
Distributed Nonlinear Regression Using In-Network
Processing With Multiple Gaussian Kernels

Ban-Sok Shin∗, Henning Paul∗, Masahiro Yukawa† and Armin Dekorsy∗
∗Department of Communications Engineering, University of Bremen, Germany

Email: {shin, paul, dekorsy}@ant.uni-bremen.de
†Dept. of Electronics and Electrical Engineering, Keio University, Japan

Email: yukawa@elec.keio.ac.jp

Abstract—In this paper, we propose the use of multiple
Gaussian kernels for distributed nonlinear regression or system
identification tasks by a network of nodes. By employing multiple
kernels in the estimation process we increase the degree of
freedom and thus, the ability to reconstruct nonlinear functions.
For this, we extend the so-called KDiCE algorithm, which
allows a distributed regression of nonlinear functions but uses
a single kernel only, to multiple kernels. We corroborate our
proposed scheme by numerical evaluations for the reconstruction
of nonlinear functions both static and time-varying. We achieve
performance gains for both cases, in particular for the tracking
of a time-varying nonlinear function.

Index Terms—In-network processing, distributed regression,
kernel least-squares, multiple kernels

I. INTRODUCTION

We study the task of distributed nonlinear regression/system
identification with multiple reproducing kernels by a network
of nodes. In real-world applications considering a network
of sensors or base stations this task is relevant, e.g., to
reconstruct physical environments such as the spatial distri-
bution of temperature, gas, sound intensity or the path loss in
mobile communications [1]. Due to the nonlinearity present
in the underlying physical model, a satisfying reconstruction
requires nonlinear estimation techniques. Furthermore, in most
of these applications distributed approaches employing in-
network processing (INP) techniques are desired such that the
network itself is able to monitor and act based on its learned
knowledge. In INP applications, no central unit or fusion cen-
ter is available and the reconstruction is performed within the
network. Thus, each node has to rely on information exchange
with neighboring nodes to achieve a satisfying reconstruction.
In order to combine nonlinear estimation techniques with INP,
we utilize kernel methods. These methods provide the possi-
bility to reconstruct nonlinear functions and have been applied
to various well-known estimation algorithms [2]. Adaptive
filters such as the least-mean-squares (LMS), affine projection
algorithm (APA), recursive least squares (RLS) have been
extended to nonlinear versions in [3], [4]. One difficulty is the
selection of an appropriate kernel function. If the choice of
this function does not match the underlying, unknown system,
the performance will degrade severely. To address this issue,
multiple kernels have been introduced and utilized to extend
current kernel adaptive filters by the framework developed in
[5], [6]. The usage of multiple kernels lowers the requirement

of exact a-priori knowledge about the correct kernel function
or a manual tuning of the kernel parameters. It introduces
a higher flexibility into the estimation process and improves
the reconstruction performance in particular for functions with
distinct features as, e.g., high and low frequency components.

The task of distributed nonlinear regression/system iden-
tification using kernel methods has been addressed in the
past by [7], [8] and investigated for mobile sensor networks
in [9]. However, in these approaches only a single kernel
function is considered. Our contribution in this paper is the
extension of the kernel distributed consensus-based estimation
(KDiCE) algorithm from [7] to multiple kernels to improve
flexibility and performance. By this, we obtain the multikernel
distributed consensus-based estimation (MKDiCE) algorithm.
We illustrate its performance by numerical evaluations on the
reconstruction of a static and a time-varying nonlinear function
based on a diffusion field model.

II. PRELIMINARIES

A. System Model

We consider a network of Nn nodes described by an
undirected graph G = (J , E) with a set of nodes J and a
set of edges E . The set E represents the connections among
neighboring nodes in the network over which an information
exchange is possible. We assume that the graph G is connected,
i.e., each node can be reached by any other node in the network
over single or multiple hops. Furthermore, to each node j
belongs a set of neighbors Nj containing all nodes connected
to it. We assume that the network performs measurements of
an arbitrarily nonlinear function f : X → R mapping samples
from the input space X ⊂ RNi into the output space R. Let us
denote dj as the scalar measurement of f(x) taken by node
j with its individual Ni × 1 regression vector xj ∈ X . The
measurement by node j is then given by

dj = f(xj) + nj . (1)

We denote by nj zero mean white Gaussian noise of variance
σ2
n. If we assume one regression vector xj per node j, in

total there are Nn input-output data pairs {xj , dj}Nn
j=1 available

in the network. Based on these data pairs the objective is to
perform a nonlinear regression of the unknown function f(x).

