
Analysis of Virtualized Turbo-Decoder

Implementation for Cloud-RAN Systems

Dirk Wübben and Henning Paul

Department of Communications Engineering

University of Bremen, 28359 Bremen, Germany

Email: {wuebben, paul}@ant.uni-bremen.de

Abstract—The virtualization of radio access network functions
using centralized cloud platforms will enable advanced joint
processing approaches and offers the ability to improve the
utilization efficiency of the computational resources. However,
the tight timing constraints caused by the protocol stack makes
the implementation of physical layer functionality on a cloud-
platform a challenging task. As the Turbo decoder is the com-
putational most demanding part of the LTE uplink processing,
we analyze its implementation on a typical cloud platform,
discuss the rate-complexity tradeoff, and analyze the benefit of
computational aware link adaptation.

I. INTRODUCTION

Future 5G mobile communication networks will need to

support a dramatic increase in the density and rate demands

of users. Currently, several novel technologies like massive

MIMO, millimeter Wave communications, non-orthogonal

waveforms, dense deployment of small-cells, and centraliza-

tion of the Radio Access Network (RAN) are discussed for

5G [1], [2]. In particular, centralized processing allows for

efficient coordinated resource allocation across multiple cells

as well as joint physical layer processing for uplink detection

and downlink transmission. In the frequently considered Cen-

tralized RAN (C-RAN) approach several remote radio heads

(RRHs) are connected through optical fiber links (fronthaul

(FH)) to a central baseband unit (BBU) where all baseband

processing is performed, allowing for large centralization gains

[3], [4]. To meet the timing requirements imposed by the RAN,

these BBUs are built on specialized hardware platforms utiliz-

ing digital signal processors (DSPs) and field-programmable

gate arrays (FPGAs) [5]. Furthermore, the strict requirement

of fiber FH and the difficulty to support future requirements in

5G (e.g., extreme latency) prevent such completely centralized

processing for all scenarios. Most likely, future networks

will consist of a combination of distributed and centralized

baseband deployments depending on the current needs and the

availability of network resources like FH rates and processing

power.

In [6], the Radio Access Network as a Service (RANaaS)

concept has been introduced. It allows for a flexible assign-

ment of RAN functionality between the radio access points

(RAPs) and the central cloud processing center (CPC), features

a tight integration of RAN, FH network, and CPC, and pro-

vides the deployment of commodity hardware at the CPC [6],

[7]. Thus, it is a candidate for the Cloud-RAN concept, where

cloud computing platforms are running on general purpose

hardware (GP-HW) and resource virtualization is applied to

match the computational resources to the actual needs. Beside

its benefits, Cloud-RAN also imposes several challenges for

implementing baseband processing on GP-HW mainly due to

the tight timing constraints of the RAN.

When considering the physical layer (PHY), the processing

load of the uplink is roughly 2.5 times the load of the downlink

for a given modulation and coding scheme (MCS), and the

computationally most demanding part of the uplink processing

is the forward error correction (FEC) decoding [8]. In order

to investigate the implications of virtualized implementation

of RAN processing, we investigated in [9] the realization of

the 3rd Generation Partnership Project (3GPP) Long-Term

Evolution (LTE) Turbo decoder on a cloud-computing plat-

form. In this paper, we extend this analysis by additional

numerical results gained by the RANaaS testbed at the Uni-

versity of Bremen with a typical configuration for Cloud-RAN

operator networks.

The remainder of this paper is organized as follows. In

Section II the Cloud-RAN approach is presented, the impli-

cations of virtualized implementation are discussed, and the

RANaaS testbed at the University of Bremen is described.

The virtualized implementation of the LTE Turbo decoder is

discussed in Subsections III-A and III-B.

II. CLOUD-RAN

A. Functional Split

We consider the uplink (UL) operation of a Cloud-RAN

(Cloud-RAN) network, where NRAP RAPs are connected by

FH links to a CPC. The RAPs implement the lower part

of the protocol stack, whereas the cloud architecture hosts

the remaining upper part of the protocol stack. In principle,

several functional splits are possible as shown in Fig. 1 for

UL transmission and discussed in [2], [10], [11].

One of the main benefits of the Cloud-RAN architecture is

the ability to flexibly assign functionality to either the RAPs

or the CPC. The actual functional split can be different for the

various RAPs depending on both location and time according

to, e.g., the traffic demand, FH technology or the deployment

scenario. Of course, the actual split has implications on the

processing needs for RAPs and the cloud platform, the reliabil-

ity and latency requirements of the FH links, and the FH load.

