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Abstract—This paper presents several new distributed algo-
rithms to solve consensus based estimation problems in a de-
centralized way by adopting the well-known relaxation methods
Jacobi, Gauss-Seidel and successive over-relaxation within a
sensor network. In distributed estimation, all nodes collaborate
to estimate the signals emitted from some common sources,
employing iterative processing with one-hop data exchange.
Consequently, the Jacobi-based consensus estimation algorithm
produces a considerable communication effort due to its parallel
processing. On the contrary, significant overhead can be saved
by the Gauss-Seidel based consensus estimation algorithm with
sequential update and exchange of local information. Addition-
ally, both distributed algorithms can be accelerated by successive
over-relaxation, resulting in further reduction of the communi-
cation effort for the distributed estimation. The evaluation of
all the algorithms has been carried out in presence of both
ideal and erroneous inter-node links in a randomly generated
network. Moreover, the influence of the network topology on
the distributed estimation has also been investigated, and the
simulative results indicate that a network with low connectivity
is preferred by the proposed algorithms.

I. INTRODUCTION

The recent technological advances in wireless communi-
cation and distributed signal processing are promoting the
applications of distributed monitoring, tracking and control
in wireless sensor networks [1]. One common scenario of
interest is the cooperative estimation, in which a group of
sensor nodes is randomly deployed in a network and connected
through inter-node links. All nodes aim to estimate signals
emitted from some common source points. To this end, either
centralized or distributed estimation can be applied within such
a network [2]. For the centralized approach, all the received
data and channel information are forwarded by local nodes
via multiple hops to a central node where a joint estima-
tion is performed. While for the distributed approach, each
node only needs to perform the local estimation iteratively
with some information exchanged between neighboring nodes.
Such distributed estimation can be realized by several types
of algorithms, e.g, the diffusion based algorithms [3], [4],
[5], which can only achieve a consensus on the average of
observations over the network. The subgradient method com-
bined with primal decomposition algorithms [6], [7] can then
be applied to the distributed consensus regression by solving
a convex optimization problem [8]. Moreover, another class
of algorithms based on the primal and dual decomposition
method can also be applied to the distributed estimation, e.g.,
the least squares (LS) criterion based algorithms [9], [10] or
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Fig. 1. A sensor network with J nodes receiving and detecting the common
messages from K sources in a cooperative way.

maximum likelihood (ML) based algorithms [11], [12]. For the
distributed estimation, considerable communication overhead
is produced by the distributed algorithms, which is analyzed
in [13]. In order to reduce the overhead, one alternative is to
accelerate the convergence of the distributed algorithm [14],
[15] or reduce the information being exchanged during the
distributed processing [16].

Here, we are focusing on a different way to realize the
distributed estimation which is based on relaxation methods
[17], instead of using an average or a decoupling approach
utilized in above algorithms. This leads to our new algorithms
like the Jacobi based consensus estimation (Jacobi-CE), the
Gauss-Seidel based consensus estimation (GS-CE) as well as
their accelerated versions, the successive over-relaxation based
consensus estimation (SOR-CE) algorithms. The derivation
of these algorithms is detailed in the following section, and
the corresponding performance in terms of convergence and
communication overhead is evaluated in presence of both ideal
and erroneous inter-node links considering different network
topologies.

The remainder of this paper is structured as follows: The
system model is described in Section II. A detailed deriva-
tion and discussion on the proposed distributed algorithms
are given in Section III. In the subsequent Section IV, the
proposed algorithms are simulated numerically, and the corre-
sponding results are evaluated. Finally, the paper is concluded
in Section V.