2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

978-1-5090-3009-5/17/$31.00 ©2017 IEEE 41

B. Problem Formulation
To reconstruct the unknown nonlinear function f we employ

multiple reproducing kernels by adopting the approach of
multikernel adaptive filtering proposed originally in [5]. A
kernel κm : X × X → R is a positive-definite function map-
ping input samples x ∈ X to functions κm(x, ·) in a repro-
ducing kernel Hilbert space (RKHS) Hm [2]. When multiple
kernels are employed many such RKHSs H1,H2, . . . ,HNk

are induced, correspondingly, each by its individual kernel
function. To exploit these RKHSs, we approximate f by
a linear combination of Nk kernel functions such that its
approximation f̃ lies in the sum space of these RKHSs [6]

f̃ ∈ H+ := H1 +H2 + . . .+HNk
. (2)

By this, we embed a higher flexibility into the reconstruction
process compared to using a single kernel only. This is
particularly useful if the function f comprises several distinct
elements such as high and low frequency components. A
typical kernel function is the Gaussian kernel

κm(x1,x2) = exp

(
−||x1 − x2||2

2ζ2m

)
, x1,x2 ∈ X , (3)

where ζm is the kernel bandwidth controlling the width of the
Gaussian shape. To express the approximation of f by Nk

kernels, let us define the set D = {x̄j}Nd
j=1 ⊆ {xj}

Nn
j=1 to be

the dictionary selecting a subset of the Nn available regression
vectors of all nodes in the network1. Then, we can approximate
the output of the unknown function f(x) by

f̃(x) =

Nk∑
m=1

Nd∑
j=1

w
(m)
j κm(x, x̄j), (4)

with w
(m)
j being the weighting coefficient for dictionary

entry j and kernel κm. We can express (4) in terms of an inner
product by stacking the coefficients w(m)

j and corresponding
kernel evaluations κm(x, x̄j) for one kernel κm into vectors
of dimension Nd × 1 as

w(m) =
[
w

(m)
1 , w

(m)
2 , . . . , w

(m)
Nd

]T
, (5a)

κm(x) = [κm(x, x̄1), κm(x, x̄2), . . . , κm(x, x̄Nd
)]
T
. (5b)

Vector κm(x) contains kernel evaluations between x and each
dictionary element x̄j using the kernel function κm. Hence,
we can reformulate (4) by

f̃(x) =

Nk∑
m=1

Nd∑
j=1

w
(m)
j κm(x, x̄j) =

Nk∑
m=1

(w(m))Tκm(x).

(6)
Let us further stack w(m) and κm for all Nk kernels into
vectors of dimension NkNd × 1:

w =

w(1)

w(2)

...
w(Nk)

 , κ(x) =

κ1(x)
κ2(x)

...
κNk

(x)

 . (7)

1The selection of the dictionary samples can be done e.g. by the coherence
criterion as in [5].

Finally, we can express (4) by

f̃(x) =

Nk∑
m=1

Nd∑
j=1

w
(m)
j κm(x, x̄j) =

Nk∑
m=1

(w(m))Tκm(x)

= wTκ(x). (8)

Based on this representation we formulate a least squares
(LS) problem with respect to (w.r.t.) the weight vector w
for a nonlinear regression of f(x) exploiting all data pairs
{xj , dj}Nn

j=1 in the network:

w? = arg min
w∈RNkNd

Nn∑
j=1

(dj −wTκ(xj))
2 (9)

This problem can be solved by centralized estimators as in [7],
[10] where all data pairs {xj , dj}Nn

j=1 are available at a single
node. However, here we focus on solving (9) in a distributed
way.