It also determines the principle gains due to centralization.

978-1-5090-3401-7/16/.00 ©2016 IEEE
385

 2016 9th International Symposium on Turbo Codes & Iterative Information Processing

Fig. 1. Functional split between RAPs and CPC for UL transmission

In order to realize some kind of joint PHY-layer processing,

the functional split needs to be placed on the PHY layer

as illustrated in Fig.1. Thus, the FEC decoding needs to be

executed in the CPC which requires the forwarding of soft

values for the receive signals from the RAPs to the CPC and

the execution of the most demanding PHY processing step on

GP-HW.

B. RANaaS Testbed at University of Bremen

The use of GP-HW for the higher layer processing instead

of proprietary, dedicated BBUs enables the transfer of the

Infrastructure-as-a-Service (IaaS) paradigm to the RAN pro-

cessing: Computational resources are allocated on demand, by

spawning new instances of virtual machines (VMs) on a cloud-

platform, which implement the RAN functionality above the

functional split. This concept is well known from computer

systems, e.g., for elastically scaling up web servers at times

of high demand.

One of the main obstacles for virtualizing RAN functions

on commodity information technology (IT) equipment is its

processing performance. For this purpose, we performed a

large-scale analysis of an LTE-compliant Turbo decoder run-

ning on a cloud-platform. Turbo decoding accounts for about

80% of the uplink processing load and is a highly stochastic

process while the upper layer processing is more deterministic

and less computationally intensive. The RANaaS testbed at

the University of Bremen consists of commercial off-the-

shelf (COTS) hardware by Hewlett Packard (2 blade servers,

each equipped with 64GB RAM and 2 Intel Xeon E5-2630

processors at 2.6GHz, corresponding to 12 central processing

unit (CPU) cores per blade). The testbed shown in Fig. 2 is

running OpenStack Icehouse under stock Ubuntu 14.04. One

blade server is a dedicated compute node, while the second one

additionally acts as controller and storage node. This allows

for the use of up to 20 virtual CPUs in parallel with 4 physical

CPU cores exclusively allocated to management.

Fig. 2. RANaaS testbed at University of Bremen

III. RATE-COMPLEXITY TRADEOFF

The tight constraints caused by the 3GPP LTE protocol

stack makes the implementation of RAN functionality on a

cloud-platform a challenging task. The most critical timer

in LTE is associated to the hybrid automatic repeat-request

(HARQ) process, which requires to finish the overall receive

process within 3 ms to stay compliant with the 3GPP LTE

timing. This timing includes the local processing of physical

resource blocks (RBs) at the RAPs, the central processing

at the CPC, and the round-trip time on the FH. Especially

the Turbo decoding introduces a computational jitter as the

decoding time varies significantly per RB. This computational

jitter needs also to be considered in the overall processing

delay.

A. Performance per User

In LTE, the mobile can use one out of 29 distinct MCSs

which are characterized by different combinations of modula-

tion scheme and code rate [12]. Subsequently, we present nu-

merical results achieved for LTE uplink MCS 6 ≤ IMCS ≤ 28

using the RANaaS testbed introduced above. The software

implementation of the Turbo decoder was done in C++ using

the GNU compiler (GCC), Ubuntu Linux 14.04, and multi-

threading with one thread per user codeword (CW) [9] using

a Qt QThreadPool [13]. The software performs LTE-compliant

coding and decoding in the uplink with soft demapping and

up to Nmax
It = 8 iterations of the Turbo decoder. For each

constituent decoder of the turbo loop, a double-precision

Bahl-Cocke-Jelinek-Raviv (BCJR) implementation using the

MAX-Log-MAP approximation is employed. No CPU-specific

optimisation of the implementation was performed, which

would potentially reduce the effective decoding time per code-

word. Nevertheless, such optimization would not influence the

computational jitter due to the number of iterations or the

number of information bits per RB discussed subsequently.

