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Abstract—For the always increasing amount of data new tools
are needed to effectively harvest important information out of
them. One of the core fields for data mining is Dictionary
Learning, the search for a sparse representation of given data,
which is widely used in signal processing and machine learning.
In this paper we present a new algorithm in this field that is
based on random projections of the data. In particular, we show
that our proposition needs a lot less training samples and is a lot
faster to achieve the same dictionary accuracy as state of the art
algorithms, especially in the medium to high sparsity regions. As
the spark, the minimum number of linear dependent columns of a
matrix, plays an important role in the design of our contribution,
we coined our contribution SparkDict.

Index Terms—Dictionary Learning, Spark, Sparsity

I. INTRODUCTION

A. Motivation

In any signal processing experiment with a lot of data points,
the question of the intrinsic structure of the data emerges. For
example, in neuroscience there is an ongoing trend towards
wireless implants, which would give patients an overall higher
quality of life. Unfortunately, the high data rates of activating
neurons prohibit wireless transmission of the raw data without
further refining them. To counter this, state of the art trans-
mitters only detect and send spike positions and amplitudes
[1]. Even with this limited amount of data, highly functional
prostheses have been developed that can be controlled directly
by the brain implant ([2],[3]). Today, this is sufficient, but
next generation products need to increase the transmitted data
rate within the same tight hardware restrictions, so that even
delicate movements may be implemented.
This possible advance in neuroscience inspired us to take
the signal processing perspective on the problem of finding
the sparse structure of the data. In signal processing, the
two intertwined frameworks Compressed Sensing (CS)[4] and
Dictionary Learning (DL)[5] directly come to mind. In CS, a
fitting dictionary is used to reconstruct sparsely representable
vectors out of few measurements. There are several important
state of the art algorithms with OMP [6] being the most
prominent one. The sparsity requirement here is crucial as the
CS framework and algorithms highly depend on it. Normally
a reasonable dictionary for the sparse representation (e.g.
Wavelet basis for neural data) is assumed, but learning the
dictionary out of samples naturally yields better results.
This so called Dictionary Learning framework consists of
many algorithms that fulfill the sparsity requirement of CS for
given data. An important tool to solve this problem is the Prin-
cipal Component Analysis (PCA) [7] which finds basis vectors

for the data in a way that they are as mutually orthogonal as
possible. This way the most important variables of the data can
be easily extracted. Unfortunately, this representation is hard
to interpret. Due to the fact that all PCA coefficient vectors
are densly filled, all basis vectors are needed to represent any
single sample. If there are only a few sources that get captured
by the experiment, there should be other basis vectors that
lead to sparse linear combinations in a trade off with a higher
correlation between the basis vectors. Hence, such a procedure
is coined sparse Principial Component Analysis (sPCA) [5].
On the dictionary learning side, there exist multiple iterative
algorithms, most prominently K-SVD ([8],[9]) and MOD
[10], that alternate between improving the dictionary and
the corresponding coefficient matrix. These algorithms work
slowly and need a lot of samples to work properly but converge
to sufficient results. Furthermore, both need an additional
sparse reconstruction algorithm from the CS framework to
update the intermediate sparse coefficient matrix. On the
sPCA side mostly convex optimization techniques [5] with
l1-norm restricted objective functions like the LASSO [11],
ERSpuD [12] or similar penalty terms [13] are used. Here
problems arise from the many tuning parameters that need to
be optimized with regard to an unknown dictionary and the
very slow computation speed of most optimization algorithms.
The main motivation for our contribution is the search for
a fast dictionary learning algorithm that overcomes the three
main problems of state of the art algorithms: the slow iterative
update, the dependency on CS solving algorithms and the need
for tuning parameters that are hard to control.

B. Main Contribution

Our main contribution is the SparkDict algorithm that is
inspired by random sub sampling. With enough samples of
the form Y = ΨC with sparse C, the algorithm finds the
underlying dictionary Ψ by consecutively buildings rows of
Ψ−1. If the optimal dictionary consists of d atoms and C has
k nonzero elements per column, the algorithm needs much
less samples (in the order of d(d− k) samples) than state of
the art algorithms. In contrast to most existing algorithms, the
coefficient matrix C of our contribution is analytically sparse
and not only tends to zero with high iterations. In fact, due
to the non iterative fashion, the computational complexity is
very low. Furthermore, in the noiseless case there is no need
to tune parameters or other sparse approximation algorithms
when using SparkDict, which makes it very versatile and easy
to use.



