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Abstract—This paper presents a new distributed precoder
design for joint transmission in dense small cell networks. We
exploit a numerical method called two-step Jacobi to distribute
a centralized precoding scheme among local small cells using
cooperation in between. Two variants of the novel distributed
precoding algorithm have been specified with one focusing on the
distributed update of local precoded signal vectors and another
concentrating on the update of the local precoding matrices. The
proof of convergence for the proposed algorithms is provided,
and simulation results show a satisfying performance of the
distributed precoding in a comparison with the benchmark of
centralized precoding.

I. INTRODUCTION

Ultra dense deployment of small cells (SCs) with massive
multiple-input multiple-output (MIMO) technology as well
as millimeter wave communication is becoming a promising
approach to meet the wireless data traffic demand in the
next decade [1]. However, inter-cell interference (ICI) among
the SCs is a dominant limiting factor and can degrade the
overall network performance. To handle the ICI problem, one
technique termed coordinated multipoint (CoMP) transmission
and reception for MIMO communications has drawn great
interest in recent years to enhance the performance of multi-
cell system by mitigating or eliminating the ICI [2].

For coordination in a multi-SC network, joint transmission
can be applied to transform the interference into useful in-
formation by properly designing, e.g., a linear precoder using
the zero forcing (ZF) or minimum mean square error (MMSE)
criterion [3], or a non-linear precoder like dirty paper coding
(DPC) [4]. However, these joint precoding schemes are usually
carried out in a centralized way resulting in high computational
complexity and high latency due to large channel information
feedback, which motivates the design of a coordinated pre-
coder in a distributed way. In [5], [6], [7], the authors proposed
several distributed precoding schemes to achieve maximization
of the system sum rate by minimizing the interference based
on statistical channel state information (CSI). Whereas for
the distributed precoding based on instantaneous CSI, e.g.,
MSE based distributed precoders have been presented in [8],
[9], where the precoders are jointly designed with the receive
filters. However, during the iterative processing, transmitters
require feedback from users in order to update the local
precoding matrices, which introduces a large overhead and
non-negligible latency.

In this paper, we also consider instantaneous CSI for the
distributed precoder design, but different to those approaches
in [8], [9], we aim to develop a new linear distributed
precoding (DiP) algorithm for the joint transmission without
interaction between SCs and UEs. The information is only
exchanged and processed among local SCs following the
In-Network Processing (INP) principle [10]. One numerical
approach for INP, the two-step Jacobi (TSJ) [11], is then
applied to distribute the processing of centralized MMSE
precoding among local SCs, which leads to our two DiP
algorithm variants. The novelty regarding the first variant
compared to the previous approaches is that each SC calculates
the local precoded signal only with parameter vectors instead
of precoding matrices exchanged between SCs, such that the
amount of exchanged information is reduced particularly for
rapidly varying channels. The second DiP variant focuses on
the distributed update of local precoding matrices for each SC,
which is also preferable in certain scenarios.

The paper is structured as follows: The system model is
described in Section II. In Section III, the two-step Jacobi
approach is introduced, and following is the development of
the proposed DiP algorithms with a proof of convergence.
Section IV presents the numerical evaluation of the DiP
algorithm. Finally, the paper is concluded in Section V.

II. SYSTEM DESCRIPTION

We are considering a network composed of NSC SCs with
connections to a core network or to an edge-cloud where UE
data can be downloaded and cached by each SC [12]. These
SCs are deployed to jointly serve all NUE UEs for a high
quality downlink transmission. Without loss of generality, we
assume that each UE and SC is equipped with NR receiving
and NT transmitting antennas, respectively, leading to a overall
NI ×NO MIMO system (NI = NSCNT > NO = NUENR).