386

 2016 9th International Symposium on Turbo Codes & Iterative Information Processing

0 5 10 15 20 25
10−3

10−2

10−1

100

SNR in dB

B
L

E
R

a) BLER

0 5 10 15 20 25

2

4

6

8

SNR in dB

av
g

.
#

o
f

it
er

at
io

n
s

b) Avg. # of iterations

Fig. 3. a) BLER and b) average number of iterations per block for MCS
6 ≤ IMCS ≤ 28, all MCS (), active MCS without SNR margin (), and
active MCS with SNR margin ∆γ = 0.9 ()

Fig. 3 a) shows the resulting block error rates (BLERs)

assuming maximum Nmax
It = 8 Turbo decoding iterations for

different MCSs versus the SNR of an additive white Gaussian

noise (AWGN) transmission. The larger the MCS, the higher

the necessary SNR required to achieve decreasing BLERs.

In LTE the radio link control (RLC) chooses for a given

SNR the MCS such that a target block-error rate of 10% is not

exceeded. Subsequently, γi denotes the SNR when the RLC

switches from MCS i− 1 to i. Correspondingly, the effective

BLER of the active MCS per SNR has been highlighted in

blue. In Fig. 3 b) the corresponding average number of decoder

iterations per block for each MCS is depicted. Only if the SNR

is high enough for a specific MCS, i.e., the chosen code rate

Rc does not exceed the channel capacity, the Turbo decoder

will converge within the maximum number of iterations (here

Nmax
It = 8). Furthermore, with an increasing SNR the required

number of iterations per MCS reduces, leading to a reduction

of computational complexity for an increasing SNR per MCS.

Again, we have indicated the average number of iterations for

the active MCS in blue. We can observe, that the effective

average number of iterations varies between 5 and 2 and that

peaks occur exactly when the RLC switches to the next higher

MCS, i.e., at the switching SNRs γi.

In [9] it was suggested to reduce the processing complexity

by introducing an SNR margin ∆γ in the RLC. With such

margin, MCS i is active in the range of γi +∆γ and γi+1 +

∆γ. Fig. 4 a) shows the achievable data rate for the case

of no margin (∆γ = 0 dB) and a margin of ∆γ = 0.9 dB,

while Fig. 4 b) shows the measured decoding time on our

demonstrator platform per CW. It is obvious that a margin of

∆γ = 0.9 dB only causes a small loss in data rate but reduces

decoding time significantly, i.e., for all MCS up to 27, the

decoding time is lower than 3 ms (relevant for HARQ).

0 5 10 15 20 25
0

2

4

6

SNR in dB

d
at

a
ra

te
in

b
p

cu

a) Data rate

∆γ = 0 dB

∆γ = 0.9 dB

0 5 10 15 20 25
0

2

4

6

SNR in dB

D
ec

o
d

in
g

ti
m

e
in

m
s

b) Average decoding time per codeword

Fig. 4. a) Data rate and b) average decoding time per codeword for chosen
MCS over SNR

We can observe two main overlaid effects for the decoding

time. Firstly, we can observe a very peaky behaviour caused

by the fact that the closer we operate to channel capacity,

the more Turbo decoder iterations are necessary to decode

a CW (as demonstrated in Fig. 3 b)). Secondly, the number

of information bits increases with the SNR due to the higher

MCSs. This causes a linear increase of the complexity and

therefore processing time. Although, the absolute decoding

time could be reduced by some optimized implementation, the

computational jitter would remain due to these two impacts.

B. Multiuser Performance

The previous link-level (LL) analysis considered the pro-

cessing effort per user for a given MCS and SNR. However,

387

 2016 9th International Symposium on Turbo Codes & Iterative Information Processing

the identified characteristic can also be used to analyze more

complex scenarios present in the centralized Cloud-RAN com-

munication system.

In a dense deployment of small-cells, the uplink processing

of NRAP RAPs is centralized in one cloud platform serving

many users applying different MCSs based on the observed

signal-to-interference-and-noise ratios (SINRs). In order to

evaluate the actual processing complexity and the achievable

throughput with a given number of available CPUs in the CPC,

results from system-level (SL) evaluations have been used

in combination with the RANaaS testbed. This joint LL/SL

simulator serves the purpose of evaluating the computational

outage probability and the outage complexity introduced in

[14] and demonstrating the benefit of applying computational

aware resource allocation schemes.

