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Abstract—Industry 4.0 (I4.0) closed-loop control applications
require ultra low-latency and ultra high reliability. Generalized
Frequency Division Multiplexing (GFDM) promises to meet
these requirements in conjunction with low Out-Of-Band (OOB)
emissions. We present latency measurements of an open-source,
modular, portable GFDM software implementation using the
GNU Radio framework. The used implementation and its compo-
nents are investigated regarding their theoretical function. We in-
vestigate the usability of the GFDM implementation for Software-
Defined Radio (SDR). This is facilitated by benchmarking the
various functions with respect to different parameter sets. Thus,
we focus on latency measurements which provide reliable figures
for SDR system design. Furthermore, we show that low latency
broadband SDR systems for I4.0 applications are feasible.

I. INTRODUCTION

Current 4th Generation (4G) and WiFi mobile radio tech-
nologies are designed for high data rate human-centered
applications. These applications include video streaming and
large file transfers. As a consequence of this design target 4G
systems focus on large packets. Furthermore, moderate latency
requirements are sufficient and occasional packet losses are
expected which is traded in for higher overall throughput. Next
generation communication systems are expected to enable
new applications which exhibit Machine-type-Communication
(MTC) behavior. In the realm of I4.0, closed-loop control ap-
plications are envisioned which require ultra low-latencies and
ultra high reliability. Moreover, a vast range of applications
require that the waveform is flexible and can be adopted to
different use-cases.

A. Motivation

New I4.0 applications are envisioned to maximize flexibility
and create cooperative distributed production lines. In contrast
to current 4G and WiFi communication systems I4.0 applica-
tions impose differing requirements on a I4.0 communication
system [1]. Current systems are human-centered whereas MTC
in I4.0 systems is expected to enable closed-loop control appli-
cations. Especially, industrial automation closed-loop control
applications require ultra high reliability and ultra low-latency
for short packet communication systems. In these systems
communication is deterministically organized in cycles which
are expected to have a duration of less than 1ms. In this
timeframe all clients must send and receive their packets [1].
Additionally, these systems require reliable and deterministic

real-time data delivery. Exceeding the overall latency budget
leads to data loss and may bring an entire production line to
a halt. Here we focus on physical layer processing latencies.

Current 4G systems rely on Orthogonal Frequency Division
Multiplexing (OFDM) which is a simple and effective Multi-
Carrier System (MCS). However, several shortcomings with
regards to OFDM were identified [2]. These shortcomings
include poor OOB emission properties, strict synchronization
requirements and poor spectral efficiency. I4.0 communication
systems are expected to operate in harsh, densely populated
environments such as production floors with multiple commu-
nication systems in close proximity. Thus, I4.0 systems must
coexist with each other and with legacy systems. Moreover,
these systems must use the spectrum more efficiently by
reducing their OOB emissions in order to enable them to meet
the I4.0 requirements.

Several MCS candidate waveforms for I4.0 exist which offer
different approaches to overcome OFDM shortcomings [3].
Filter-Bank Multi-Carrier (FBMC) minimizes OOB emissions
by filtering each subcarrier but introduces large filter delays
[2]. Universal Filterbank Multi-Carrier (UFMC) groups mul-
tiple subcarriers and then filters each group jointly in order to
decrease filter delays, though it still only considers timeslots
individually [4].

GFDM goes beyond symbol-based modulation by modulat-
ing entire frames [5]. Generally, GFDM is a highly flexible
non-orthogonal waveform. Circular filters retain the option to
use a Cyclic Prefix (CP) and a Cyclic Suffix (CS) for whole
frames. Furthermore, these filters avoid large delays and can
minimize OOB emissions. For I4.0 low-latency communica-
tion systems short filter delays are an important advantage
because latency reduction is a critical design criteria which
GFDM can deliver.

In addition to over-the-air latencies, signal processing adds
significant delays to a communication system. The introduced
latencies need to be known in order to be able to design
a reliable low-latency I4.0 system. In [6] a GFDM imple-
mentation in LabView targeting the Universal Software Radio
Peripheral (USRP) X310 is presented but its latency properties
are unknown. There are no other latency measurements of
GFDM systems known to the authors. All relevant parts of
the signal processing chain are implemented for this specific
hardware. I4.0 applications represent a diverse set of use cases.



This requires more portability and flexibility in order to adapt
the communication system to these use-cases.