III. PROPOSED ALGORITHM

A. Multikernel Distributed Consensus-Based Estimation
To achieve a distributed solution of (9), we introduce

individual weight vectors wj ∈ RNkNd for each node j in
the network as an estimate of the optimal weight vector w?.
By this, each node is able to compute its own local weight
vector wj . We formulate a distributed LS problem on the set
of weight vectors {wj}j∈J :

{w?
j |j ∈ J } = arg min

{wj |j∈J}

Nn∑
j=1

(dj −wT
j κ(xj))

2 (10a)

s.t. wj = wi ∀j ∈ J , i ∈ Nj , (10b)

where we added the consensus constraint (10b) in order to
guarantee that all weight vectors in the network converge
to the same solution. However, due to a direct coupling
between weight vectors wj and wi among neighboring nodes,
a parallel processing at the nodes cannot be achieved. Thus,
in order to enable parallel computations of the weight vectors
in the network, we decouple (10b) by an intermediate variable
zj per node j and express (10b) equivalently by wj =
zi, zj = wj ,∀j ∈ J , i ∈ Nj . To solve (10a) together with
the decoupled constraints we apply the alternating direction
method of multipliers (ADMM) [11] following [7], [12] to
obtain a parallel distributed . Eventually, we achieve iterative
update equations with iteration index k analog to [7] but
extended for multiple kernels:

zk+1
j =

µ

|N ′j |
∑
i∈N ′

j

1

µ
wk
i − λkij (11a)

λk+1
ji = λkji −

1

µ

(
wk
j − zk+1

i

)
(11b)

wk+1
j =

(
κ(xj)κ(xj)

T +
|N ′j |
µ
INkNd

)−1
·djκ(xj) +

∑
i∈N ′

j

1

µ
zk+1
i + λk+1

ji

 . (11c)

2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

42

where µ is a positive step size and N ′j = Nj ∪ {j} is the set
of neighbors including the node j itself. Moreover, variable
λji represents the Lagrange multiplier stemming from the
optimization method used. It considers how well the consensus
constraint between wj and zi among neighboring nodes j
and i is fulfilled. The iterative equations (11a)-(11c) build the
proposed MKDiCE algorithm for a distributed computation
of the optimal weight vector w? in (9). The variables of the
algorithm are initialized as w0

j = λ0
ij = 0 for all nodes j ∈ J .

Note that the KDiCE [7] is a special case of the MKDiCE
algorithm if we use one kernel function only. Furthermore,
the dimension of the vectors wk+1

j , zk+1
j ,λk+1

ji is scaled by
Nk compared to the KDiCE due to the use of multiple kernels.
This might come with an increased communication overhead
in the network due to a higher dimension of the vectors to
be exchanged. However, the required number of dictionary
samples Nd can be reduced significantly by using multiple
kernels such that, eventually, the dimension of the vectors
NkNd is scaled down.

With each node j possessing its own weight vector wk
j ,

it can estimate the output of the unknown function f(x)
per iteration k for arbitrary input samples x using the
approximation (8):

f̃kj (x) = (wk
j)Tκ(x) (12)

Note that for the evaluation of the complete NkNd× 1 vector
κ(x) = [κ1(x, x̄1), . . . , κ2(x, x̄1), . . . , κNk

(x, x̄Nd
)]T each

node j requires full knowledge of the dictionary D.

B. Communication Overhead

In order to quantify the overhead of the algorithms we first
consider the total number of transmissions in the network. This
number will be the same for the MKDiCE and KDiCE since
only the dimension of the vectors to be exchanged differs.
For both algorithms, the variables wj , zj are transmitted in a
broadcast fashion by each node j in the network per iteration k
resulting in 2Nn transmissions. The Lagrange multipliers λji
have to be exchanged in a unicast fashion since they are
specifically related to node j and node i. Hence, there are
two transmissions per edge in the network resulting in 2|E|
transmissions and the total number of transmissions by all
nodes per iteration k is given by 2|E|+ 2Nn. We consider the
total number of scalar entries of the vectors to be exchanged
in the network as the communication overhead No. Then,
for each algorithm the overhead is given by the number
of transmissions scaled by the dimension of the exchanged
vectors:

KDiCE: No = (2|E|+ 2Nn) ·Nd (13a)
MKDiCE: No = (2|E|+ 2Nn) ·NdNk (13b)

The communication overhead for MKDiCE is scaled by Nk

compared to KDiCE. As mentioned above, in MKDiCE this
increase can be compensated by a smaller required dictionary
size Nd.