II. SYSTEM DESCRIPTION

The system scenario is shown in Fig. 1, where a sensor
network composed of a set of nodes J = {1, ..., J} monitors
some data sources. Here, each node is assumed to be equipped
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with NR receive antennas, and neighboring nodes are con-
nected through inter-node links resulting in a set of edges E
in between. In our investigation, both ideal (no disturbance of
data exchange) and non-ideal inter-node links are considered,
and each node j ∈ J is assumed to share information only
with its neighboring nodes in the set Nj ⊆ J through
symmetric (bidirectional) transmission. For each source point
k, it emits a data vector xk ∈ C

NT×1 with NT antennas. The
transmitted signals per time instance from all K sources can
be collected into a stacked vector x = [xT

1 , .., xT
K ]T containing

in total NI = NT ·K (NI > NR is assumed) system input
components. Those messages are observed by each node j
leading to a local observation yj ∈ C

NR×1 which is described
by the linear model

yj = Hjx + nj , (1)

disturbed by a channel Hj ∈ C
NR×NI which is known locally,

and additive white Gaussian noise (AWGN) nj ∈ C
NR×1 with

a variance σ2
n. Each node can detect the source messages

x based on the local observation individually. However, due
to the under-determined system (1) per node, the sources
signals x cannot be estimated properly using only the local
information. In order to recover the source information over
all nodes, one alternative is to calculate a joint estimate xcen in
a central node, where all information over the whole network
is aggregated, performing e.g., the LS estimation:

xcen = arg min
x′∈CNI

1

2
‖y − Hcenx′‖2 (2)

with a stacked vector y = [yT1 , . . . , yTJ ]
T ∈ C

JNR×1 and a
stacked channel matrix Hcen = [HT

1 , . . . ,HT
J ]

T ∈ C
JNR×NI .

Such a LS problem can be solved, e.g., by a zero forcing (ZF)
approach leading to the intuitive solution1:

xZF = (HH
cenHcen)

−1HH
ceny. (3)

Although the joint estimation can be performed in a central
node, the information aggregation normally requires a complex
routing protocol and produces a high communication cost
particularly for a large scale network. To this end, instead of
performing the joint estimation in a central node, all nodes in
the network can collaborate to achieve the central solution in a
distributed way with simple one-hop communication to share
the information. For the distributed estimation, the central LS
problem (2) has to be reformulated into a sum of separate
local LS problems with additional constraints to keep the
consistency over the whole network on the local estimates
xj = xi, i, j = 1, .., J which should be identical to the
centralized estimate. In this respect, our target becomes a
constrained LS problem given by

xj = arg min
x′j∈CNI

J∑
j=1

∥∥yj − Hjx′
j

∥∥2
s.t. xj = xi, ∀i ∈ Nj , ∀j ∈ J .

(4)

1The solution of (2) can also be extended to a minimum mean square
error (MMSE) solution considering the effect of the noise, but the centralized
solution is only used as a benchmark for the distributed approaches. Thus,
without loss of generality, we only consider the ZF method as an example in
this paper.

Such a constrained convex problem can be solved in a dis-
tributed fashion by the primal and dual decomposition based
algorithms, e.g., the priority based augmented Lagrangian
consensus estimation (PALCE) algorithm [16], which adopts
an approximation method for decoupling the constraints of (4)
in order to achieve a distributed implementation. In our new
approach, we adopt several relaxation methods, namely the Ja-
cobi, Gauss-Seidel (GS) and successive over-relaxation (SOR)
[17] to solve the consensus constrained problem (4) in a dis-
tributed way rather using a decoupling method. Here, we first
reconstruct the problem (4) into a central form using a stacked
estimates vector x = [xT1 , · · · , xTJ ]

T ∈ C
JNI×1, a block

diagonal channel matrix H = blkdiag(H1,H2, . . . ,HJ) ∈
C

JNR×JNI , and a matrix A ∈ R
2|E|NI×JNI containing block

elements Aij ∈ {I,−I, 0} to represent all the constraints in
(4). The reformulated target problem of (4) is thus given by

x = arg min
x′∈CJNI

‖y − Hx′‖2

s.t. Ax = 0.
(5)

