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Abstract—The quantized representation of signals is a general
task of data processing. For lossy data compression the celebrated
Rate-Distortion theory provides the compression rate in order to
quantize a signal without exceeding a given distortion measure.
Recently, with the Information Bottleneck method an alternative
approach has been emerged in the field of machine learning
and has been successfully applied for data processing. The
fundamental idea is to include the original source into the
problem setup when quantizing an observation variable and
to use strictly information theoretic measures to design the
quantizer. This paper introduces this framework and discusses
algorithmic implementations for the quantizer design.

I. EXTENDED ABSTRACT

A fundamental task in data processing is the quantized
representation of noisy observations of an original source
signal. Fig. 1 shows the considered system model consisting
of a data source, a transmission channel and a quantizer.
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Fig. 1. General system model for the quantization of noisy observations

Without loss of generality, we assume the random variable
x with realizations x ∈ X following the probability mass
function (pmf) p (x) as a discrete memoryless source (DMS).
The observation variable y with realizations y ∈ Y is the
output of a discrete memoryless channel (DMC) characterized
by its transition probability distribution p (y|x). Furthermore,
the random variable z with realizations z ∈ Z is the output
of the quantizer block being characterized by the conditional
distribution p (z|y). Thus, the quantizer output z is a compact
representation of y with cardinality |Z| ≤ |Y|. The design
of the quantizer p (z|y) realizes a trade-off between the
compression rate, I(y; z), and the quality of the compressed
representation.

The Rate-Distortion (RD) theory provides the minimal
number of bits per symbol in order to represent the received
signal without exceeding an upper-bound on a given distortion
measure, e.g., the mean square error (MSE) between the
quantizer input signal and its representative at the output
[1]. Specifically, the Blahut-Arimoto algorithm determines the
lowest achievable compression rate for a certain maximum
tolerable distortion. The main drawbacks of this formulation
are the lack of a systematic way to choose a proper distortion

measure for any case of pertinence and the fact, that the
stochastic relation between the noisy observation and the
original data source is not considered.

In [2], Tishby et al. have introduced the Information Bot-
tleneck (IB) method for data compression. The central idea
is to compress the observation y such that the quantizer
output z preserves most of the information about the relevant
variable, i.e., the original source x. Furthermore, IB avoids the
a priori specification of a distortion measure by considering
the mutual information I(x; z) between the quantizer output
and the original data source. In this fashion, the output of the
quantizer becomes a compact representation of its input which
is highly informative about the actual source of interest.

Given the joint probability distribution of the source and
the channel output p (x, y) = p (x) p (y|x) and assuming
x↔ y↔ z to be a Markov chain, the quantizer should be
designed such that the output z is a compact representation
of the input y which is highly informative about x. Mathe-
matically, the existent trade-off between the compression rate,
I(y; z), and the relevant information, I(x; z), is established
by the introduction of a non-negative Lagrange multiplier, β,
in the design formulation. Hence, for an allowed number of
quantizer output levels, n, the corresponding design problem
follows as [2]

p?(z|y)=argmin
p(z|y)

1

β+1

(
I(y; z)−βI(x; z)

)
for |Z|≤n . (1)

The optimal quantizer mapping for (1) can be derived by
means of variational calculus. Explicitly, for a specific value
of β the mapping p (z|y) is a stationary point of the objective
function in (1), if and only if

p (z|y) =
p (z)

ψ(y, β)
e−βDKL(p(x|y)‖p(x|z)) (2)

is met for all pairs (y, z) ∈ Y × Z . The function ψ(y, β)
normalizes the mapping p (z|y) to ensure a valid distribution
for each y ∈ Y and DKL(· ‖· ) is the Kullback-Leibler (KL)
divergence. The derived optimal mapping in (2) has an implicit
form, as the cluster representative (in a conventional sense)
p (x|z) and the cluster probability p (z) appearing on the right
side of (2), depend on the quantizer mapping p (z|y) by

p (z) =
∑
y∈Y

p (y) p (z|y) (3)



and
p (x|z) =

1

p (z)

∑
y∈Y

p (x, y) p (z|y) . (4)

The iterative calculation of (2)-(4) leads to the Iterative In-
formation Bottleneck (It-IB) algorithm [2]. Several alternative
approaches to determine mapping functions in order to meet
the trade-off between compression rate and relevant informa-
tion have been discussed in the literature such as
• Agglomerative Information Bottleneck (Agg-IB) [3]
• Sequential Information Bottleneck (Seq-IB) [4]
• Deterministic Information Bottleneck (Det-IB) [5]
• KL-means Information Bottleneck (KL-means-IB) [6]
• Channel-Optimized Information Bottleneck (Ch-Opt-IB)

[7].
For the special case of binary input alphabet computationally
efficient adaptations exist as discussed in [8].

Subsequently, we compare the performance of the algo-
rithms for 4-ASK (x ∈ {±1,±3}) input signals transmitted
over AWGN channels with noise variance σ2

n = 1. Further-
more, to acquire the channel transition distribution p (y|x),
the continuous channel output is clipped at an amplitude of
3σn above the maximum input signal (i.e., 6 for 4-ASK)
and uniformly discretized to |Y| = 128 values. In particular,
we investigate the accuracy by the mutual information loss
∆I = I(x; y) − I(x; z) and the complexity-precision trade-off
by the corresponding compression rate I(y; z) for different
values of β over varying allowed number of clusters n.
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Fig. 2. Information loss ∆I for varying allowed number of bins n and 4-ASK
input alphabet with a) β = 100 and b) β = 400

Fig. 2 shows the information loss ∆I of the investigated
algorithms. One may note, as the resultant mapping of all al-
gorithms (except for the Agg-IB) depends on the initialization,
to achieve the corresponding curves, they have been run 105

times, with the best taken. Except for the KL-means-IB and
the Ch-Opt-IB (both only consider β →∞) one can observe,
that the accuracy of all algorithms is improved by increasing β
from 100 to 400. For a fair comparison with the KL-means-IB
and the Ch-Opt-IB we concentrate subsequently on Fig. 2 b)
with a relatively high value of β.

First of all, the non-smooth behavior of the Det-IB is due
to the fact that its provided mapping does not necessarily use
the entire allowed number of clusters, i.e., |Z| < n. As an

example, for n = 12 the used number of bins is smaller than
the case of n = 10, leading to a coarser result. Furthermore,
it can be seen that the It-IB and the KL-means-IB exhibit
nearly the same performance over the entire range of allowed
number of bins n. In addition, one notes that the Ch-Opt-IB
also sweeps the corresponding curve of the It-IB for n≤ 10.
The reason behind these observations is discussed in [9] where
the asymptotic algorithmic equivalence of these algorithms is
proven.
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Fig. 3. Compression rate I(y; z) for varying allowed number of bins n and
4-ASK input alphabet with a) β = 100 and b) β = 400

Fig. 3 displays the corresponding compression rates I(y; z).
It can be observed, that in general, the lower the information
loss introduced by quantization, the higher the corresponding
compression rate.
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[8] S. Hassanpour, D. Wübben, and A. Dekorsy, “Overview and Investigation
of Algorithms for the Information Bottleneck Method,” in 11th Int.
Conference on Systems, Communications and Coding (SCC), Hamburg,
Germany, Feb. 2017.
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