IV. NUMERICAL RESULTS

For the numerical evaluations, we assume a network of
Nn = 100 nodes randomly deployed on a unit-square X =
[0, 1]2 sampling the scalar function f(x). Thus, the input
sample x is the Cartesian position with x = [x1, x2]T ∈ X .
Nodes having a distance r ≤ 0.3 to each other are connected
by an edge and the noise variance for the measurement of the
nodes is σ2

n = 0.01. For the reconstruction of f , we apply the
MKDiCE and the KDiCE algorithm and choose the Gaussian
kernel (3) as kernel function. The Cartesian position xj of
each node j is used as regression vector and the function value
at the node’s position builds the corresponding measurement
dj as in (1). As error measure, we consider the MSEk at
iteration k between the true and the reconstructed function
averaged over the whole unit-square X which is uniformly
sampled by Ng spatial grid points and over all Nn nodes:

MSEk =
1

Nn

1

Ng

Nn∑
j=1

Ng∑
l=1

|f(xl)− f̃kj (xl)|2 (14)

For numerical evaluations, MSEk is averaged over 100 inde-
pendent trials with a new realization of network topology in
each trial.

A. Multiple Gaussian Impulses

We consider the superposition of two Gaussian impulses
with different widths as the unknown nonlinear function f(x)
to be reconstructed:

f(x) = exp

(
−||x− p1||

2

2 · 0.12

)
+ exp

(
−||x− p2||

2

2 · 0.32

)
,

with p1 = [0.3, 0.3]T,p2 = [0.8, 0.6]T. The widths of
the impulses are chosen such that two distinct shapes are
generated. For both algorithms, we set the step size to µ = 1.
To build the dictionary D we apply the coherence criterion
over all node positions xj in the network. Hence, a regression
vector or node position xj is added into the dictionary D if
the following condition is satisfied:

max
m=1,...,Nk

max
`=1,...,Nd

|κm(xj , x̄`)| ≤ τ, (15)

with τ > 0 being the coherence threshold which controls the
dictionary size Nd. We set τ such that all algorithms have
the same dictionary size Nd. This can be done by considering
the highest kernel bandwidth ζ among all kernel functions
since this value is significant for the coherence criterion when
employing multiple kernels. If ζa is the highest bandwidth in
a set of kernel functions and ζb is the highest bandwidth in
another set of kernel functions, the same dictionary size can
be achieved if τ ζ

2
a
a = τ

ζ2b
b [5]. By this, we guarantee a fair

comparison between the algorithms. Note, that the generation
of the dictionary D is done beforehand in each trial and stays
fixed for the specific algorithm. For the MKDiCE algorithm
we choose two and three Gaussian kernels with different
bandwidths, respectively. We assume the same dictionary for
each kernel. We compare the performance to the KDiCE with

2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

43

TABLE I
PARAMETER VALUES FOR EXPERIMENT IN IV-A

Algorithm Bandwidth Coherence
KDiCE1 ζ = 0.1 τ = 0.39
KDiCE2 ζ = 0.2 τ = 0.79
MKDiCE1 ζ1 = 0.1 τ = 0.9

ζ2 = 0.2
ζ3 = 0.3

MKDiCE2 ζ1 = 0.1 τ = 0.79
ζ2 = 0.2

bandwidths ζ = 0.1 and ζ = 0.2, respectively. The former
is chosen as an exemplary mismatch of the kernel bandwidth
whereas the latter is well matched to function f . The coherence
threshold τ is set such that the resulting average dictionary
size for all algorithms is N̄d = 27. Table I lists the chosen
parameters.

Figure 1 depicts the reconstruction mean square error
(MSE) over iteration k for both algorithms. We can observe
that MKDiCE1 and MKDiCE2 outperform both single kernel
approaches in terms of steady-state error and convergence
speed. Furthermore, two kernels are sufficient since there is no
significant performance improvement by MKDiCE1 compared
to MKDiCE2. Although ζ2 = 0.2 of MKDiCE2 does not
match the bandwidth of the second impulse in f(x), the
MKDiCE is still able to reconstruct the function successfully.