To solve (5), we use the augmented Lagrangian (AL)
method, since the regularization term in the AL function facil-
itates higher robustness compared to the standard Lagrangian
[18]. The corresponding AL cost function on (5) is given by

L(x,λ) = 1

2
‖y − Hx‖2 − λT

Ax +
1

2μ
‖Ax‖2 (6)

with a penalty parameter μ and a stacked multipliers vector
λ = [λT

1 , ..,λ
T
J ]

T where the vector λj ∈ C
|Nj |NI×1, j =

1, .., J is composed of multipliers λji for the constraint
between node j and node i, i ∈ Nj . Then, we can solve the
vector x by setting ∂L(x,λ)/∂x = 0 and obtaining a linear
equation:

(HHH +
1

μ
ATA)x = HHy + ATλ

Mx = b, (7)

defining the matrix M = HHH+ 1
μATA, which is a symmetric

positive definite (SPD) matrix consisting of J × J block
matrices Mji ∈ C

NT×NT , i, j = 1, 2, .., J . Note that Mji �= 0

only if i ∈ Nj . In addition, both vector b = HHy + ATλ and
vector x can be decomposed into J sub-vectors bj ∈ C

NI×1

and xj ∈ C
NI×1, j = 1, 2, .., J , respectively.

III. DISTRIBUTED RELAXATION BASED ALGORITHMS

According to [17], the use of relaxation methods facilitates
the distributed processing. Thus, we can solve the linear
equation (7) iteratively in a distributed fashion by using
the block-wise Jacobi, Gauss-Seidel and successive over-
relaxation methods.

A. Distributed Jacobi-CE algorithm

For the Jacobi method, the matrix M in (7) is decomposed
into three parts M = D+L+U, where D is the block diagonal
matrix consisting of block elements Mjj , j = 1, .., J , L is
the lower part of M, which consists of matrices Mji, j >
i, and matrix U contains the upper part of M with matrices
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Mji, j < i. Subsequently, we can solve the linear equation
(7) with following update equation for the estimate xk+1 in
iteration k + 1:

Dxk+1 = b − Lxk − Uxk, (8)

where the estimate xk+1 is updated with the information xk

from the previous iteration k while the vector b remains
constant. Note that xk+1 converges to the optimal value
x∗ = M−1b if the spectral radius ρJacobi of the iteration matrix
−D−1(L+U) is smaller than 1 [19], which is satisfied by (7)
in our system. Moreover, for an intuitive illustration, a detailed
expression of (8) is rewritten as⎡

⎢⎢⎢⎢⎣

M11xk+1
1

M22xk+1
2

...

MJJxk+1
J

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1 −∑J
i �=1 M1ix

k
i

b2 −∑J
i �=2 M2ix

k
i

...

bJ −∑J−1
i=1 MJix

k
i

⎤
⎥⎥⎥⎥⎦. (9)

As (9) indicates, we can solve the local estimates xj , j ∈ J
for each node separately. Once the estimates are updated, we
can update the Lagrangian multipliers λji in (6) within the
same iteration by solving the dual problem with the steepest
ascent method [20]. To this end, the targeted problem (4) can
be solved in a distributed way leading to the Jacobi-based
consensus estimation algorithm with the following update
equations on local node j:

xk+1
j =M−1

jj

(
bj −

J∑
i �=j

Mjix
k
i

)

=

(
HH

j Hj +
2|Nj |
μ

INT

)−1(
HH

j yj

+
∑
i∈Nj

λk
ji −

∑
i∈Nj

λk
ij +

∑
i∈Nj

2xk
i

μ

)
, (10a)

λk+1
ji =λk

ji −
1

μ
(xkj − xki ), j = 1, 2, .., J. (10b)

