
Distributed Kernel Least Squares for Nonlinear
Regression Applied to Sensor Networks

Ban-Sok Shin, Henning Paul, and Armin Dekorsy
Department of Communications Engineering

University of Bremen, Bremen, Germany
Email: {shin, paul, dekorsy}@ant.uni-bremen.de

Abstract—In this paper, we address the task of distributed
nonlinear regression. For this, we exploit kernel methods which
can cope with nonlinear regression tasks and a consensus-based
approach to derive a distributed scheme. Both techniques are
combined and a distributed kernel-based least squares algorithm
for nonlinear function regression is proposed. We apply our
algorithm to sensor networks and the distributed estimation
of diffusion fields which are known to be highly nonlinear.
Performance evaluations regarding static and time-varying fields
with multiple sources and arbitrary network topologies are
provided showing a successful reconstruction. For the tracking
of time-varying fields our proposed algorithm outperforms the
state of the art.

I. INTRODUCTION

Nonlinear functions are commonly used to model physical
phenomena as, e.g., the spatial distribution of temperature.
Often, these functions need to be approximated to predict the
behavior of the phenomenon. This can be done by regression
based on input and measured output samples of the nonlinear
function. However, due to the nonlinearity of the function this
is a difficult task demanding nonlinear regression methods. It
becomes even more challenging if the measurement is done
in a distributed fashion. An example is a sensor network (SN)
observing a diffusion field modeled by a nonlinear function
which is common in environmental monitoring [1]. Often, in
such applications there is no central unit or fusion center (FC).
Thus, nonlinear regression combined with a distributed scheme
based on an information exchange among sensors is desired.
In the past, kernel methods have been successfully applied
to solve nonlinear estimation and regression tasks [2]. Kernel
methods enable the implementation of nonlinear regression
algorithms by transforming the input samples into a high-
dimensional space where the problem can be modeled linearly.
E.g. in [3], nonlinear adaptive filters have been developed by
combining kernels with adaptive filtering. In [4], a kernel-
based least squares (LS) algorithm has been proposed for
the regression of nonlinear functions. Kernel-based algorithms
have been also used for distributed estimation of diffusion
fields in SNs. In [5], a decentralized kernel normalized least-
mean-squares (KNLMS) algorithm is proposed being able to
estimate a temperature distribution. However, the algorithm
implements the KNLMS update step from sensor to sensor
such that several steps through the network are required until
the same sensor can again update its estimate. A distributed
algorithm based on diffusion of information in the network

is proposed in [6]. Here, a distributed least-mean-squares
(LMS) algorithm from [7] is combined with kernel methods
resulting in an adaptive algorithm capable of approximating
nonlinear functions. However, it is not guaranteed that all
sensors converge to the same function approximation.

The contribution of this paper is twofold: First, our proposed
algorithm performs a kernel LS regression in a distributed way.
Second, we use a consensus-based estimation from [8] for
distributed processing which has the benefit that all sensors
perform the same LS regression. By this, we obtain the
kernel DiCE (KDiCE) algorithm which is able to approximate
nonlinear functions distributedly.

II. SYSTEM MODEL

We consider a SN of Ns connected sensors deployed over
a specific area. The SN is described by a graph with a set of
nodes J := {1, . . . , Ns} representing the sensors and a set of
undirected edges E connecting the nodes. We assume that the
graph is connected, i.e., each node can be reached by any other
node over multiple hops. Besides, we denote the neighborhood
of node j by the set Nj containing all nodes connected to
node j. The SN observes a nonlinear function f : X → R
mapping samples from the input space X ⊂ RL into the output
space R. The function can model, e.g., the spatial distribution
of temperature. Then each sensor j performs a measurement
dj at its Cartesian position xj ∈ X of f(xj) by

dj = f(xj) + nj . (1)

Here, nj is white Gaussian noise of variance σ2
n. We further as-

sume that the sensors know their positions resulting in Ns data
pairs {(xj , dj)}Ns

j=1 with positions and measurements. Based
on these data pairs a regression problem can be formulated
where the objective is to approximate the unknown nonlinear
function f(x) to predict the field for arbitrary positions x.

