP
algorithm is very sensitive to variations of pa, leading to
a strong increase in the required spreading sequence length
m. Increasing the length of the transmitted frame yields no
significant performance gain. In contrast to that the MMP
algorithm is only moderately affected by variations of pa and
significantly outperforms GOMP. Finally, and most interest-
ingly the MMV-SIC has even better performance than the
MMP algorithm. For shorter frames L1 = 103, the MMV-
SIC requires more observations for higher node activity. The
required number of observations is in this case approximately
m = 15. This demand changes for longer frames. For L = 104

the MMV-SIC algorithm meets the activity error rate demand
with only m = 11 observations for all activity probabilities
shown. The system is overloaded by a factor of β ≈ 10 in
this case. This is a direct consequence of the fact that (13)
is fully determined if m =

√
K = 10 holds. The fact that

we need one further observation may be due to the fact that
we incorporate noise during the measurement process. This
simulation shows that the MMV-SIC very stable over over a
wide range of activity probabilities.

All algorithms rely on the estimation of the sample co-
variance matrix and increasing L yields a better estimate. To
illustrate this effect, figure 4 shows the dependency of the
detection performance on the frame length L. The plot shows
1/σ2

n in dB that is required to meet an activity error rate

constraint of η ≤ 10−2. The results in figure 4 incorporate
a spreading sequence length of m = 15 and K = 100 nodes
with an activity probability of pa = 0.35. Curves for GOMP
are not shown in this setting since GOMP does not achieve any
reliable detection. Both algorithms first achieve the required
error rate requirement at a frame length of L = 300. The
performance increases as the frame length increased up to a
nearly log-log-linear behavior which is due to the fact that
the noise variance is averaged out with higher frame length.
In particular, and as shown in Section III-B remaining noise
variance is σ4

n/L which is a linear decrease in L.
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required to meet an activity error rate of η ≤ 10−2 for different
frame-length L.

A. Asynchronicity

Subsequently, we investigate the impact of frame asyn-
chronicity on the activity detection performance for the in-
troduced schemes. In this investigation nodes transmit their
frames with a time shift to the clock assumed by the detector.
This time shift is modeled in multiples of symbol durations
and is restricted to the interval

∆L ∈
[
−∆L,max

2
, · · · ∆L,max

2

]
. (17)

In this model ∆L,max is the highest possible time shift that can
occur between two nodes in the network. ∆L is modeled to
be equally distributed between ±∆L,max

2 .
Fig. 5 illustrates asynchronous transmissions exemplary,

where ∆L,3 exemplary shows the time shift between the clock
at the detector and Node 3. As all nodes have different time
shifts, the detector has to deal with crosstalk among frames
which complicates the activity detection task. Previous and
following transmissions may affect the activity estimation at
the current frame.

Figure 6 shows the performance of the detection schemes
under the impact of asynchronous transmissions. This investi-
gation shows 1/σ2

n in dB that is required to obtain an activity
error rate η ≤ 10−2 as a function of the maximum relative
asynchronicity ∆L,max/L. The setup involves K = 100 nodes
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Fig. 5. Illustration of frame asynchronicity, where nodes are asynchronous
to the clock assumed by the detector.

with an activity probability of pa = 0.35 that spread their
symbols with a spreading sequence length of m = 15, the
length of the frames is set to L = 1000. It can be observed
that MMP and MMV-SIC have very low performance loss
even for severe time shifts of up to ∆L,max/L ≈ 0.3. Further
increasing the asynchronicity in the system decreases the
performance where MMP fails to reach the required bound
at ∆L,max/L = 0.5 and MMV-SIC fails at ∆L,max/L = 0.7,
respectively.
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Fig. 6. Performance of the schemes under asynchronous transmissions in
a setup with K = 100 nodes, m = 15 observations and a frame length of
L = 1000. Per node activity probability is pa = 0.35

V. CONCLUSION

In this work we have shown how efficient low com-
plexity activity estimation can be performed in machine
to machine uplink communication where nodes sporadically
transmit whole frames of data. The major contribution is to
cast the activity estimation problem as an underdetermined
multiple measurement vector Compressed Sensing problem.
This allows for low complexity activity detection schemes
with complexity that is invariant of the frame length. Moreover
we have shown that reliable activity estimation is possible as
long as the number of observations available to the detector
is larger than the square root of the number of nodes. The
introduced schemes are even robust to asynchronicity where

reliable detection is possible even if time shifts up to 50%
occur.
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