For the update of estimate xk+1
j and multipliers λk+1

ji at
iteration k + 1, each node j only requires the last estimates
xk
i and multipliers λk

ij from its neighboring nodes i ∈ Nj .
Note that all nodes in the Jacobi-CE algorithm can perform
the estimation in parallel, and the network is assumed to be
perfectly synchronized in this paper. Once the local estimates
xk+1
j and multipliers λk+1

ji are updated, every node exchanges
the newest information with its neighboring nodes. For the
transmission of local estimates, since all neighboring nodes
i, i ∈ Nj require the same estimate from node j, the
local estimates xj can thus be broadcasted to the neighboring
nodes. The multipliers λji, which are related to the constraint
between nodes j and i, are then unicasted from node j
to node i. Hence, in each iteration, all J nodes need to
broadcast their estimates and 2|E| inter-node links are used
to deliver the multipliers, which results in a total overhead
OJacobi-CE = JNI+2|E|NI per iteration over the whole network
for the Jacobi-CE algorithm.

B. Distributed GS-CE algorithm

Due to the information exchange between nodes, a high
communication effort over inter-node links is required because
of the parallel processing per iteration in the Jacobi-CE
algorithm. In order to reduce the overhead, another relaxation
method, the Gauss-Seidel method [17] with a sequential update
per iteration can be applied for the distributed estimation.
Similar to the Jacobi method, we can solve the problem (7)
in an iterative way by the Gauss-Seidel method with the
following update equation:

(D + L) xk+1 = b − Uxk

Dxk+1 = b − Lxk+1 − Uxk, (11)

where the matrices D,L,U are defined as above. Here, the
estimate xk+1 converges to the optimal value x∗ if the spectral
radius ρGS of the iteration matrix −(L+D)−1U is smaller than
1 [19], which is also fulfilled by (7) in our system.

Recalling the intuitive form (9), the implementation of the
linear system (11) can also be split among the distributed
nodes. Nevertheless, different to the Jacobi method, the update
of estimate xk+1

j requires the newest update xk+1
i for i < j,

which indicates that the estimates xj , j = 1, 2, .., J cannot
be updated simultaneously. Thus, for the distributed imple-
mentation of the GS method, all the nodes have to calculate
their local estimates in a sequential way. In the same iteration,
the corresponding multipliers λji can also be updated in a
distributed way among the nodes using the steepest ascent.
To this end, we can solve the target problem (4) by the
GS based consensus estimation algorithm with the following
update equations:

xk+1
j =M−1

jj

(
bj −

j−1∑
i=1

Mjix
k+1
i −

J∑
i=j+1

Mjix
k
i

)

=

(
HH

j Hj +
2|Nj |
μ

INT

)−1(
HH

j yj +
∑
i∈Nj

λk
ji

−
∑

i∈N−
j

λk
ij −

∑
i∈N+

j

λk
ij +

∑
i∈N−

j

2xk+1
i

μ
+
∑

i∈N+
j

2xk
i

μ

)
,

(12a)

λk+1
ji =λk

ji −
1

μ
(xk+1

j − xk+1
i ), i ∈ N−

j , (12b)

λk+1
ji =λk

ji −
1

μ
(xk+1

j − xk
i ), i ∈ N+

j , (12c)

where N−
j and N+

j denote the sets of neighboring nodes
of node j with indices i < j and i > j, respectively. The
local estimate xk+1

j of node j in iteration k + 1 is updated
with the newest estimates xk+1

i received from the neighboring
nodes i ∈ N−

j , besides, the estimates xki , i ∈ N+
j as well as

the multipliers λk
ij received in the previous iteration are also

required. Due to the sequential update of the distributed nodes,
the update of multipliers λji is divided into two types. For the
case i < j, the multipliers λk+1

ji are updated with the local
estimate xk+1

j and the newly received estimates xk+1
i ; while
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for i > j, node j can only utilize the neighboring estimates xk
i

from the last iteration to update the corresponding multipliers.
Once the local information is updated, node j broadcasts the
estimate xk+1

j and transmits the multipliers λk+1
ji to its |Nj |

neighboring nodes. In the following step, the node j + 1
starts to update. Here, note that the local information is also
sequentially exchanged within one iteration, i.e., only one node
transmits data over inter-node links per step leading to the
overhead OGS-CE = (1 + |Nj |)NI.