In order to analyze the impact of multiple kernels on the
overhead in the network we consider the MSE over the com-
munication overhead in the network caused by the algorithms.
This is shown in Figure 2. We find that although the dimension
of the vectors to be exchanged is scaled by Nk the MKDiCE
still outperforms the KDiCE consuming a lower overhead for
the same reconstruction performance. E.g. to achieve an MSE
of about −23 dB only half of the overhead is consumed by
MKDiCE2 compared to KDiCE2. Comparing MKDiCE1 to
MKDiCE2 the effect of an additional kernel can be observed
by a slightly increased overhead in the first iterations.

Figure 3 shows the MSE over different average dictionary
sizes N̄d where MKDiCE1 is omitted due to its similar perfor-
mance to MKDiCE2. The MSE value for a specific dictionary
size is generated by averaging over the last 200 values of the
reconstruction MSE. We observe that MKDiCE2 outperforms
both KDiCE1 and KDiCE2. In particular, for dictionary sizes
N̄d > 20 MKDiCE2 starts to outperform KDiCE2 while the
performance of KDiCE1 is significantly lower over the whole
range. For a dictionary size of approximately N̄d > 45 no
relevant improvement is visible for MKDiCE2.

B. Dynamic Diffusion Field

In the following, we investigate the tracking performance
of the MKDiCE for a time-varying function. To this end, we
consider a dynamic diffusion field generated by L = 2 in-
stantaneous and localized sources [13]. Each diffusion source
l has intensity cl, activation time tl and Cartesian position pl.

0 500 1,000 1,500 2,000 2,500 3,000

−20

−15

−10

Iteration k

R
ec

on
st

ru
ct

io
n

M
SE

in
dB

KDiCE1

KDiCE2

MKDiCE1

MKDiCE2

Fig. 1. MSE over iteration k for reconstruction of two Gaussian impulses
with an average dictionary size of N̄d = 27.

0 0.5 1 1.5 2

· 108

−20

−15

−10

Overhead No

R
ec

on
st

ru
ct

io
n

M
SE

in
dB

KDiCE1

KDiCE2

MKDiCE1

MKDiCE2

Fig. 2. MSE over communication overhead No for reconstruction of two
Gaussian impulses with an average dictionary size of N̄d = 27.

The function at time t and coordinate x is given by

f(x, t) =

L∑
l=1

cl
4πν(t− tl)

exp

(
−||x− pl||

2

4ν(t− tl)

)
·h(t− tl).

with source intensities c1 = 1, c2 = 0.7, positions
p1 = [0.3, 0.3]T,p2 = [0.8, 0.6]T and activation times
t1 = 0, t2 = 30. The function h(t − tl) is the Heaviside-
function and ν is the diffusion constant of the medium chosen
as ν = 0.01. To track the diffusion field, each node samples
the field at its position xj every ∆t = 0.1 time instant.
Based on each measured sample dj the algorithms perform
one full iteration such that sampling index and iteration index
are equivalent to each other. For both algorithms we choose the
step size as µ = 1. For the KDiCE we use one Gaussian kernel
with bandwidth ζ =

√
2ν which is matched to the diffusion

constant to give the best performance. Furthermore, we choose
the coherence threshold τ = 0.95 resulting in an average
dictionary size of N̄d = 76. For the MKDiCE we use three
Gaussian kernels with bandwidths ζ1 = 0.1, ζ2 = 0.2, ζ = 0.3
and coherence threshold τ = 0.85 resulting in an average dic-
tionary size of N̄d = 20. As reference we include a centralized

2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

44

0 20 40 60 80

−25

−20

−15

Avg. Dictionary Size N̄d

R
ec

on
st

ru
ct

io
n

M
SE

in
dB

KDiCE1

KDiCE2

MKDiCE2

Fig. 3. MSE over average dictionary size N̄d for reconstruction of two
Gaussian impulses.

tracking algorithm namely the multikernel least-mean-squares
(MKLMS) exploiting all data pairs in the network based on
the new measurement dk+1

j in each iteration:

wk+1 = wk + µ
∑
j∈J

(
dk+1
j − (wk)Tκ(xj)

)
κ(xj) (16)

We use the same bandwidths and same coherence threshold
as in MKDiCE. The step size is chosen as µ = 10−3. Note
that for all algorithms the kernel bandwidths are not adapted
over time but stay fixed.

