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Abstract—The Compressed Sensing (CS) framework is heavily
utilized to reduce data rate in hardware restricted scenarios
by exploiting the intrinsic sparsity of the transmitted data.
Considering multiple sensors at the same time, one variation of
the Multi Channel (MC) framework takes several measurements
at one time instant and then uses CS in the spatial domain to
compress the data. This paper provides a theoretical analysis
of the proposed system by computing the coherence and the
Restricted Isometry Constant (RIC) of the corresponding MC
sensing matrix. Additionally, we provide simulation results to
further show the applicability and advantages of this system.

Index Terms—CS, Multi Channel, Analysis, Joint sparsity,
Coherence, RIP

I. INTRODUCTION

A. Motivation

The problem of reducing the data rate in data accumulation
applications is as important as it is prominent. A common
approach is the Compressed Sensing (CS, [1]) framework
which uses a sparsity assumption to compress signals far below
the Nyquist rate. One of the applications of interest is the Mag-
netic Resonance Imaging (MRI) system that is shown to make
good use of the CS setup as typical MRI images are sparse
in the Wavelet basis [2]. By implementing CS, the data rate
reduction directly transfers to a reduced time for the patient
inside the MRI, which is still one of the key problems of state
of the art machines. Another important application are wireless
devices that can record in vivo neural signals. Due to the fact
that the required Nyquist sampling rate are hard to reach in
the given harsh hardware requirements, CS approaches can
be utilized to reduce the data rate further. Sadly, while still
achieving promising results for both mentioned applications,
the rates are far from sufficient for many purposes, so for
next generation devices we need to take into account every
possibility of reduction.

To this end, a Multi Channel (MC) model was proposed
[3], which considers several signals at once. With possibly
some joint sparsity assumptions [4], the combined recon-
struction needs less samples than reconstructing each signal
individually. For MRI, this idea has gained traction in research
(e.g. [5],[6]) due to the fact that the MRI acquisition devices
have several sensors that are highly correlated to each other.
Furthermore, Neuro applications directly profit from this idea,
as already state of the art devices use sensor arrays [7]. The
resulting measurement signals are often correlated and are

well matched to the joint sparsity approach, so they can easily
utilize the joint reconstruction idea.

Unfortunately, for optimal hardware implementability and
thus real applications, the standard MC model is insuffi-
cient. As typically the sparsity assumption is over time, we
need to consider the behavior of hardware over time. For
implementation of standard CS systems, the measurements
are stored in capacitors to be read at fixed time intervals. If
charge is lost due to natural discharge processes, the values
are inaccurate and thus lead to reconstruction errors. To
counter this, amplifiers are used, but they come with high
area and energy demands, which do not fit the hardware
constraints in the Neuro setting. Luckily, a variation of the
MC model can circumvent the problem of charge loss. In
contrast to the standard model, we consider acquiring the CS
measurements not as weighted samples over a time frame
for each sensor individually but instead over a weighted sum
over all sensors for each time slot. Thus, we coin the model
spatial Multi Channel. This way, no capacities between time
slots are needed, but a new problem arises. In contrast to the
temporal sparsity assumption that is still valid for every time
frame, spatial sparsity is not given. In fact, if there is a high
correlation between the sensors, the sparsity assumption in
sensor direction is violated with high probability. Still, we
will show that the MC system should be considered by giving
a firm mathematical basis for this system.

One of the standard analysis tools in CS is the Restricted
Isometry Property (RIP,[1]), which can be used to assess the
quality of the used sensing matrix to provide reconstruction
guarantees. The importance of the RIP is shown by the many
variants and discussions in the CS community, e.g. [8]. As the
RIP of a given sensing matrix is NP hard to compute [9] a
firm mathematical analysis of given settings is the only way to
evaluate the quality of a proposed system. Another important
property is the coherence [10] of the sensing matrix which is a
measure of the similarity of the different dictionary atoms. Due
to the fact that the coherence is directly linked to the required
CS measurements for optimal reconstruction, a low coherenec
system is of high interest for strict hardware constrains and
thus data rate limited systems. Especially when using the very
prominent Orthogonal Matching Pursuit (OMP) algorithm [7],
the coherence plays a key role in the reconstruction.