Moreover, in order to make a fair comparison between the
Jacobi-CE and the GS-CE algorithms regarding the commu-
nication overhead, we introduce a synchronized time instance
for each exchange of local estimates and multipliers, which is
counted by step n. Thus, for Jacobi-CE, all nodes update and
exchange the local information per step, so that one iteration
in Jacobi-CE is identical to one step as defined here. For GS -
CE, only one node updates and exchanges its local information
per step, such that one iteration in GS-CE terminates when J
steps update of all nodes is performed. Therefore, only a small
quantity of overhead is produced per step by the sequential
update in GS-CE compared to the parallel update in Jacobi-
CE.

C. Distributed SOR-CE algorithms

In order to further reduce the communication effort, we
can use another relaxation approach, the successive over-
relaxation [17], which accelerates the convergence of both
Jacobi and GS methods, since the spectral radius ρSOR of the
iteration matrix is smaller compared to those of the Jacobi
and GS methods (a detailed convergence analysis can be
found in [19]). Therefore, we apply this acceleration approach
to the above algorithms leading to the Jacobi-based SOR
on consensus estimation (JSOR-CE) and GS-based SOR on
consensus estimation (GSSOR-CE) algorithms, respectively.

Based on the Jacobi method, the JSOR method solves for
the estimate x in (7) with an additional relaxation parameter
ω which is set to be ω > 1. Correspondingly, the solution of
JSOR for the problem (7) in the centralized form reads [17]:

Dxk+1 =ω
(
b − Lxk − Uxk

)
+ (1− ω)Dxk (13)

with the spectral radius ρJSOR of iteration matrix D−1((1 −
ω)D − ω(L + U)) smaller than 1. The update of the estimate
xk+1 can be viewed as an relaxation between the Jacobi
solution and previous estimate xk weighted by the relaxation
parameter. Following the same principle of distributed Jacobi
implementation, the update of the estimate x in (13) can
also be distributed among the nodes. Besides, for solving the
consensus constrained problem (4), the multipliers also need
to be updated per iteration, which is identical to the Jacobi-
CE algorithm. Thus, the corresponding update equations of
the JSOR-CE algorithm for the local estimate xj as well as
the multipliers λji of node j are given by

xk+1
j = ωM−1

jj

(
bj −

J∑
i �=j

Mjix
k
i

)
+ (1− ω)xk

j

=

(
HH

j Hj +
2|Nj |
μ

INT

)−1

ω

(
HH

j yj +
∑
i∈Nj

λk
ji

−
∑
i∈Nj

λk
ij +

∑
i∈Nj

2xki
μ

)
+ (1− ω)xk

j , (14a)

λk+1
ji =λk

ji −
1

μ
(xkj − xk

i ), j = 1, 2, .., J. (14b)

A proper relaxation parameter ω needs to be chosen for the
update of the local estimate in order to achieve a faster conver-
gence compared to the Jacobi-CE algorithm. Apart from that,
the communication effort produced by the iterative processing
in JSOR-CE is identical to the Jacobi-CE algorithm, as the
estimate xj is transmitted by node j in a broadcast way, while
the multipliers λji are delivered in a unicast way. Thus, a total
overhead OJSOR-CE = JNI + 2|E|NI is produced per step in
JSOR-CE algorithm.