For one time instance, a vector s of length NO containing
modulated data vectors for all UEs, i.e., s = [sT1 , .., sTNUE

]T ∈
ANO×1 is processed by the local precoding matrix Gj of SC
j as shown in Fig. 1. The precoded signals xj ∈ CNT×1 are
then transmitted to the UEs simultaneously. At the receiver
side, each UE u receives the superposition from all NSC
SCs with additive Gaussian noise nj ∼ N (0, σ2

nINR) and
then re-scales the received signals by a factor of β which
depends on the precoder and the power constraint. Since only
the precoding problem is focused here, no post processing is
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Fig. 1. Diagram of signal processing in central/distributed precoding

considered (denoted by a block with the identity matrix in
Fig. 1) at UEs. The UE u’s recovered signal is obtained as
s̃u = 1

β (
∑NSC
j=1 Hujxj + nj), where Huj denotes the locally

known channel between SC j and UE u. Taking the whole
system into account, the total output signal s̃ = [̃sT1 , .., s̃

T
NUE

]T

can be written as

s̃ =
1

β
(HGs + n) (1)

where the UE data vector s is precoded by a central precod-
ing matrix G = [GT

1 , ..,GT
NSC

]T. The entire channel matrix
H = [H1,H2, ...,HNSC ] is composed of local channel matrices
Hj = [HT

1j , ..,HT
uj , ..,HT

NUEj
]T of SCs j. The noise vector is

stacked as n = [nT
1 , ...,nT

NSC
]T. We aim to minimize the mean

square error between the received signals and the original
data considering a total transmit power constraint Pσ2

s , where
σ2
s is the average power of the modulation alphabet. The

corresponding objective problem reads as

min
G,β

E
{
‖s− s̃‖2

}
s.t. E

{
‖Gs‖2

}
= Pσ2

s , (2)

of which the solution is the MMSE precoding matrix G with
the scaling factor β:

G = β(HHH +
σ2
n

σ2
s

I)−1HH = βG′ (3a)

with β =

√
Pσ2

s

trace(G′G′H)
. (3b)

Correspondingly, the total transmit vector x over all NSC SCs
can be linearly precoded as

x = Gs = β(HHH +
σ2
n

σ2
s

I)−1HHs = A−1b (4)

where A = HHH +
σ2
n

σ2
s

I is a Hermitian positive definite
matrix and the vector b is defined as b = βHHs. Note that
in our system, no dedicated processing unit is deployed for
the centralized precoding, thus we aim to achieve the joint
precoding in a distributed way using the centralized precoding
as a benchmark.

III. DISTRIBUTED PRECODER DESIGN

In this section, we first introduce a numerical method named
two-step Jacobi for solving a non-diagonally dominant linear
equation system in an iterative way. Then we will show the

development of our TSJ based distributed precoding algorithm
with a convergence analysis in the following.

A. Two-step Jacobi method

For a linear system like Ax = b in (4), where the matrix
A = D+R can be decomposed into a block diagonal matrix D
and a block off-diagonal matrix R, the vector x could be solved
for, e.g., by the widely known Jacobi method with parallel
and distributed implementation if for the spectral radius of
the iteration matrix holds ρ(D−1R) < 1 [13]. However, in
our system a Rayleigh fading channel is assumed, so that the
system matrix A is normally non-diagonally dominant, i.e.,
ρ(D−1R) > 1. To handle this problem, the TSJ method is
applied, which introduces an additional relaxation parameter
γ to enhance the diagonal dominance of the matrix A. To this
end, a modified linear system Ãx = b̃ in (4) is given by

[γD + R] x = b + (γ − 1)Dx, (5)

where Ã = γD + R and b̃ = b + (γ − 1)Dx are defined.
Then, we can solve for the vector x in an iterative fashion as
xm = Ã

−1
b̃
m−1

, where the vector b̃
m−1

= b+(γ−1)Dxm−1
is also updated in iteration m−1. More specifically, the update
of vector xm can be written as

xm = (γD + R)
−1 b + (γ − 1)

(
γI + D−1R

)−1 xm−1 (6)

The convergence can always be ensured with an appropriate
γ, which will be proven in section III-C.

Moreover, to avoid the matrix inversion, we can now apply
the Jacobi method to solve for xm from the linear equation
Ãxm = b̃

m−1
, where the matrix Ã is diagonally dominant due

to the enhancement by γ. The vector xm from the outer loop
m can then be obtained in an inner loop k with a diagonal
matrix inversion:

xm,k = (γD)−1(b̃
m−1 − Rxm,k−1). (7)

Here, we define a total number K for the inner loop, once
inner iteration k = K is reached, then the vector xm of the
outer iteration is determined by xm = xm,K .