B. Main Contribution

In this paper, we analyze the spatial Multi Channel model.
For this, we establish and prove the exact value of the coher-
ence and show theoretical boundaries for the RIP constant of
the MC model. Additionally, we provide simulation results to
further justify the mathematical theory and show comparisons
to the standard CS system. In result, we show that the proposed
system is not only highly implementable with low energy and
area costs but also has comparable RIP constants and an even
better coherence than the standard CS system.

II. THE MULTI CHANNEL MODEL

A. Mathematical Preliminaries

In standard CS, a sparsely representable vector x ∈ RN is
measured with help of the measurement matrix Φ ∈ Rm×N

to get the measurements y. Additionally, the vector x can
be represented by its dictionary Ψ ∈ RN×N with the form
x = Ψc ∈ RN and the sparse vector c ∈ RN . The resulting
measurements y = Φx = ΦΨc ∈ Rm can now be used to
define the overall matrix A = ΦΨ ∈ RN×m that directly
transfers from the sparse vector c to the CS measurements.
If L data vectors xi = Ψci, i = 1, · · · , L are considered, the
whole CS system can be cast in the form

ACS =

Φ 0
. . .

0 Φ


Ψ 0

. . .
0 Ψ

 (1)

with possibly different sensing matrices Φ[i] and the overall
matrix ACS ∈ RmL×NL which easily decomposes into
smaller problems. Still, this formal setting is useful if there
are joint sparsity assumptions [4] that link the problems.

In the spatial Multi Channel scenario, the measurements
are not taken individually at each of the L sensors, but
the sensing step is done over all sensors for each individual
element of x, so now the sensing matrix has the dimensions
Φ ∈ Rm×L. It is important to note, that the dictionary
representation (and thus the sparsity assumption) is still in the
standard CS sense, so the complete problem can not be divided
into smaller parts anymore. Instead the whole system must be
reconstructed with one overall measurement matrix that we
will further analyze in this paper. Formally, the spatial MC
system can be cast in the form of

y1

...
yN

 =

Φ 0
. . .

0 Φ





x1,1
...

x1,L
...

xN,1

...
xN,L


(2)

This system can be reordered by permutating the rows of the
whole x-vector and respectively the columns of the Φ matrix
in a way that the temporal parts xi emerge again. With the

definition of Ψi ∈ RN×1 as the i-th column of Ψ, the system
takes the form

y1

...
yN

 =

Φ1 0 · · · ΦL 0
. . . · · ·

. . .
0 Φ1 · · · 0 ΦL





x1,1
...

xN,1

...
x1,L

...
xN,L


=

Φ1 0 · · · ΦL 0
. . . · · ·

. . .
0 Φ1 · · · 0 ΦL


x1

...
xL


with x1

...
xL

 =

Ψ 0
. . .

0 Ψ


c1

...
cL

 (3)

In this form, the attributes of xi (i.e. xi = Ψci) can be used
to further refine the system of equations. If we compare

ACS =

Φ 0
. . .

0 Φ


Ψ 0

. . .
0 Ψ

 (4)

AMC =

Φ1 0 · · · ΦL 0
. . . · · ·

. . .
0 Φ1 · · · 0 ΦL


Ψ 0

. . .
0 Ψ


(5)

it is easy to see that the multiplication of the Φ and the Ψ
matrices is a diagonal matrix in the CS case and a dense
matrix in the MC case. To really asses the quality of the MC
scheme, we need to further analyse and compare these two
sensing matrices. Of special interest here is the coherence µ
and the RIP constants δk of the two matrices. To better analyze
the MC sensing matrix AMC , we first evaluate the inherent
product by noticing that the block AMC,ij of size m×N can
be written as the rank 1 matrix

AMC,ij = ΦiΨ
j ∈ Rm×N (6)

with Φi being the i-th column of Φ and Ψj being the j-th
row of Ψ. Using (7), we can rewrite the MC matrix as

AMC =

Φ1Ψ
1 · · · ΦLΨ1

...
. . .