As an example for f(x), we consider a two-dimensional
diffusion field (X ⊂ R2) with M instantaneous and localized
sources in an isotropic medium. According to [9], the diffusion
field is described by the following function at Cartesian coordi-
nate x and time t where each diffusion source m has intensity
cm, activation time tm and Cartesian position vector pm:

f(x, t) =

M∑
m=1

cm
4πν(t− tm)

exp

(
−||x− pm||2

4ν(t− tm)

)
·h(t−tm).

(2)

Here, h(t) is the Heaviside-function and ν the diffusion
constant of the medium. If the diffusion field is static, the
time dependence in (2) is dropped resulting in

f(x) =

M∑
m=1

cm
4πν

exp

(
−||x− pm||2

4ν

)
. (3)

We implicitly assume that all M sources have activation time
tm = 0 and that the field is measured once at time t = 1 by
the SN. Then the function is dependent on the coordinate x
only. Since f(x) is nonlinear, linear methods will not provide
satisfactory regression performance.

III. PROBLEM FORMULATION

Assume a positive definite kernel κ : X × X → R that
corresponds to the dot product κ(xj ,xn) = ΦT(xj)Φ(xn)
between two samples xj and xn in a high-dimensional space,
called reproducing kernel Hilbert space (RKHS) H [2]. The
function Φ : X → H maps input samples x, i.e. the sensor
positions, to the function κ(· ,x) in the RKHS H. Using such
a kernel allows to represent the nonlinear function f(x) as a
linear combination of such kernels. Thus, we have a linear
representation of f(x) in H and can use linear regression
methods in H to approximate the function f(x). The objective
is then to find the optimal function f∗(·) in the RKHS H
that minimizes the sum of squared residuals between sensor
measurements dj and estimated measurements f̂(xj) [10]:

f∗ = arg min
f̂∈H

Ns∑
j=1

(dj − f̂(xj))
2. (4)

This is a LS regression problem in H based on Ns data pairs
{(xj , dj)}Ns

j=1. In general, the function f∗(·) will differ from
the true function f(·) since its calculation uses the noisy
measurements dj . We can reformulate problem (4) by means
of the representer theorem [2] stating that the function f̂(·)
can be expressed by linear combinations of kernel evaluations
based on all Ns sensor positions weighted by coefficients wj :

f̂(·) =

Ns∑
j=1

wjκ(xj , ·). (5)

The number of required sensor positions xj and thus the
number of weighting coefficients wj can be reduced by
dictionary learning methods. These methods aim at generating
a set with the most significant sensor positions out of all Ns

sensor positions while guaranteeing a satisfactory regression
performance, see e.g. [11]. By this, complexity and required
storage are reduced. We denote x̃` to be the `-th vector being
selected by dictionary learning out of the set of all sensor
positions {xj}Ns

j=1. Hence, we choose Nd such vectors to
get the set {x̃`}Nd

`=1. We call the set D = {κ(x̃`, ·)}Nd

`=1

the dictionary of size Nd containing kernel evaluations with
respect to (w.r.t.) the selected vectors {x̃`}Nd

`=1. With a slight

abuse of notation we get a new representation of the function
f̂(·) using the elements of the dictionary D:

f̂(·) =

Nd∑
`=1

w`κ(x̃`, ·). (6)

Then with (6), we can reformulate the optimization problem
in (4) in terms of the weight vector w = [w1, . . . , wNd

]T and
the vector κ(xj) = [κ(x̃1,xj), . . . , κ(x̃Nd

,xj)]
T:

w∗ = arg min
w∈RNd

Ns∑
j=1

(dj −wTκ(xj))
2. (7)

A commonly used kernel is the Gaussian kernel defined as [2]

κ(xj ,xn) = exp

(
−||xj − xn||2

2ζ2

)
, (8)

with ζ being the kernel bandwidth. Inserting the Gaussian
kernel into (6) and comparing it to (3) we observe that
approximating f(x) with Nd Gaussian kernels centered at
the positions x̃` of the dictionary D matches the diffusion
field function. With (7), problem (4) reduces to finding the
coefficient vector w∗ instead of the function f∗(·). This for-
mulation builds the foundation for the following approaches.