SDR is a term coined by Joseph Mitola [18]. The concept
describes how formerly fixed hardware for signal processing
is moved to the software domain. It enables myriads of new
applications and use-cases and offers unprecedented flexibility.
Furthermore, research and development may be accelerated
with software development techniques, e.g. rapid prototyping,
introduced with the SDR concept [7]. Field tests and simula-
tions which share a common code base drastically improve
technology verification. A SDR implementation offers the
advantage to combine these features and it can reveal first
figures for latencies in a GFDM system for I4.0. Additionally,
future Cloud Radio Access Networks (Cloud RANs) will
benefit from a software implementation [8] which will enable
more efficient use of available hardware.

B. Main Contribution

The main contribution of this paper is an investigation of
the latencies introduced by the various processing steps of a
GFDM SDR software implementation, including transmission,
reception and synchronization. For these applications we run
a set of benchmarks which outline the practicability of the
implementation in the context of I4.0 low-latency applications.
We present benchmark results for all functions introduced in
theory and point out how different parameters impact latency.
The results show that the investigated SDR implementation is
suitable for low-latency I4.0 systems.

II. GFDM SYSTEM DESCRIPTION

This Section introduces the concepts of Generalized Fre-
quency Division Multiplexing (GFDM). It is split into a
transmitter and receiver subsections, depicted in Fig. 1 and 2,
which detail the specifics of the system. A stream of complex
symbols d ∈ C goes into the transmitter and a stream of
estimates for the transmitted symbols d̂ is produced by the
receiver. In contrast to OFDM, GFDM focuses on whole
frames instead of individual timeslots in order to optimize
its transmission properties. This approach introduces more
flexibility and thus, GFDM can be better matched to different
individual use-cases. Also, latencies may be minimized by
designing a system accordingly.

A. Transmitter

The transmitter portion of a GFDM system is composed
of three stages depicted in Fig. 1. In this paper we do not
consider channel coding but we expect it to be part of a
complete system. Multiple complex symbols d are grouped
into a frame and assigned to their point on the time-frequency
plane, or lattice [3]. The modulator transforms this frame into
a complex baseband signal vector. A CP is added in order to
obtain the cyclic channel properties at the receiver and thus
enable simple one-tap Frequency-Domain Equalization (FDE).

MCS waveforms modulate symbols such that each symbol
in a frame with M timeslots and K subcarriers is located at
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Fig. 1. Transmitter processing steps

its unique point on the lattice. Thus, a maximum of N = KM
points may be transmitted. The lattice for a GFDM frame is
represented by the matrix D ∈ CM×K where each element
dm,k corresponds to a symbol in the mth timeslot on the
kth subcarrier [9]. Often, some subcarriers are not used for
transmission but only Kon ≤ K are used.

In case Kon < K, subcarriers which are unused correspond
to columns in D which are filled with zeros and consequently
the occupied bandwidth is reduced. Thus, the resource mapper
groups MKon complex symbols together with M(K −Kon)
zeros into D. Stacking D’s columns dk according to

d =
[
dT0 dT1 . . . dTk . . . dTK−2 dTK−1

]T
(1)

returns a symbol vector d ∈ CN×1 containing all symbols of
a GFDM frame.

GFDM modulation is a linear operation which can be
denoted in matrix notation

x = Ad (2)

where x is the transmit vector and A ∈ CN×N is a modulation
matrix containing the filter coefficients for one symbol in each
column [5]. This modulation matrix A can be written as

A =
[
g0,0 g0,1 . . . g1,0 . . . gK−1,M−1

]
(3)

where the columns represent filters derived from a prototype
filter g ∈ CN×1. The n-th element of the derived filter for the
k-th subcarrier in the m-th timeslot is obtained by modulating
and circularly shifting the prototype filter

gk,m[n] = g[(n−mK) mod N ] · ej2πn k
K . (4)

From (2) it can be observed that GFDM is a linear, frame-
based multicarrier modulation scheme. The desired spectral
properties can be matched by means of the chosen prototype
filter g, e.g. Root-Raised-Cosine (RRC) or Gaussian filters.
The chosen prototype filter may constitute orthogonal or non-
orthogonal modulation and thus controls how much self-
interference is present in a specific GFDM system. Appropriate
prototype filter design may be performed with the aid of
ambiguity functions [10], [11]. In general, non-orthogonal
modulation must be assumed and self-interference must be
considered.