As a variant of the Jacobi method, the TSJ method is also
capable of being implemented in a distributed way, and its
convergence can be guaranteed by a proper design which the
Jacobi method cannot for the current system. Therefore, we
exploit the TSJ method to develop our DiP algorithm.

B. TSJ based distributed precoding algorithms

For the design of the distributed precoder, we propose two
variants of the DiP algorithm considering different application
circumstances. One variant of the DiP algorithm focuses on
the distributed calculation of local precoded signals with
parameter vectors exchanged between SCs if the channel
between SCs and UEs is fast time varying. Whereas, when
the channel is static for a long coherence time, another variant
is then developed for the distributed update of the local
precoding matrices using parameter matrices instead of vectors
exchanged per iteration between SCs. In the following, these
two variants of the DiP algorithm will be explained in detail.

394

European Wireless 2017

ISBN 978-3-8007-4426-8 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach



1) Variant 1. DiP on local precoded signals: As discussed
in section III-A, the TSJ approach can be applied to obtain an
nonnormalized central precoded signal x′ by solving the linear
equation (HHH + σ2

n/σ
2
sI)x′ = HHs (assuming β = 1 in (4))

according to the iterative update (6), (7) and get

x′m,k = (γD)−1(HHs + (γ − 1)Dx′m−1 − Rx′m,k−1), (8)

where the vector x′m,k = [(xm,k1 )T, (xm,k2 )T, ..., (xm,kNSC
)T]T

is composed of local precoded signals xm,kj . The block
diagonal matrix D is detailed as D = blkdiag{(HH

1 H1 +
σ2
n

σ2
s

I)−1, (HH
2 H2 +

σ2
n

σ2
s

I)−1, .., (HH
NSC

HNSC +
σ2
n

σ2
s

I)−1}, and the

matrix R is defined as R = (HHH +
σ2
n

σ2
s

I)− D.
Now, we attempt to achieve a distributed update of precoded

signals among local SCs since the linear system of (8) is
decomposable. Thus, we can split the centralized update of
the vector x′ into local updates among SCs in parallel. For
each SC j, the update of local precoded signals xm,kj within
two loops of TSJ can be summarized into one equation as

xmK+k
j =

[
γHH

j Hj +
σ2
n

σ2
s

I
]−1[

(γ − 1)HH
j Hjx

(m−1)K
j

−
NSC∑
i6=j

HH
j HixmK+k−1

i + HH
j s
]
, (9)

where K is the maximum number of inner iterations of the TSJ
approach, when inner iteration k reaches K, the outer iteration
m increases by 1. According to (9), each SC j updates its local
precoded signals xmK+k

j only requiring external parameter
vectors HixmK+k−1

i ∈ CNO×1 from other SCs i, which
results in communication overhead O1 on the SC-SC links.
When the outer iteration is terminated at m = Nit, all SCs
exchange information on the power of local precoded signals
i.e., ‖xNit

j ‖2, which can nearly be neglected when counting
the overhead. Then, each SC normalizes the transmitted signal
with a locally computed factor β to fulfill the power constraint
Pσ2

s :

xj = βxNit
j with β =

√
Pσ2

s∑NSC
j=1 ‖x

Nit
j ‖2

. (10)

So if we assume that each SC broadcasts the local vector
Hixi during the update, then we can amount the total overhead
produced per iteration within the network to O1 = NSC ·NO
complex numbers.