IV. KERNEL LEAST SQUARES REGRESSION

A. Central Kernel LS Solution

In the following, we assume that all Ns sensor positions are
contained in the dictionary D such that the dictionary size Nd

equals the number of sensors in the network Ns. Vector d con-
tains the stacked measurements d = [d1, . . . , dNs

]T while K is
the kernel Gram matrix [2] with K = [κ(x1), . . . ,κ(xNs

)]T.
Then, problem (7) can be written as

w∗ = arg min
w∈RNs

||d−Kw||2. (9)

The solution can be directly given by the Pseudo-Inverse of
K and d with

w∗LS = (KTK)−1KTd. (10)

The inversion of KTK can lead to numerical instabilities if
the matrix K does not have a full column rank. Such a case
can appear in a SN where sensors with similar positions have
similar distances to all other sensors. This leads to linear
dependencies among the columns of K and to numerical
instability for the inversion if the Gaussian kernel (8) is used
since it considers the squared distance between sensors in its
argument. To improve the stability we can adjust the cost
function (9) by an additional regularization term ε||w||2 [12].
Then we obtain the following solution to the regularized cost
function:

w∗LS,reg = (KTK + εINs
)−1KTd, (11)

where ε is the regularization parameter used for tuning be-
tween an exact fitting for the data and numerical stability for
the inversion. The kernel least squares (KLS) solutions (10)
and (11) require all measurements and sensor positions to be

available at the FC to calculate the optimal weights w∗. Thus,
we call them the central KLS solutions and together with (5)
a prediction of the function f(x) for arbitrary inputs x is
obtained. However, in most applications distributed solutions
are necessary to avoid single-point of failure risks by the FC
and to enable each sensor to act autonomously based on its
local estimate. For these approaches, the central solution (11)
acts as a benchmark.

B. Kernel DiCE (KDiCE) Algorithm

Many approaches exist to solve a LS problem as (9) in
a distributed way. Among these, consensus-based algorithms
[8], [13], [14] have been proposed in the past. The distributed
consensus-based estimation (DiCE) [8] solves a LS problem
in a distributed fashion by using a consensus constraint on
the estimates and utilizing the alternating direction method
of multipliers (ADMM). We follow this idea and derive
a kernel-based regression algorithm calculating the optimal
weighting coefficients w∗ in a distributed fashion. For this,
the optimization problem (7) is modified by introducing local
weight vectors wj ∈ RNd at each node j and by adding a
consensus constraint on these vectors. Then we formulate the
optimization problem w.r.t. the set {wj |j ∈ J } containing the
weight vectors of all nodes in the network:

{w∗j |j ∈ J } = arg min
{wj |j∈J}

Ns∑
j=1

(dj −wT
j κ(xj))

2 (12a)

s.t. wj = wi, ∀j ∈ J , i ∈ Nj . (12b)

The additional constraint (12b) forces a consensus on wj

among neighboring nodes i ∈ Nj across the whole network.
By this, each node j achieves the same solution for wj , namely
the central KLS solution (10). However, due to direct coupling
of weight vectors among neighboring nodes solving (12a) with
(12b) will not result in a parallel processing among the nodes.
Thus, we introduce an auxiliary variable zj ∈ RNd per node
j such that constraint (12b) can be decoupled by

wj = zi, zj = wj , ∀j ∈ J , i ∈ Nj . (13)

With these constraints problem (12a) can be solved using
the augmented Lagrangian method and the ADMM. We build
the augmented Lagrangian cost function over all nodes with
Lagrange multipliers λji ∈ RNd :

L(w, z,λ) =

Ns∑
j=1

1

2
(dj −wT

j κ(xj))
2 −

∑
i∈N ′

j

λT
ji(wj − zi)

+
∑
i∈N ′

j

1

2µ
||wj − zi||2

 (14a)

=

Ns∑
j=1

Lj(wj , z,λ), (14b)

where N ′j = Nj ∪ {j} is the neighborhood set including
node j. Now, we can minimize the cost function Lj(wj , z,λ)
individually for each node j w.r.t. wj and zj . Following the

derivations in [8] we obtain equations for wj , zj and Lagrange
multipliers λji per sensor j. We can calculate these variables
in an iterative fashion with iteration index k resulting in

zk+1
j =

µ

|N ′j |
∑
i∈N ′

j

1

µ
wk

i − λk
ij (15a)

λk+1
ji = λk

ji −
1

µ

(
wk

j − zk+1
i

)
(15b)

wk+1
j =

(
κ(xj)κ(xj)

T +
|N ′j |
µ

INd

)−1
·

djκ(xj) +
∑
i∈N ′

j

1

µ
zk+1
i + λk+1

ji

 . (15c)