...
Φ1Ψ

N · · · ΦLΨN

 ∈ RmN×LN (7)

In contrast to that, the block structure of ACS is directly
visible as the product of two block diagonal matrices

ACS,ij =

{
ΦΨ if i = j

0 if i 6= j
∈ RmL×NL (8)



B. Coherence

In this section, we will now analyze the coherence of the
MC matrix. Formally, the coherence is defined as

µ(A) := max
i 6=j

(ATA)ij
||Ai|| ||Aj ||

. (9)

The main result of the result is shown in the following
theorem.

Theorem 1. Let Φ ∈ Rm×L,Ψ ∈ RN×N and define AMC
as in (8). Then

µ(AMC) = max(µ(Φ), µ(Ψ)) (10)

In other words, to get a low coherence MC matrix, both
sensing and dictionary matrix need to have low coherence
themselves. Remarkably, the product ΦΨ does not matter in
the Multi Channel case.

Proof. To compute the coherence, we first analyze the N×N
blocks of ATA as

(ATA)ij =
(
(ΦiΨ

1)T · · · (ΦiΨ
N )T

)ΦjΨ
1

...
ΦjΨ

N

 (11)

(a)
= ΦT

i Φj

N∑
l=1

(Ψl)TΨl (12)

(b)
= ΦT

i ΦjΨ
TΨ (13)

where (a) uses the fact that ΦT
i Φj is a constant scalar that

is independent of the sum index l and (b) is true because of
the rank 1 representation of ΨTΨ as the above sum. In other
words, the matrix ATA can be represented in the form

ATA =

ΦT
1 Φ1Ψ

TΨ · · · ΦT
1 ΦNΨTΨ

...
. . .

...
ΦT

NΦ1Ψ
TΨ · · · ΦT

NΦNΨTΨ

 (14)

Additionally, we need to compute the norms ||Ai|| with block
index k, l computed as

i = kN + l (15)

to find the corresponding block and inner column. With these
indices, the norm can be computed as

||Ai||2 =

N∑
j=1

||ΦkΨl,j ||2 (16)

= ||Φk||2
N∑
j=1

|Ψl,j |2 = ||Φk||2||Ψk||2 (17)

It follows that
||Ai|| = ||Φk|| ||Ψk|| (18)

Altogether, we can now compute the coherence

µ(A) := max
i6=j

(ATA)ij
||Ai|| ||Aj ||

(19)

with row block indices ki, li and column block indices kj , lj
computed as

i = kiN + li j = kjN + lj (20)

to be

µ(A) = max
i6=j

ΦT
kiΦkjΨ

T
liΨlj

||Φki|| ||Ψli|| ||Φkj || ||Ψlj ||
(21)

or rearranged as

µ(A) = max
i 6=j

(
ΦT

kiΦkj

||Φki|| ||Φkj ||
· ΨT

liΨlj

||Ψli|| ||Ψlj ||

)
. (22)

Finding the maximum for i 6= j leads to either ki 6= kj or
li 6= lj but not both due to Cauchy Schwartz (each fraction
is less than 1 for unequal indices). If ki = kj the formula
collapses to

µ(A)ki=kj = max
i6=j

(
ΨT

liΨlj

||Ψli|| ||Ψlj ||

)
= µ(Ψ). (23)

For li = lj with analogue reasoning the equation

µ(A)li=lj = max
i 6=j

(
ΦT

kiΦkj

||Φki|| ||Φkj ||

)
= µ(Φ) (24)

arises. Altogether, the maximum of both values is the true
coherence so

µ(AMC) = max(µ(Ψ), µ(Φ)) (25)

describes the desired result.