2) Variant 2. DiP on local precoding matrix: Different to
Variant 1, the DiP algorithm for variant 2 is focused on the
development of local precoding matrices Gj for each SC j.
Assuming the scaling factor β = 1 in (3a), we then can obtain
a linear system (HHH+

σ2
n

σ2
s

I)G′ = HH for an unknown matrix
G′. By using the TSJ approach, the matrix G′ can also be
solved for within two iterative steps given by

G′m,k = (γD)−1(HH+(γ − 1)DG′m−1− RG′m,k−1). (11)

Here the matrix D and R are still defined as the block
diagonal matrix and off-block diagonal matrix of (HHH +

σ2
n

σ2
s

I) like in variant 1. Note that the matrix G′m,k =

[(Gm,k
1 )T, (Gm,k

2 )T, ..., (Gm,k
NSC

)T]T is composed of local pre-
coding matrices Gm,k

j of SCs j and the inverse D−1 in (11)
is also decomposable. Therefore, the central update of G′m,k
can be distributed among SCs leading to the local update of
precoding matrix GmK+k

j :

GmK+k
j =

[
γHH

j Hj +
σ2
n

σ2
s

I
]−1[

(γ − 1)HH
j HjG

(m−1)K
j

−
NSC∑
i6=j

HH
j HiGmK+k−1

i + HH
j

]
. (12)

The outer iteration m increases by 1 if the inner iteration k
reaches the maximum number K. For the update of the local
precoding matrix GmK+k

j , SC j requires external information
of matrices HiGmK+k−1

i ∈ CNO×NO from other SCs i. Thus,
every SC shares its local matrix over SC-SC links leading
to an overhead of O2 = NSC ·N2

O complex numbers per
update, which is much higher compared to the variant 1.
Once the update of local precoding matrices terminates when
the maximum number Nit of outer iteration is reached, i.e.,
m = Nit, all SCs share information on the power of local
precoded signals i.e., ‖GNit

j s‖2, with each other to obtain the
power scaling factor β for normalizing the local precoding
matrices as

Gj = βGNit
j with β =

√
Pσ2

s∑NSC
j=1 ‖G

Nit
j s‖2

. (13)

Then, the local transmitted signals xj can be obtained from
UE data s by the linear expression xj = Gjs.

C. Convergence analysis of the TSJ-DiP algorithm

In general, both variants of the DiP algorithm adopt the
TSJ approach to implement the centralized precoding in a dis-
tributed fashion. Thus, the convergence of the DiP algorithm
mainly depends on the TSJ method. As discussed in section
III-A, the inner update of TSJ method is used only to calculate
the vector xm from the outer iteration, while the update of
xm will finally converge to the system optimal solution of
x∗ = A−1b, which can be rewritten as

x∗ = (γD + R)
−1 b + (γ − 1)

(
γI + D−1R

)−1 x∗. (14)

Now, we define an update residual em = xm−x∗ and subtract
(14) from (6), obtaining

em = (γ − 1)
(
γI + D−1R

)−1 em−1 = (M)me0, (15)

where the iteration matrix M = (γ − 1)
(
γI + D−1R

)−1
is

defined. According to [13], for the update residual holds
em → 0 for m→∞ if the spectral radius of iteration matrix
is smaller than 1, i.e., ρ(M) < 1. Thus, the convergence
of TSJ-DiP basically depends on the system matrix A (i.e.,
D and R) as well as the relaxation parameter γ. Moreover,
we define νn, n = 1, .., NO as eigenvalues of the iteration
matrix D−1R of the Jacobi method [13], which in our system
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fulfills the condition ρ(D−1R) = max
n=1,..,NO

{|νn|} > 1, and

min
n=1,..,NO

{νn} > −1 since the matrix D−1A = D−1R + I
is also a Hermitian matrix and has non-negative eigenvalues.
Then, the spectral radius ρ(M) can be further determined as

ρ(M) = max
n=1,..,NO

∣∣∣∣ γ − 1

γ + νn

∣∣∣∣ =
γ − 1

min
n=1,..,NO

|γ + νn|
. (16)

Proof : We define that η is an eigenvalue of matrix M and z
is an eigenvector of M, i.e., (γ − 1)

(
γI + D−1R

)−1 z = ηz,
then, we have a relation

D−1Rz =

(
(γ − 1)

η
− γ
)

z. (17)