Moreover, as mentioned, the SOR method can also be
applied to the GS approach. Thus, the GS update (11) is
also extended with the relaxation factor ω resulting in the
centralized GSSOR update equation [17]:

Dxk+1 =ω
(
b − Lxk+1 − Uxk

)
+ (1− ω)Dxk (15)

with the spectral radius ρGSSOR of iteration matrix (ωL +
D)−1((1 − ω)D − ωU) smaller than 1. Like JSOR, (15) also
exhibits the property of decomposablity among nodes for
distributed implementation. Utilizing the update of multipliers
λji in the GS-CE algorithm (16b) and (16c), we can solve the
target problem (4) in a distributed way leading to the GSSOR-
CE algorithm with following update equations:

xk+1
j =ωM−1

jj

(
bj −

j−1∑
i=1

Mjix
k+1
i −

J∑
i=j+1

Mjix
k
i

)
+(1− ω)xk

j

=ω

(
HH

j Hj +
2|Nj |
μ

INT

)−1(
HH

j yj +
∑
i∈Nj

λk
ji

−
∑
i∈Nj

λk
ij +

∑
i∈N−

j

2xk+1
i

μ
+

∑
i∈N+

j

2xki
μ

)
+ (1− ω)xk

j ,

(16a)

λk+1
ji =λk

ji −
1

μ
(xk+1

j − xk+1
i ), i ∈ N−

j , (16b)

λk+1
ji =λk

ji −
1

μ
(xk+1

j − xki ), i ∈ N+
j , (16c)

where the local estimates xk+1
j and multipliers λk+1

ji are
updated in a sequential way with information sharing among
the neighboring nodes. Here, like the GS-CE algorithm, only
one node is required to broadcast the local estimate and to
transmit the multipliers oriented to the neighboring nodes
per step. Hence, in each step a total overhead OGSSOR-CE =
(1 + |Nj |)NI is generated. To this end, the communication
overhead produced by the Jacobi type and GS type algorithms
together with the PALCE algorithm from the state of the art
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TABLE I
TOTAL OVERHEAD GENERATED OVER INTER-NODE LINKS PER STEP FOR

VARIOUS TYPES OF DISTRIBUTED ALGORITHMS

Line Full Mesh Random
Jacobi type (3J − 2)NI JJNI (J + 2|E|)NI
GS type 3NI JNI (1 + |Nj |)NI
PALCE 1.5JNI J(J + 3)/4NI (J + 0.5|E|)NI

is summarized in the table I2 for different network topologies.
It can be seen that the overhead of GS type algorithms per
step is the lowest among all, which increases linearly with
the number of neighboring nodes |Nj | per node j, while for
the other algorithms, the overhead grows with the number of
edges |E| in the network.

IV. PERFORMANCE EVALUATION

In this section, the numerical performance of the distributed
algorithms is investigated. For the evaluation, all algorithms
are simulated by means of the Monte Carlo method for a
network consisting of J = 10 nodes, which are connected
with a connectivity ratio r that is defined as the ratio between
actual number of edges and the maximum number of edges
when all nodes are connected:

r =
|E|

J(J − 1)/2
. (17)

Note that the ratio should always be kept r ≥ 2/J , since the
whole network is required to be connected. The connectivity
ratio is also an indicator for the average number of neighboring
nodes over the network. Here, each node is set to be equipped
with two receive antennas NR = 2. Besides, we assume K = 5
source points modeled with a single transmit antenna NT = 1
each that are deployed within the network to broadcast a
source message x which contains Gaussian random values
N (0, σ2

x ) with mean 0 and variance σ2
x = 1. In the sequel,

the distributed algorithms are applied to such a network with
different connectivity ratios. In addition to that, both ideal and
non-ideal inter-node links are considered for the investigation.

A. aMSE performance for ideal inter-node links

For the evaluation of the distributed estimation, we are using
the metric of the averaged mean squared error (aMSE), which
is defined as the mean squared error on the estimates xj that
is averaged over all nodes:

aMSE =
1

J

J∑
j=1

E
{
‖x − xj‖2

}
, (18)

while for the centralized estimation, we use the MSE, i.e,
E{‖x − xcen‖2} as a reference.