Due to the cyclic filter shift in (4), a GFDM frame is cyclic.
Thus, a CP can be employed to obtain a cyclic channel at the
receiver and one-tap FDE is feasible. In contrast to OFDM,
only one CP per frame is necessary which can be exploited to
shorten frames and thus in turn reduce latency.

Matrix multiplication is an expensive operation, especially
when N tends to be large. Frequency domain modulation and



thus demodulation promises to drastically reduce complexity
[12]. Therefore, (2) can be rewritten to

x = F−1
N

K−1∑

k=0

P
(k)
N×MLGML×MLRML×MFMdk (5)

where dk denotes the complex symbols modulated onto one
subcarrier. First, these symbols are transformed to frequency
domain with an M -point Fourier transform FM . Next, up-
sampling in frequency domain is performed by means of a
repetition matrix RML×M , where L ≤ K is the overlap factor.
GML×ML is a diagonal filter matrix with the ML prototype
filter taps on its diagonal. P (k)

N×ML performs subcarrier mod-
ulation by shifting the samples into a vector of size N at the
corresponding position of the kth subcarrier. For K = L, (5)
is an alternative representation of (2). If the prototype filter is
chosen such that its OOB leakage decays outside its subcarrier
bandwidth L can become smaller than K. In case RRC filters
are used, only adjacent subcarriers overlap. Typically L = 2 in
this case and it becomes clear that L controls the modulators
computational complexity.

From (5), it becomes apparent that M and K should both
be a power of two in order to exploit the efficient Cooley-
Tukey Fast Fourier Transform (FFT) algorithm. However, M is
chosen such that it is an odd number because GFDM systems
exhibit bad performance if both M and K are even numbers
because Zero-Forcing (ZF) receivers do not exist [13].

The next transmitter stage performs CP insertion. This is
possible on a per frame basis because of the chosen cyclic
shift in filter taps. Also, a CS may be inserted. Having only
one CP and CS, of size NCP and NCS respectively, per frame
improves spectral efficiency while still enabling simple one-
tap FDE at the receiver.

Apart from CP insertion, frame windowing is performed in
this stage in order to reduce OOB emissions [5]. Here frame
windowing is applied to whole frames similar to [14] where it
is employed on a per-symbol basis. In accordance with [14],
usually a Raised-Cosine (RC) filter is applied. For the frame
window Nw samples at the beginning and end of each frame
are considered.

Before a GFDM frame is transmitted, a preamble is
prepended as depicted in Fig. 1. This preamble is used for
synchronization in the receiver but may also be used for an
initial channel estimate.

B. Synchronization

A GFDM receiver must first locate a received frame y in
the received sample stream before it can be demodulated.
In [15], it has been shown that frame synchronization is
a computationally expensive operation. Thus, we consider
multiple synchronization stages in order to bound complexity.

The receiver processing chain, depicted in Fig. 2, is split
into two stages. In the initial energy-based synchronization
stage, a coarse frame start is detected by detecting a rise
in energy. The energy-based synchronization stage may be
skipped if coarse synchronization is already achieved. After-
wards a high precision synchronization stage follows which
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Fig. 2. Receiver processing steps

also facilitates tracking. This preamble-based synchronization
stage only searches in a window around the detected coarse
frame start for the known preamble.

This fine synchronization is performed with an improved
Schmidl&Cox algorithm [16] which is adopted for GFDM
[17]. The synchronization algorithm requires the preamble to
consist of two identical parts which are transmitted consecu-
tively. In [17] a short GFDM frame with M = 2 timeslots is
proposed with identical pseudo-random symbols in the first
and second timeslot. The algorithm first performs a fixed-
lag autocorrelation of length subcarriers K which yields a
frame timing estimation with moderate accuracy. Furthermore,
the fixed-lag autocorrelation is used to estimate a Carrier-
Frequency-Offset (CFO).

In a window around this moderately accurate timing esti-
mation a crosscorrelation with the received samples and the
known preamble is performed. In this window, element-wise
multiplication of the fixed-lag autocorrelation and crosscorre-
lation values results in a high precision timing synchronization.
Eventually, synchronization yields a received frame vector
including its CP and CS.

C. Receiver

A GFDM receiver must perform equalization and demod-
ulate a received frame. Since GFDM is a non-orthogonal
modulation scheme, Interference-Cancellation (IC) might be
performed in order to remove self-interference.