It can be seen from the equation (17) that
(

(γ−1)
η − γ

)
equals

to an eigenvalue νn of matrix D−1R, such that we can obtain
η = γ−1

γ+νn
. To this end, the maximum eigenvalue of matrix M

can be written as ηmax = γ−1
min

n=1,..,NO
|γ+νn| = ρ(M). �

To ensure that the TSJ-DiP algorithm converges, an ap-
propriate relaxation parameter γ is required. For the inner
update of the TSJ approach (7), the spectral radius of iteration
matrix ρ

(
1
γD−1R

)
< 1 should be fulfilled, hence we have

γ > max
n=1,..,NO

|νn| > 1. For the outer update, as discussed

above, a lower bound of ρ(M) can be approximated by γ for
a minimum-maximum problem:

min
γ

max
n=1,..,NO

∣∣∣∣ γ − 1

γ + νn

∣∣∣∣ = min
γ

γ − 1

min
n=1,..,NO

|γ + νn|
. (18)

There is no optimal solution for γ, since γ−1
min

n=1,..,NO
|γ+νn|

monotonously increases with a growing γ. Nevertheless, the
conditions γ > max

n=1,..,NO

|νn| > 1 and min
n=1,..,NO

{νn} > −1

should always be fulfilled. Therefore, the spectral radius ρ(M)
satisfies

max
n=1,..,NO

|νn| − 1

min
n=1,..,NO

∣∣∣∣ max
n=1,..,NO

|νn|+ νn

∣∣∣∣ < ρ(M) < 1, (19)

which ensures that the TSJ-DiP algorithm converges. For
the distributed implementation, a proper γ can be chosen
heuristically by local SCs depending on the current system.

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed distributed
precoding algorithm is evaluated and compared with the
benchmark, i.e., centralized MMSE precoding. Besides, the
communication overhead for both DiP variants is also ana-
lyzed. For the evaluation, we consider an example of indoor
hotspot (InH) scenario [14], where NSC = 4 SCs are deployed
on the same floor with a constant distance of 30 m in between
and are connected with ideal links. NUE = 12 UEs are
uniformly dropped each in an individual distance d to the
SC. The path-loss model is defined as PL = 16.9 log10 d +

20 25 30 35 40
10−5

10−4
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10−2

10−1

Eb / N0 in dB

B
E

R

Central MMSE
TSJ-DiP @ 2 iter.
TSJ-DiP @ 4 iter.
TSJ-DiP @ 6 iter.
TSJ-DiP @ 8 iter.
TSJ-DiP @ 10 iter.

Fig. 2. BER performance for TSJ-DiP algorithm and centralized MMSE
precoding, NSC = 4, NUE = 12, NT = 4, NR = 1.

32.8 + 20 log10 fc, where the carrier frequency is fc = 3.5
GHz [14]. We set the max. no. of inner iteration to K = 1 for
the proposed algorithm, then, the total number of iterations is
denoted as Nit in the following evaluation.

A. BER performance

To investigate the performance of the proposed DiP algo-
rithms, we consider an uncoded transmission for simplicity.
Nevertheless, an extension to coded transmission is straight-
forward and promising. Here we use the bit error rate (BER)
as an evaluation metric for QPSK symbols For both DiP
variants, their BER performance is identical for the same
number of iterations due to the linear relation between each
other. In Fig. 2, the BER performance of the DiP for various
numbers of iterations is shown in comparison to the centralized
precoding. In general, the performance of DiP is improved
with increasing iterations, e.g., a gain of roughly 5 dB is
achieved by DiP with 4 iterations compared to 2 iterations
for a BER of 10−2. Moreover, it can be seen in the figure
that the difference between DiP and centralized precoding
becomes large for a higher SNR range, since the impact of
noise on the performance becomes weaker for both DiP and
centralized precoding at high SNR, while the interference
generated from DiP with an insufficient number of iterations
degrades the performance. Thus, the number of iterations has
a relatively high influence at high SNR compared to low
SNR. The convergence behavior of the DiP algorithm is more
explicitly illustrated in Fig. 3, where the BER performance of
DiP reduces with an increased number of iterations and can
approach the centralized precoding with a sufficient number of
iterations, while for a high SNR, more iterations are required
for the DiP algorithm to converge.