In Fig. 2, the aMSE performance of the distributed algo-
rithms is illustrated considering a signal to noise ratio (SNR3)

2Note that for the line topology, the overhead produced by the nodes at
the front and the end of the line in GS type algorithm is 2NI, since they are
connected with only one neighboring node.

3The SNR here is related to the transmitted signal from source to the nodes,
it should be distinguished with the SNRin for the inter-node links.
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GSSOR-CE
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Fig. 2. aMSE performance evaluated over 1000 trials vs. No. of steps. J =
10,K = 5, NR = 2, NT = 1, random topology r = 0.6, SNR = 10dB.
Each marker represents the performance of every 20 steps.
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Fig. 3. aMSE performance evaluated over 1000 trials vs. total no. of overhead.
J = 10,K = 5, NR = 2, NT = 1, random topology r = 0.6, SNR = 10dB.
Each marker represents the performance of every 20 steps.

of 10 dB and ideal inter-node links. It can be observed that
the aMSE of all algorithms decreases over the steps and
converges to the centralized ZF solution, but their convergence
speed is not all the same. Due to the sequential update, the
GS type algorithms show slower convergence with respect
to the update steps compared to the Jacobi type algorithms.
In addition, the convergence of both Jacobi-CE and GS-CE
algorithms is accelerated by the SOR approach resulting in
better performance of the JSOR-CE and GSSOR-CE algo-
rithm, respectively. Compared to the algorithms from the state
of the art, only JSOR-CE shows a similar convergence to the
PALCE algorithm in this scenario. However, when we consider
the communication overhead produced during the distributed
estimation as shown in Fig. 3, a significant effort can be
saved by GSSOR-CE and GS-CE compared to the Jacobi type
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Fig. 4. Cumulative distribution function of spectral radius ρ of iteration matrix
in Jacobi, Gauss-Seidel, Jacobi-SOR and GS-SOR methods over 1000 trials.
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Fig. 5. aMSE performance of the Jacobi-CE ( ) and the GS-CE ( )
algorithms regarding noisy inter-node links with various SNRin. J = 10,K =
5, NR = NT = 1, random topology r = 0.6, SNR = 10dB.

algorithms and the PALCE algorithm, since in each step only
one node needs to transmit the information leading to the
lowest overhead per step, which is labeled by the markers
in Fig. 3. On the other hand, Fig. 3 also indicates that the
convergence of GS type algorithms with respect to the iteration
is faster than Jacobi type algorithms, since ρGS < ρJacobi
according to [19], which is also verified by stimulative results
regarding the cumulative distribution function (CDF) of ρ in
both type algorithms in Fig. 4.

B. aMSE performance for erroneous inter-node links

In the sequel, we consider a more realistic scenario, where
the inter-node links are not ideal any more but are disturbed by
some common erroneous factors, e.g., noise and quantization
error are taken into account. Regarding the noise, we assume
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Fig. 6. aMSE performance of the Jacobi-CE algorithm regarding different
levels of quantization. J = 10,K = 5, NR = NT = 1, random topology
r = 0.6, SNR = 10dB.

that AWGN, which is determined by the SNRin for all the
inter-node links, is added to the information vector xi and λij

received by each node j from its neighboring nodes i. Fig. 5
illustrates the effect of noisy inter-node links on the estimation
performance for both Jacobi-CE and GS-CE algorithms. As
can be seen, the error floor of both algorithms decreases, as
the SNRin increases from 5 dB to 20 dB. It can also be noticed
that the Jacobi-CE algorithm is quite sensitive to the inter-node
noise, since the performance is significantly deteriorated when
the SNRin is low. On the other hand, the GS-CE algorithm
achieves a higher performance against the inter-node noise
compared to Jacobi-CE, as the error floor of GS-CE is much
lower than Jacobi-CE for the same SNRin. In addition to
the effect of inter-node noise, when modulated symbols are
adopted for exchanging the information among nodes, then
the estimates xj and multipliers λji need to be quantized
according to a quantization level before being transmitted.
Due to this procedure, an additional quantization error4 is
encountered, as Fig. 6 depicts the aMSE performance of
the Jacobi-CE algorithm regarding various quantization levels
from 4 bits to 10 bits. An acceptable estimation performance
can be achieved by a high quantization level with a sufficient
number of steps. It can also be observed that nearly 20 dB
improvement is achieved by 10 quantization bits compared
to the quantization with only 4 bits. For a low number of
quantization bits, similar to inter-node noise, the performance
of the distributed algorithm is also seriously deteriorated by
the additional error. Thus, in order to ensure an acceptable
performance, a proper quantization resolution and range needs