Here, µ is a positive step size and the algorithm is initialized
with w0

j = λ0
ij = 0 for all nodes. (15a)-(15c) constitute our

proposed KDiCE algorithm for distributed kernel-based LS
regression. Each node j calculates its auxiliary variable zk+1

j

and broadcasts it to its neighbors. After receiving the auxiliary
variables zk+1

i from their neighbors, each node updates the
Lagrange multipliers λk+1

ji and transmits them to its neighbors.
These need to be transmitted in a unicast fashion since they are
dependent on the edge between node j and i. After receiving
the Lagrange multipliers from its neighbors, each node updates
the weight vector wk+1

j and broadcasts it to its neighbors
initiating the next iteration.

Since each sensor j possesses its own weight vector wk
j ,

it can predict the function f̂kj (x) for arbitrary positions x per
iteration k via (6) as follows:

f̂kj (x) =

Nd∑
`=1

wk
j,` κ(x̃`,x) = (wk

j)Tκ(x), (16)

with wk
j,` being the `-th entry of the vector wk

j and κ(x) =

[κ(x̃1,x), . . . , κ(x̃Nd
,x)]T. To calculate κ(x) each sensor j

needs to know the sensor positions {x̃`}Nd

`=1 contained in the
dictionary D. With (16) each sensor is able to predict the
function f(x) over the complete area covered by the SN.

V. PERFORMANCE EVALUATION

A. Static Diffusion Field

For the evaluation of the KDiCE algorithm we consider the
regression of a static diffusion field f(x) given by (3). The
KDiCE is not restricted to such functions but can be used for
other nonlinear functions. We generate a field with diffusion
constant ν = 0.01 by three sources with intensities c1 =
1, c2 = 0.7, c3 = 0.5 and positions p1 = [0.3, 0.3]T,p2 =
[0.8, 0.6]T,p3 = [0.2, 0.8]T. Furthermore, we place Ns = 100
sensors randomly over the unit square area. Sensors having
a distance less than 0.22 to each other are connected by
an error-free communication link. Moreover, white Gaussian
noise with power σ2

n = 0.01 is added to the measurements of
the sensors. We use the Gaussian kernel (8) with a bandwidth
of ζ =

√
2ν assuming that the diffusion constant ν is known.

By this choice the kernel is matched to the field function (3)
to achieve a high regression performance. If the bandwidth is

0
0.5

1

0

0.5

1

0

0.5

1

true field f(x)

0
0.5

1

0

0.5

1

0

0.5

1

estimated field f̂(x)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

0.1

0.1

0
.1

0
.1

0.
1

0
.2

0
.2

0
.2

0.30.3

0.3

0.
3

0.4

0.40.4

0.5

0
.5

0.
5

0.
6

0.6

0
.70.8

0
.9

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

0.
1

0.1

0.
1

0.
1

0
.2

0.
2

0.
2

0.
3

0
.3

0
.3

0.3

0.4

0.4

0
.4

0.5

0.5

0.5

0.
6

0
.6

0.70.8

Fig. 1. Surface and contour plots of the true and estimated diffusion field after
300 iterations for one sensor. Black circles indicate the sensor positions and
the measured field values. Black crosses indicate the position of the diffusion
sources.

either too low or too high sensor positions will be interpreted
by the kernel as either completely distinct or similar samples
and the performance will decrease. Thus, the choice of the
bandwidth is crucial for the regression performance of the
algorithm. For the step size we choose µKDiCE = 8 and stop
the algorithm after 300 iterations. Regarding the dictionary no
learning method is applied such that D = {κ(xj , ·)}Ns

j=1.
Fig. 1 depicts surface and contour plots of the true and

estimated diffusion field of one sensor. The position and the
height of the black circles indicate the sensor location and the
measured field value. We show the estimated diffusion field
after 300 iterations of the KDiCE for one network topology.
In both plots we observe a high similarity between estimated
and true field indicating that the KDiCE is able to reconstruct
the complete diffusion field successfully. In order to evaluate
the regression performance of the KDiCE we determine the
error between the estimated field f̂kj (x) of each sensor j and
the true field f(x). The error between estimated and true field
is averaged over Ng considered grid points of the unit square
area and over all Ns nodes in the network to give the following
mean square error (MSE) per trial r and iteration k:

MSEk
r =

1

Ns

1

Ng

Ns∑
j=1

Ng∑
n=1

|f(xn)− f̂kj (xn)|2

=
1

Ns

1

Ng

Ns∑
j=1

Ng∑
n=1

|f(xn)− (wk
j)Tκ(xn)|2. (17)

Fig. 2 shows the MSE averaged over 100 trials for different
realizations of noise and network topology for the KDiCE
algorithm and the central regularized KLS solution (11). For
the central solution we set the regularization parameter to

0 50 100 150 200 250 300

−25

−20

−15

−10

iteration k

M
SE

in
dB

KDiCE
Central KLS

Fig. 2. Comparison of the field estimation MSE averaged over all sensor
nodes between the KDiCE and the central kernel LS solution.

ε = 0.1. One can see that the KDiCE achieves the central
regression performance approximately after 130 iterations and
even outperforms it afterwards. This is due to the regulariza-
tion term introduced in the central LS solution (11) which
shifts the solution away from the pure LS solution. Since
in problem (12a) considered by the KDiCE no regularization
term is contained, the weight vectors w∗j will differ from the
one calculated by the central LS estimator. Hence, it is possible
that the KDiCE achieves a better regression than the central
LS estimator. Our evaluation illustrates that the KDiCE is an
appropriate distributed estimator for static diffusion fields.

B. Time-Varying Diffusion Field

Due to its iterative structure, we can use the KDiCE to
track time-varying diffusion fields. To evaluate its tracking
performance, we generate a field according to (2) with M = 2
sources. The sources have intensities c1 = 1, c2 = 0.7,
positions p1 = [0.3, 0.3]T,p2 = [0.8, 0.6]T and activation
times t1 = 0, t2 = 10, respectively. Since the field is time-
varying, the SN needs to sample it in intervals to be able
to track it. Therefore, each sensor measures the field at its
position every ∆t = 0.2 time instant up to a maximum
measurement time of 20 time instants resulting in a total
of 100 measured field samples over time. Again we assume
noise with power σ2

n = 0.01 during each measurement. For
the evaluation of the KDiCE we compare its MSE over time
to the Functional Adapt-then-Combine Kernel Least-Mean-
Square (FATC-KLMS) [6]. This algorithm is a distributed
kernelized LMS scheme where each sensor j updates its
local weight vector wj in a two-step manner. The first step
calculates an intermediate weight vector based on an LMS
adaptation rule. In the second step intermediate weight vectors
from neighboring sensors are received by each sensor j and a
weighted average of these vectors is calculated to update the
weight vector wj . For this weighted averaging step we use the
relative-degree rule according to [7].

Both algorithms apply the coherence criterion [11] to de-
termine the dictionary D which is then used by all sensors in

the network. This criterion adds a sensor position xj into the
dictionary D if the condition

max
`=1,...,Nd

|κ(x̃`,xj)| ≤ τ (18)

is met, where τ is the coherence threshold which we choose to
0.8. The criterion uses the kernel function in order to compare
the current sensor position xj to the sensors contained in the
dictionary in terms of their similarity in the RKHS. For a
sensor position close to a position already contained in the
dictionary the kernel evaluation gives a high value. If this value
is greater than τ the sensor position is not included into the
dictionary. We then perform the coherence criterion over all
Ns sensor positions of the specific network topology before
we run the algorithms. After the dictionary is determined it
stays fixed for the specific algorithm. The step sizes of the
algorithms are µKDiCE = 1 for the KDiCE and µKLMS = 0.05
for the FATC-KLMS, respectively. Furthermore, in order to
improve the tracking ability of the algorithms the bandwidth
of the Gaussian kernel is adapted in each time interval ∆t via
ζ =
√