To this end, a 3GPP LTE compliant SL simulation including

mobility was run offline beforehand and provides SINR traces

with a resolution of 1 ms to the computational aware RLC,

which is termed “joint Cloud-RAN scheduler”. According to

its allocation result, LL simulations with 1 frame containing

a single CW per ms for a certain number of users NUE are

triggered. The measured decoding time performance for these

CWs in turn serves as input to the scheduler. Please note that

this joint LL/SL simulation is not running in real time, but

extrapolates from the real decoding performance how many

CPUs cores nCPU would be required to achieve real-time

decoding. E.g., for NUE = 50 users, the CPU occupation

nCPU depicted in blue in Fig. 5 is observed if no margin (i.e.,

∆γ = 0 dB) is considered in the RLC. Due to the fact that

decoding takes more than 1 ms per CW, more than 50 cores

would be simultaneously required for real-time decoding.

0 200 400 600 800 1,000

100

150

200

t/ms

o
cc

u
p

ie
d

C
P

U
co

re
s

unconstrained

150 cores

joint scheduler

Fig. 5. Occupied CPU cores nCPU over time for unconstrained case (),
hard limit of Nmax

CPU
= 150 CPU cores without joint scheduler () and

constrained to Nmax

CPU
= 150 CPU cores with joint Cloud-RAN scheduler

()

Due to the varying SINRs and thus, varying decoding time,

the number of occupied CPU cores varies significantly over

time. In practice, it is not economically reasonable to provision

a system to its peak load, therefore, the number of available

CPUs Nmax
CPU will be limited to a fixed amount smaller that

the peak value. This will lead to computational outage events,

since a user frame cannot be decoded in time for the HARQ

acknowledgment and thus needs to be discarded. The green

curve in Fig. 5 shows the limitation to an exemplary value of

Nmax
CPU = 150 CPU cores. The corresponding cumulative distri-

bution functions (CDFs) of the normalized rates for scheduled

user equipments (UEs) are shown in Fig. 6, with the average

value indicated by a circle. It can be seen that compared to

the unconstrained case, the average rate is reduced and the

number of UEs with zero rate is increased.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

user rate / bpcu

C
D

F

unconstrained

150 cores

joint scheduler

Fig. 6. CDF of scheduled user rates

In order to limit the computational load, the joint Cloud-

RAN scheduler proposed in [14] assigns UEs at the lower

SINR range of an MCS, i.e., close to γi, to the next lower

MCS if an exceedance of the CPU limit is predicted. As

visualized in Fig. 5 this results in a drastic reduction of the

computational load, but only a negligible reduction of the

average data rate even not observable in Fig. 6: While the

instantaneous CPU occupation lies well below the limit of

Nmax
CPU = 150 CPU cores, the user rates are practically identical

to the unconstrained case, e.g., the average rate decreases by

0.1% from 2.5168 to 2.5144.

C. Impact of virtualization on the decoding time

The measurement of decoding time in Fig. 4 has been

performed in a very controlled fashion with a fixed number

of CWs per SNR and the SNR iterated over a given interval.

We will now contrast these measurements to values obtained

by the joint LL/SL simulation. Here, SINRs provided by SL

simulations are not uniformly distributed and do not adhere to

discrete values. Fig. 7 shows the median decoding time over

SINR binned into intervals of width 0.2 dB with error bars

indicating 5% and 95% percentiles. The results obtained on the

cloud-platform are shown in blue, while results obtained on a

different, non-virtualized (i.e., “bare metal”) system are shown

in orange. It can be seen that for a conservatively provisioned

cloud-platform, i.e., not assigning more virtual CPUs to VMs

than physically available, the additional jitter introduced by

virtualization can be ignored. However, if the VM is thin

provisioned, i.e., the number of virtual CPUs allocated is not

guaranteed to be physically available at all times, the decoding

time per frame and in particular its spread is increased, as

can be seen from the magenta plot in Fig. 7. In this case, 16

388

 2016 9th International Symposium on Turbo Codes & Iterative Information Processing

virtual CPUs were allocated while only 4 were guaranteed to

be available, in contrast to that, the blue plot was obtained by

allocating 4 virtual CPUs to the VM.

0 2 4 6 8 10 12 14 16

0

5

10

15

binned SINR / dB

d
ec

o
d

in
g

ti
m

e
in

m
s virtualized

bare-metal

thin provisioned

Fig. 7. Statistics of decoding time, median value with 5% and 95%
percentiles, for conservatively provisioned virtualized system (), bare-metal
system () and thin provisioned virtualized system ()

IV. CONCLUSIONS

Cloud-RAN combines the advantages of centralized pro-

cessing with the benefits of improved utilization efficiency due

to computational load balancing. For the computational most

demanding function of the physical layer processing chain we

demonstrate the feasibility of virtualized implementation. To

this end, the rate-complexity tradeoff for the implementation

of the LTE Turbo decoder on commodity hardware has been

analyzed. The application of a joint Cloud-RAN scheduler

strictly limits the computational load while virtually achieving

the throughput of an computational unconstrained cloud pro-

cessing center. Finally, the impact of virtualization of CPUs

has been discussed.