4Note that the dynamic range of quantization is also a factor that affects the
quantization error. Here, the performance is deteriorated due to the clipping
effect of a limited dynamic range.
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Fig. 7. aMSE performance of Jacobi-CE algorithm averaged over 1000 trials
on random topology with connectivity ratio r = 0.2, 0.3, ..., 1, SNR = 10dB
J = 10,K = 5, NR = 2, NT = 1, SNR=10 dB.

to be chosen, considering the corresponding communication
overhead.

C. aMSE performance for various network topologies

Here, we are focusing on the influence of the network
topology on the distributed estimation. Still, the number of
nodes and sources is fixed at J = 10 and K = 5. The
nodes are randomly deployed and connected according to
different connectivity ratios r in a range of 0.2 to 1. Note
that when r = 1, then the network is fully meshed, and
for the same connectivity ratio, the network topology could
be different (e.g., both the line topology and the star topol-
ogy have same connectivity ratio). Here, the performance of
each connectivity ratio is an averaged performance simulated
over 1000 randomly generated networks with the same r.
Fig. 7 and Fig. 8 illustrate the aMSE performance w.r.t.
different connectivity ratios for the Jacobi-CE and the GS-
CE algorithm, respectively. In both figures, all the distributed
estimation algorithms converge to the central solution, but
interestingly it can be found that the convergence of distributed
estimation in a low connectivity network is faster than that
with a high connectivity ratio. Note that the convergence rate
strongly relies on the graph’s Laplacian matrix [21] which is
determined by the topology, but detailed analysis of this is
beyond the scope of this paper. Consequently, we can further
reduce the communication effort by decreasing connectivity
ratio of the network. However, for a link failure case, the whole
network might get disconnected when r is quite low. Thus, a
trade off between the connectivity ratio and the risk of link
failure should be concerned.

V. CONCLUSION
In this paper, we presented Jacobi, Gauss-Seidel and succes-

sive over-relaxation based algorithms for distributed consen-
sus estimation in sensor networks. The Jacobi-CE algorithm
adopts parallel processing among nodes, resulting in a faster
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Fig. 8. aMSE performance of GS-CE algorithm averaged over 1000 trials on
random topology with connectivity ratio r = 0.2, 0.3, ..., 1, SNR = 10dB
J = 10,K = 5, NR = 2, NT = 1, SNR=10 dB.

convergence, but it produces higher overhead compared to
the GS-CE algorithm where the nodes update sequentially
leading to a relatively low overhead per step. Both algorithms
are successfully accelerated by the SOR method leading to
a further reduction on the communication overhead. Fur-
thermore, all the proposed algorithms have been evaluated
in a scenario with ideal inter-node links, and a centralized
estimation performance can be obtained by the distributed
processing. For the implementation in presence of erroneous
inter-node links, the performance of the distributed estimation
degrades due to the additional errors in the update, but the GS-
CE algorithm can achieve a higher performance compared to
the Jacobi-CE algorithm. Moreover, a fast convergence can be
achieved by the proposed distributed algorithms when applied
within a network with a low connectivity ratio. However, an
analytical investigation regarding the effect of connectivity on
the convergence of the distributed algorithms needs to be made
in the future.
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