2νt. By this, we take the time-varying property of the
diffusion field according to (2) into account. We assume that
the sensor measurements start at t = 0 when the first source
is activated and that the network tracks the time t afterwards.
Regarding the communication overhead, we note that the
KDiCE exchanges variables zj ,λji and wj all of dimension
Nd whereas the FATC-KLMS only exchanges its intermediate
weight vectors of the same dimension per iteration k. To
compare both algorithms the KDiCE runs kKDiCE = 1
iteration whereas the FATC-KLMS runs kKLMS = 3 iterations
per measurement. By this, we make sure that both algorithms
have a comparable amount of information exchange per time
interval ∆t. Fig. 3 depicts the MSE for both algorithms
averaged over 100 trials. One can clearly see that the KDiCE
outperforms the FATC-KLMS in terms of convergence speed
and estimation performance. The KDiCE has converged after
approximately t = 7 time instants for the first source and
its MSE is 3 dB lower compared to the FATC-KLMS. After
t = 10 time instants the FATC-KLMS has approximately
reached the same MSE as the KDiCE. At this time instant
the activation of the second source can be observed by an
increased MSE for both algorithms. Also after the second
source is activated the KDiCE exhibits a faster adaptation and
a lower MSE. Although the KDiCE is no adaptive algorithm,
our evaluation illustrates that it is able to track time-varying
fields and even outperforms an LMS-based algorithm.

VI. CONCLUSION

In this paper, we presented the KDiCE as a distributed
kernel-based algorithm for nonlinear LS regression. We evalu-
ated its ability to estimate and track diffusion fields with multi-
ple sources for arbitrary network topologies. For the estimation
of time-varying fields the KDiCE outperformed the state of
the art [6] w.r.t. convergence speed and estimation accuracy.
Future work involves the investigation of an adaptive scheme
to determine the kernel bandwidth and the optimization of
dictionary samples to improve the regression performance.

0 5 10 15 20

−25

−20

−15

time instant t

M
SE

in
dB

KDiCE
FATC-KLMS

Fig. 3. MSE of the KDiCE (1 iteration) and the FATC-KLMS (3 iterations)
for a time-varying diffusion field with M = 2 sources.

ACKNOWLEDGMENT

The work leading to this publication was partially funded
by the German Research Foundation (DFG) under grant
Pa2507/1.

REFERENCES

[1] S. N. Simic and S. Sastry, “Distributed environmental monitoring
using random sensor networks,” in Proc. of the 2nd Int. Workshop on
Information Processing in Sensor Networks, 2003, pp. 582–592.

[2] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[3] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering. John
Wiley & Sons, 2010.

[4] C. Saunders, A. Gammerman, and V. Vovk, “Ridge regression learning
algorithm in dual variables,” Proc. of the 15th Int. Conf. on Machine
Learning, pp. 515–521, 1998.

[5] P. Honeine, C. Richard, J. Bermudez, J. Chen, and H. Snoussi, “A
decentralized approach for nonlinear prediction of time series data in
sensor networks,” EURASIP Journal on Wireless Communications and
Networking, no. 1, 2010.

[6] W. Gao, J. Chen, C. Richard, and J. Huang, “Diffusion adaptation over
networks with kernel least-mean-square,” in IEEE CAMSAP, 2015.

[7] F. Cattivelli and A. Sayed, “Diffusion LMS strategies for distributed
estimation,” IEEE Trans. on Signal Processing, vol. 58, no. 3, pp. 1035–
1048, 2010.

[8] H. Paul, J. Fliege, and A. Dekorsy, “In-network-processing: Distributed
consensus-based linear estimation,” IEEE Commun. Lett., vol. 17, no. 1,
pp. 59–62, 2013.

[9] Y. M. Lu, P. L. Dragotti, and M. Vetterli, “Localizing point sources in
diffusion fields from spatiotemporal samples,” in Proc. of Int. Conf. on
Sampling Theory and Applications (SampTA), May 2011.

[10] W. Gao, J. Chen, C. Richard, J. Huang, and R. Flamary, “Kernel LMS
algorithm with forward-backward splitting for dictionary learning,” in
IEEE ICASSP, 2013, pp. 5735–5739.

[11] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction
of time series data with kernels,” IEEE Trans. on Signal Processing,
vol. 57, no. 3, pp. 1058–1067, 2009.

[12] F. A. Tobar and D. P. Mandic, “The quaternion kernel least squares,” in
IEEE ICASSP, 2013, pp. 6128–6132.

[13] G. Xu, H. Paul, D. Wübben, and A. Dekorsy, “Fast distributed
consensus-based estimation (Fast-DiCE) for cooperative networks,” in
International ITG Workshop on Smart Antennas, 2014.

[14] R. Lopez-Valcarce, S. S. Pereira, and A. Pages-Zamora, “Distributed
total least squares estimation over networks,” in IEEE ICASSP, 2014,
pp. 7580–7584.