Considering Fig. 2 after the synchronization stages, the
modulated received frame y = Hx + n is obtained by
removing the CP and CS with H being a cyclic block fading
channel matrix and n being Additive White Gaussian Noise
(AWGN). A ZF receiver with GZF = A−1 would remove all
self-interference, introduced by the non-orthogonal waveform,
at the expense of noise-enhancement. In order to maximize
Signal-to-Noise-Ratio (SNR) a Matched-Filter (MF) receiver
with GMF = AH is used but does not remove self-interference.

Unlike OFDM, GFDM enables to control self-interference
by means of filter design. In case of RRC filters, only adjacent
subcarriers need to be considered.

Similar to (5), demodulation is performed in frequency
domain with GML×ML = GMF. First, the frame y is partially
demodulated per subcarrier k

y0
RX,k = (RML×M )

T
GML×ML

(
P

(k)
N×ML

)T
HH

F FN y

(6)



where the diagonalized frequency domain channel matrix
HF = FH is employed for one-tap channel equalization.
y0

RX,k suffers from interference from adjacent subcarriers.
This interference is combated with J IC iterations where
j ∈ {0, . . . , J − 1} [12]. In each iteration j

d̄jk = q{F−1
M yjRX,k} (7)

is performed to obtain hard symbol decisions. Then, the
interference to adjacent subcarriers

yjI,k = GIFM (d̄j(k+1) mod K + d̄j(k−1) mod K) (8)

is calculated where GI accounts for the weighted interference
derived from the used filters. Eventually, the next IC iteration
j + 1 is performed with updated receive vectors

yj+1
RX,k = y0

RX,k − yjI,k. (9)

This process from (7) onwards is repeated J-times in order to
minimize self-interference. After J iterations the demodulator
returns interference-reduced soft decisions d̂k = F−1

M yJ−1
RX,k

for all subcarriers k.

III. IMPLEMENTATION

In this Section we introduce the implementation used for
our benchmarks. The SDR implementation gr-gfdm is freely
available under the terms of the GPLv3 [19]. Details of the
implementation may be explored in source code at [19]. Here,
only the foundations are layed out.

The implementation gr-gfdm is originally targeted to be
a GNU Radio Out-Of-Tree (OOT) module which was es-
tablished by Andrej Rode in 2015. We introduced function
kernels, which represent the operations presented in Sec. II,
in order to separate optimized GFDM C++ functions from the
GNU Radio interface. These kernels, which are benchmarked
in Sec. IV, represent the different stages for transmitting and
receiving GFDM signals.

A. Libraries and frameworks
This Subsection introduces the most important libraries and

frameworks which are used in gr-gfdm.
a) GNU Radio: A modular, multi-threaded framework

for SDR applications [20]. It offers a lot of standard capa-
bilities for signal processing, visualization and infrastructure
in order to develop new waveforms. A developer may focus
on the actual algorithms at hand while GNU Radio deals
with all the software design implications. This is particularly
interesting when dealing with multi-threading because GNU
Radio manages threads and data. It is freely available under
the terms of the GPLv3.

b) Vector-Optimized Library of Kernels (VOLK): A li-
brary of math functions which are typically used in signal
processing [21]. It makes use of Single-Instruction-Multiple-
Data (SIMD) extensions which are present in many modern
General Purpose Processor (GPP) hardware architectures such
as Streaming SIMD Extensions (SSE), Advanced Vector Ex-
tensions (AVX) or NEON. It abstracts individual implementa-
tions for specific hardware and provides a canonical interface
to all of them.

c) Fastest Fourier Transform in The West (FFTW): One
of the fastest known software implementations for Fourier
transforms [22]. It is a de facto standard for many software
projects, both commercial and open-source.

IV. BENCHMARKS

This section explores how the system under test performs
under various parameters. The primary target is to measure
processing latencies for the different stages in the processing
chain.

The idea of the simulations is to identify the cost of
individual operations for GFDM transmitters and receivers as
depicted in Fig. 1 and 2. The benchmarked kernels present a
minimum latency cost for the investigated GFDM transceiver
system. Additional latencies due to multi-threading, peripheral
access and such are not considered. The simulation bench-
marks help identify suitable parameter sets for the task at
hand. Also, they help at identifying possible targets for future
optimizations.

A. System setup

We want to motivate the chosen parameter set by outlining
system requirements for I4.0 closed-loop control systems
which exhibit a deterministic cyclic transmission pattern. All
clients exchange packets at regular intervals. These intervals
are typically below 1ms which motivates the low latency
requirement.