Figure 4 depicts the MSE over iteration k. It is clearly
visible that the MKDiCE outperforms the KDiCE significantly
in terms of tracking speed and performance. By employing
multiple kernels the algorithm is able to combine these ker-
nels in a flexible way and thus, to track the expansion of
the diffusive sources with higher accuracy. Furthermore, the
MKDiCE performs close to the centralized MKLMS with a
gap of approximately 3 dB. In contrast, the KDiCE fails at
tracking the sources with satisfying performance, especially
after the activation of the second source. This is due to the
limitation by one kernel function since the bandwidth does
not suffice to model the superposition of both sources properly.
Regarding the MKDiCE we observe a higher steady-state error
after the superposition as well. However, this loss is limited as
multiple kernels can compensate for the mismatch caused by
the activation of the second source. Note that in MKDiCE
no exact a-priori knowledge of the diffusion constant ν is
required to choose appropriate kernel bandwidths in contrast
to the KDiCE. Based on Figure 4 it is obvious that in terms
of communication overhead the MKDiCE will consume less
exchanges to achieve the same performance as KDiCE.

V. CONCLUSION

We addressed the task of nonlinear distributed regression
with multiple kernels by a network of nodes. To this end,
we combined the KDiCE with multiple kernels. We tested
the resulting MKDiCE algorithm on static and time-varying
nonlinear functions and could observe performance gains ver-
sus the KDiCE especially for the tracking of a diffusion field.

0 20 40 60 80 100

−5

−10

−15

−20

−25

−30

−35

Time Instant t

R
ec

on
st

ru
ct

io
n

M
SE

in
dB

KDiCE
MKDiCE
Central MKLMS

Fig. 4. MSE over time instant t for tracking of two diffusive sources activated
at different time instances and expanding over time.

Future work involves the integration of dictionary learning and
an appropriate kernel selection into the distributed procedure.

ACKNOWLEDGMENT

The work leading to this publication was partially funded
by the German Research Foundation (DFG) under grant
Pa2507/1. M. Yukawa is thankful to JSPS Grants-in-Aid
(15K06081, 15K13986, 15H02757).

REFERENCES

[1] M. Kasparick, R. L. G. Cavalcante, S. Valentin, S. Stańczak, and
M. Yukawa, “Kernel-based adaptive online reconstruction of coverage
maps with side information,” IEEE Trans. on Vehicular Technology,
vol. 65, no. 7, pp. 5461–5473, 2016.

[2] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[3] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering. John
Wiley & Sons, 2010.

[4] W. Gao, J. Chen, C. Richard, J. Huang, and R. Flamary, “Kernel LMS
algorithm with forward-backward splitting for dictionary learning,” in
IEEE ICASSP, 2013, pp. 5735–5739.

[5] M. Yukawa, “Multikernel adaptive filtering,” IEEE Trans. on Signal
Processing, vol. 60, pp. 4672–4682, 2012.

[6] ——, “Adaptive learning in cartesian product of reproducing kernel
hilbert spaces,” IEEE Trans. on Signal Processing, vol. 63, pp. 1–18,
2015.

[7] B.-S. Shin, H. Paul, and A. Dekorsy, “Distributed kernel least squares
for nonlinear regression applied to sensor networks,” in EUSIPCO,
September 2016.

[8] W. Gao, J. Chen, C. Richard, and J. Huang, “Diffusion adaptation over
networks with kernel least-mean-square,” in IEEE CAMSAP, 2015.

[9] B.-S. Shin, H. Paul, and A. Dekorsy, “Spatial field reconstruction with
distributed kernel least squares in mobile sensor networks,” in Int. Conf.
on Systems, Communications and Coding, February 2017.

[10] F. Tobar and D. Mandic, “Multikernel least squares estimation,” Sensor
Signal Processing for Defence, 2012.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2010.

[12] H. Paul, J. Fliege, and A. Dekorsy, “In-network-processing: Distributed
consensus-based linear estimation,” IEEE Commun. Lett., vol. 17, no. 1,
pp. 59–62, 2013.

[13] Y. M. Lu, P. L. Dragotti, and M. Vetterli, “Localizing point sources in
diffusion fields from spatiotemporal samples,” in Int. Conf. on Sampling
Theory and Applications, May 2011.

2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

45