C. Restricted Isometry Property

In this section, we will analyze the restricted isometry
property (RIP) of the MC matrix A := AMC of equation
(8). Formally, the RIP regarding sparsity k is defined as the
smallest number δk in (0, 1), such that

(1− δk)||c||22 ≤ ||Ac||22 ≤ (1 + δk)||c||22 (26)

for all k sparse vectors c at each of the L sensors or in other
words for a total sparsity of kL. The main result of the section
is shown in the following theorem.

Theorem 2. Let Φ ∈ Rm×L,Ψ ∈ RN×N and define AMC
as in (8). Then

δk(AMC) = 1 (27)

holds for all k > mL
N , thus the reconstruction is guaranteed

to fail.

Proof. By rewriting the first inequality of the RIP we get

1− δk ≤
||Ac||22
||c||22

∀c ∈ RNL, c kL-sparse (28)

or in other words

1− δk = min
c k-sparse

||Ac||22
||c||22

. (29)

To analyze the RIP, we will first start with structured c of the
form

c = (cT1 , · · · , cTN )T (30)



with
ci = αiw (31)

with scalar αi and one vector w ∈ RL for all parts of c.
By inferring this structure, we lose the generality of the RIP
constant, so we can only compute an upper boundary

1− δk = min
c k-sparse

||Ac||22
||c||22

≤ min
ci=αiw

||Ac||22
||c||22

(32)

on the RIP constant δk. For clarification, additionally define

α := (α1, · · · , αL)
T y := (yT

1 , · · · ,yT
N )T (33)

and y = Ac. With this structured vector c, we can now
compute the vectors yj = Ajc with Aj as the j-th row of
the block matrices as

yj = Ajc
(a)
=
(
Φ1Ψ

j · · · ΦLΨj
)c1

...
cL


(b)
=

L∑
i=1

ΦiΨ
jαiw

(c)
= ΦαΨjw

where (a) uses the definition of A and c, (b) uses the structure
of c in (32) and (c) is possible, because Ψjw are independent
of the summation index. With this, we can now compute the
norm ||Ac|| as needed for the RIP property:

||Ac||= ||y|| (a)=

√√√√√ N∑
j=1

||Φα Ψjw︸ ︷︷ ︸
scalar

||2 (b)
= ||Φα|| ||Ψw|| (34)

Here, (a) is the insertion of the last result and (b) uses the
definition of the norm. Additionally, we need to compute ||c||
as

||c|| (a)=

√√√√ N∑
i=1

||ci||2
(b)
=

√√√√ N∑
i=1

||αiw||2

(c)
= ||w||

√√√√ N∑
i=1

||αi||2
(d)
= ||w|| ||α||

with the exact same steps as above to get the result

||c|| = ||w|| ||α||. (35)

With help of the equations (35) and (36) above, we can further
refine the upper bound of the RIP constant in equation (33) to

||Ac||22
||c||22

=
||Φα||22
||α||22

||Ψw||22
||w||22

. (36)

Due to Φ ∈ Rm×N and m < N , the null space of Φ always
exists. Choosing α as any vector in the null space cancels out
the equation to zero. As the formula is an upper boundary
for 1− δk and δk ∈ [0, 1], δk has to be equal to 1. Due to the
fact, that the sparsity of c is the sparsity of w (α is dense),
this reasoning holds for all k that fulfill kN > mL.
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Fig. 1. Simulated coherence of the MC and CS matrix A plotted against the
coherence of the sensing matrix Φ. For each case, the minimum, mean and
maximum values are shown.

In conclusion, again the RIP constants can be computed by
the division into a sensing and a dictionary part, while the
standard CS approach operates on the the product of both.
As in the MC case the division affects the RIP constants
in a destructive way, the overall constants will be worse in
comparison and even tend to zero for high enough sparsities
k.