The expected packet sizes vary approximately in the range
48 bit to 1024 bit [1]. Thus, individual packets are very short
in terms of over-the-air transmission time. In order to use the
spectrum resource efficiently, a Time-Division-Duplex (TDD)
is the duplex scheme of choice.

The individual benchmarks are facilitated as follows: First,
initialization of the kernels is performed. Second, each kernels
operation is performed on random data multiple times in
order to flush out any initialization related effects. Third, each
kernels operation is performed 10000 times in a single thread
with random data. We perform latency benchmarks without
channel influences such as fading or noise. The reliability
of GFDM highly depends on the channel model and other
physical layer functions such as modulation and channel
coding but these are beyond the scope of this analysis.

Each benchmark run is measured with Boost.Chrono [23].
The hardware used for the benchmarks is an Intel Core i7-
4790 with 16Gb RAM running Kubuntu 14.04 with Linux
kernel 3.13. The software used for the benchmarks is GCC
4.8.4, VOLK 1.30 and FFTW 3.3.3.

B. Results

Fig. 3 shows the latency over block size N =MK results
for the resource mapper and demapper where K is fixed and
M is varied in a discrete range. As the number of symbols per
block increases, so does latency. With fewer active subcarriers,
latency increases more slowly. Mapper and demapper latencies
are negligible in comparison to other kernels.

At the heart of the transmitter chain is the GFDM modulator.
As can be observed in Fig. 4, it causes most of the processing
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Fig. 4. Latency measurement for GFDM modulation with increasing block
size.

latency spent at the transmitter. In contrast to the other
processing steps, it does not exhibit a linear behavior with
regards to block size. The employed Fourier transforms vary
in size and are not a power of 2. Though, the FFTW authors
point out that the algorithms work best for powers of 2.
Furthermore, small prime factors for the FFT-size improve
latency. This may be exemplified by considering a FFT-
size of K = 64 and comparing the benchmark results for
MK = 1216 and MK = 1344. Though the block size is
increased, for MK = 1344 the latency is cut in half. This
is explained by looking at the prime factors, being 2, 3, 7 for
MK = 1344 and 2, 19 for MK = 1216.

The results for combined CP addition and frame windowing
are shown in Fig. 5. The benchmark reveals two major sources
for latencies. First, the copy operation dominates latency.
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Fig. 5. Latency measurement for CP addition and windowing with different
window roll-off sizes.
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Second, a larger transition window at the beginning and the
end of a block increases latency.

Synchronization is a two stage process. First, the presence
of a frame is detected by means of an energy detector. In Fig.
6 energy detection is performed on vectors of block size N .
Second, a fine synchronization is performed with the help of a
preamble detector within a certain frame. The search window
for preamble detection is fixed to NCP + 3K + 160 samples
with NCP = K

2 . The resulting processing times, shown in Fig.
6, outline that energy detection does not introduce significant
latency and preamble detection introduces constant latency
with respect to block size because the system must only search
for the preamble within a window.

The receiver is available in two different flavors. A simple
receiver demodulates GFDM frames by performing the inverse
operations outlined for the modulator. However, GFDM is
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not an orthogonal modulation scheme and thus introduces
self-interference. This interference is targeted in the advanced
receiver which performs IC where more iterations generally
improve the Symbol-Error-Rate (SER) performance. With
J = 2 iterations, all interference is canceled out if a noise free
transmission is considered. Fig. 7 shows the resulting latency
benchmarks. IC iterations dominate latency increase. Again,
the receiver exhibits the same behavior as the modulator with
respect to FFT-size.

We consider one example to outline the overall one-way
latency with a specific parameter set with K = 128,Kon =
80,M = 21, NCP/NCS = 64 and 20MSps sample rate,
the resulting frame duration is 140.8 µs. The corresponding
processing latency with L = 2 and J = 2 IC iterations sums
up to 187 µs. Thus, the overall worst case system latency is
expected to be below 328 µs. This result is suitable for low-
latency applications < 1ms while other parameter sets may
even deliver lower latencies for smaller frames.

V. CONCLUSION

We presented a GFDM transceiver which runs completely
in software. It is capable of providing low latency signal
processing for high data rate broadband SDR environments.
The common code-base enables simulations as well as field
tests for rapid prototyping. The performance indicates that
GPP hardware is capable enough to be used in low-latency
systems.
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