B. Communication overhead

For the distributed precoding as discussed in III, either
local precoded signal vectors (variant 1) or local precoding
matrices (variant 2) are exchanged between SCs during the
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Fig. 3. Convergence behavior of TSJ-DiP algorithm at different SNRs NSC =
4, NUE = 12, NT = 4, NR = 1.

iterative processing. In variant 1, for each input UE data vector
per time instance, a corresponding precoded signal vector
is re-computed. If we consider a multi-carrier system, e.g.,
OFDM in LTE, each Tx signal needs to be updated within
an OFDM symbol time duration ∆t = 71.4 µs. A total
bandwidth Btot = 1.4 MHz is considered to be spanned by
subcarriers with frequency spacing ∆f = 15 KHz each. We
also assume that each Tx symbol is quantized into NQ bits for
the transmission. To this end, the overhead rate R1 for variant
1 per SC-SC link over Nit iterations is defined:

R1 =
OV1 ·NQ ·Nit ·Btot

NSC ·∆t ·∆f
=
NO ·NQ ·Nit ·Btot

∆t ·∆f
. (20)

While for DiP variant 2, which is applicable for the case
when the radio channel does not change significantly over
time (coherence time) and frequency (coherence frequency),
the precoding matrix only needs to be updated once regardless
of the input UE data. As the UE moving speed v = 3 km/h
is defined in InH scenario, the corresponding coherence time
can be ca calculated as Tc = c

8fc · v [15], where c is the
speed of light. Moreover, the coherence bandwidth is defined
as Bc = 1

5τrms
[16], where τrms = 39 ns is the root-mean-square

(RMS) delay spread defined for InH NLOS transmission [14].
The overhead rate R2 for variant 2 is then defined:

R2 =
OV2 ·NQ ·Nit ·Btot

NSC ·Tc ·Bc
=
N2

O ·NQ ·Nit ·Btot

Tc ·Bc
. (21)

Now, if the SCs are assumed to use extreme high carrier
frequencies e.g., fc = 60, 90, 120, 150 GHz to transmit the UE
data. Then, we can observe the growth of the data rate w.r.t. the
system output dimension NUE ·NR for both variants in Fig. 4,
where the data rate of variant 1 increases linearly with the total
output dimension, while variant 2 is in a quadratic growth,
but in general both variants can be supported by several
backhaul (BH) technologies, e.g., sub 6-GHz, millimeter wave
or Ethernet [17]. When we compare both variants, variant 2
may require a higher overhead rate than variant 1 for a large
system output at high frequencies, e.g., when fc = 150 GHz,
R2 > R1 for NO > 15. As the channel coherence time

0 5 10 15 20 25
0

2.5

5

7.5

10

12.5

NUE ×NR

R
in

M
bp

s

DiP Var.1
DiP Var.2 @ 60 GHz
DiP Var.2 @ 90 GHz
DiP Var.2 @ 120 GHz
DiP Var.2 @ 150 GHz

Fig. 4. Communication overhead rate R vs. total output dimension w.r.t.
different carrier frequencies for both DiP variant 1 and variant 2, NQ = 4.

becomes small at high frequencies, SCs need to exchange
parameter matrices more frequently for variant 2, while the
overhead rate of variant 1 is not limited by the coherence time
but the fixed symbol duration, then the variant 1 algorithm is
preferred at high frequencies. Whereas for a system with small
output, e.g., NO < 14, the variant 2 can be applied, since its
overhead rate is lower compared to variant 1 particularly for
a low carrier frequency.

V. CONCLUSION

In this paper, we adopt an iterative method named two-step
Jacobi approach to develop our novel distributed precoding
algorithm for a joint transmission. Two variants of the DiP
algorithm have been proposed for the iterative update of either
transmitted signals or precoding matrices to cope with different
application scenarios. We also prove the convergence of the
proposed algorithm when the relaxation parameter is appropri-
ately set. Promising numerical results have been achieved by
the proposed DiP algorithm, but approaches to accelerate the
convergence speed or reducing the communication overhead
are still of interest for future work. In addition, from a practical
perspective, the distributed precoding with coded transmission
is also important and the performance is currently under
investigation.
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