REFERENCES

[1] F. Boccardi, R. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications

Magazine, vol. 52, pp. 74–80, Feb. 2014.
[2] D. Wübben, P. Rost, J. Bartelt, M. Lalam, V. Savin, M. Gorgoglione,

A. Dekorsy, and G. Fettweis, “Benefits and Impact of Cloud Computing
on 5G Signal Processing,” Special Issue ”The 5G Revolution” of the

IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 35–44, Nov 2014.
[3] K. Chen, C. Cui, Y. Huang, and B. Huang, “C-RAN: A Green RAN

Framework,” in Green Communications: Theoretical Fundamentals,

Algorithms and Applications, J. Wu, S. Rangan, and H. Zhang, Eds.
CRC Press, 2013.

[4] NGMN, “Suggestions on Potential Solutions to C-RAN by NGMN
Alliance,” NGMN, Tech. Rep., Jan. 2013.

[5] G. Li, S. Zhang, X. Yang, F. Liao, T. Ngai, S. Zhang, and K. Chen,
“Architecture of GPP based, scalable, large-scale C-RAN BBU pool,”
in International Workshop on Cloud Base-Station and Large-Scale

Cooperative Communications at IEEE Globecom 2012, Anaheim, CA,
USA, Dec. 2012.

[6] P. Rost, C. Bernardos, A. D. Domenico, M. D. Girolamo, M. Lalam,
A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for
Flexible 5G Radio Access Networks,” IEEE Communications Magazine,
vol. 52, no. 5, May 2014.

[7] P. Rost, I. Gerberana, A. Maeder, H. Paul, V. Suryaprakash, M. Valenti,
D. Wübben, A. Dekorsy, and G. Fettweis, “Benefits and Challenges of
Virtualization in 5G Radio Access Networks,” IEEE Communications

Magazine, pp. 75–82, Dec. 2015.

[8] S. Bhaumik, S. P. Chandrabose, M. K. Jataprolu, G. Kumar, A. Muralid-
har, P. Polakos, V. Srinivasan, and T. Woo, “CloudIQ: A Framework for
Processing Base Stations in a Data Center,” in 18th Annual Inter. Conf.

on Mobile Computing and Networking (MobiCom), Istanbul, Turkey,
Aug. 2012.

[9] H. Paul, D. Wübben, and P. Rost, “Implementation and analysis of
forward error correction decoding for cloud-ran systems,” in Second

International Workshop on Cloud-Processing in Heterogeneous Mobile

Communication Networks (IWCPM 2015), co-located with IEEE ICC

2015, London, GB, Jun 2015.
[10] J. Bartelt, P. Rost, D. Wübben, J. Lessmann, B. Melis, and G. Fettweis,

“Fronthaul and backhaul requirements of flexibly centralized radio
access networks,” Special Issue ”Smart Backhauling and Fronthauling

for 5G Networks” of the IEEE Wireless Communications Magazine,
vol. 22, no. 5, pp. 105–111, Oct 2015.

[11] J. Bartelt, D. Wübben, P. Rost, J. Lessmann, and G. Fettweis, “Fronthaul
for a Flexible Centralization in Cloud Radio Access Networks,” in
Backhauling / Fronthauling for Future Wireless Systems. John Wiley
& Sons Ltd, 2017.

[12] 3GPP, “Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA); Physical layer procedures (Release 10),” Tech. Rep.
3GPP TS 36.213, Jun. 2015.

[13] The Qt Company, “Qt documentation of the QThreadPool class.”
[Online]. Available: http://doc.qt.io/qt-4.8/qthreadpool.html

[14] P. Rost, S. Talarico, and M. Valenti, “The Complexity-Rate Tradeoff of
Centralized Radio Access Networks,” IEEE Transactions on Wireless

Communications, pp. 6164–6176, Nov. 2015.

389

 2016 9th International Symposium on Turbo Codes & Iterative Information Processing