III. NUMERICAL SIMULATIONS

This section provides numerical validifications for the the-
oretical results above. In Fig. 1, the coherence of the multi-
channel approach and the standard CS setting is plotted against
the coherence of the sensing matrix Φ after 106 trials. Both
matrices Φ ∈ R10×20 and Ψ ∈ R20×20 are random Gaussian
matrices (µ = 0, σ = 1). The coherence of the resulting
matrices AMC ,ACS ∈ R200×400 is plotted with solid line for
the MC case and the dashed line for the standard CS setting.
The lines show the minimum (green, triangle), mean (red, cir-
cle) and maximum (blue, square) results for the corresponding
matrices. It is directly visible that in the MC case the mean
value lies very close to the minimal value, which coincides
with µ(Φ). There are some outliers which lie above the mean,
but the number of outliers is so low that even after 106 trials,
there is still a high variance left. For higher coherences (around
µ(Φ) = 0.87), all three lines nearly match which underlines
the statement µ(AMC) = max(µ(Φ), µ(Ψ)). In contrast to
that, the standard CS case (dashed lines) has a constant mean
value, regardless of the coherence of Φ. This is due to the
fact that only the product ΦΨ defines the coherence and a
separation is impossible. Additionally, the fluctuations around
the mean are a lot higher with maximum values of nearly one
and lower values (down to 0.6) for the minimum. All in all,
the MC case shows a better performance as the mean values
for randomly chosen dictionaries can be influenced by a large
margin with the choice of a low coherent sensing matrix while
the CS case cannot be influenced.
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Fig. 2. Numerically computed RIP constants of the MC and CS case plotted
against the corresponding sparsities k. For each case, the minimum, mean and
maximum values are shown.

Fig. 2 shows the logarithmic plot of the complementary RIP
constants of randomly chosen dictionary and sensing matrices
for m = 10, N = 30 and L = 20 plotted against the sparsity
k of w for the sparsity pattern ci = αiw. In result, the
matrices have the dimension AMC ,ACS ∈ R200×600 with the
overall resulting sparsity of kL. Here, the NP hard problem
of computing the RIP constants is done by exhaustive search
over all possible sparse variations. Again, due to the random
choice of Ψ in each iteration, there are variations in the RIP
constants, so the maximum values (blue plot), the mean values
(red plot) and the minimum values (green plot) are shown
for each sparsity. It can be directly seen that in the MC case
the results are overall worse and have a smaller variation in
comparison to the standard CS setting. It is notable, that even
the maximum value of the MC case cannot achieve the mean
RIP constants of the standard setting. At a sparsity of k = 7
the RIP constants reach one due to kN > mL as shown in
section II-C, so the resulting complementary logarithmic plot
cannot be shown anymore. In contrast to that, for the standard
CS case a more gradual plot emerges with RIP values slowly
approaching and finally reaching zero at k = 11 (k > m). This
setting is chosen specifically to show the downsides of MC as
the fraction L/N is low. Luckily, in higher scale problems
with a higher number of sensors this problem diminishes.

Fig. 3 shows the percentage of recovered indices of the
OMP algorithm for the two systems in comparison. Here it
can be seen that first the MC case is superior due to the higher
coherence and still good RIP constants. For higher sparsities
this effect reverses because now the RIP constants dominate
the recovery, so the standard CS case takes the lead. All in
all, these effects are only small, so they both have comparable
recovery properties.

IV. CONCLUSION

In this paper, we have computed the coherence and RIP
constants in the Multi Channel setting. We showed, that for
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Fig. 3. Percentage of recovered indices for the OMP algorithm in the MC
and CS case plotted against the corresponding sparsities k.

good sensing matrices, the MC setting will have a better
coherence but worse Restricted Isometry Constants than using
the same sensing matrix in the standard setting. Additionally,
we provided numerical simulations to justify the theoretical
insights. We showed that the Multi Channel setting is a
valuable alternative to the standard CS scheme that is able
to reduce the needed hardware by a large margin.
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