II. THEORETICAL BACKGROUND

A. Introduction to dictionary learning

Formally spoken, the dictionary learning problem is the
extraction of an optimal dictionary Ψ ∈ RN×d and the
corresponding coefficient matrix C ∈ Rd×m out of m given
noisy samples Y ∈ RN×m, that are known to be representable
in a sparse way. First, To get a non-degenerate problem, the
condition

d ≤ N (1)

is required, because allowing d > N would lead to an over-
complete problem. Then, there would be a trade off between
the number of dictionary atoms d and the minimum sparsity
of the corresponding C with a guaranteed minimal sparsity
of C = I for d = m. As our goal is to find the most
compact representation for Y, we concentrate on the better
posed (under-)complete case d ≤ N .
Second, the “coupon collection phenomenon” [12] shows, that

m ≥ d log(d) (2)

has to be fulfilled to reduce the probability p that any dictio-
nary element does not occur at all to p < 1

d . If the sparsity
k increases, this becomes easier to accomplish, because more
dictionary elements are present in each sample. At the same
time, for every dictionary element there should be at least
one sample where that element did not occur to be able to
find inherit structure inside the dictionary. As this condition
gets easier for lower sparsity, for each dictionary size d
there exists a sweet spot sparsity k(d) that leads to a well
conditioned problem. A more formal discussion is presented
in the numerical simulations section IV, in which simulations
under different conditions are presented that better clarify these
borders.
To solve the dictionary learning problem, two conditions need
to be fulfilled. First, the consistency condition

||Y −ΨC||F < ε (3)

with ε as the noise variance needs to be met to ensure the
validity of the computation. Second, the coefficient matrix C
should be as sparse as possible (minimal number of nonzero
elements) to highlight the underlying structure of the signal.
Most state of the art algorithms solve the dictionary learning
task by alternating between improving Ψ and C in an iterative
fashion. This approach leads to very high computational
complexity and difficult convergence proofs. Also it requires
an additional independent algorithm to find a sparse solution
for C with intermediate non-optimal Ψ.
In this paper we present a faster alternative. Instead of learning
the columns of Ψ, an equivalent problem is to learn orthogonal
complements of each hyperspace spanned by all columns of Ψ
but exactly one missing. If enough data about the hyperspaces
is collected, Ψ can be easily computed and C emerges with
the standard solution of

min
C
||Y −ΨC||F (4)

that is sparse by design of the dictionary. As mentioned before,
the spark plays an important role as part of our contribution,
so it will be introduced in the next section more formally.

B. The spark of a matrix

The spark [14] (a neologism from sparse and rank) of a
matrix A defines a similar attribute as its rank. While the rank
is the maximum number of linear independent columns, the
spark is the minimum number of linear dependent columns.
Formally that means

spark(A) = min
x6=0
||x||0 s.t. Ax = 0. (5)

In the Compressed Sensing theory [15] the spark is an impor-
tant measure to determine reconstruction guarantees, because
the spark describes the cardinality of the sparsest vector in the
null space. If one wants to reconstruct every k-sparse x out
of y = Ax, this can only work if spark(A) > 2k. Otherwise
there exists a 2k-sparse xnull ∈ null(A) and a fitting k-sparse
vector x s.t.

y = Ax = A(x + xnull) = Ax̂ (6)

with x̂ being k-sparse, thus preventing the recovery. This
directly leads to a requirement towards the minimum number
of measurements m ≥ 2k. If there is more than one minimal
set of columns that build the spark, several columns in Ψ will
have the same l0-norm and the nonzero elements correspond
to the used columns of A. A simple reformulation can be used
to extract all spark-columns. It has been shown that computing
the spark of arbitrary given matrix is NP-hard [16]. However,
there is one interesting case where the computation can be
done in an efficient way. If A ∈ RN−1×N is a full rank
matrix, its null space is spanned by one vector v. It follows
with v = null(A) that

spark(A) =

N∑
i=1

(vi 6= 0) = ||v||0. (7)

We show through our contribution, that the dictionary learning
problem can make good use of the spark inside the com-
putation. Another crucial concept of our contribution is the
computation of orthogonal complements. The next section will
introduce the concept more formally.

C. Orthogonal complements

Let V,W be two vector spaces with V ⊂ W . Then the
orthogonal complement of V in W is formally defined as

V ⊥ := {w ∈W |w⊥v = 0 ∀ v ∈ V } (8)

In other words the orthogonal complement V ⊥ is the vector
space that is perpendicular to all vectors in V . It is easy to
see that

dim(V ⊥) = dim(W )− dim(V ) (9)

It directly follows that the orthogonal complement H⊥ of any
hyperspace H in RN has dimension 1. That is H⊥ is spanned
by the normal vector on H .



If v1, · · · ,vN are linearly independent vectors in RN one can
span N different N-1 dimensional hyper spaces by

Hi = span{vj |j ∈ {1, . . . , N}, j 6= i} (10)

With v⊥1 , · · · ,v⊥N as the corresponding normal vectors (that
is spanning the orthogonal complement) of H1, · · · , HN , the
identity (

v⊥1 , · · · ,v⊥N
)−1

=
(
v1, · · · , vN

)>
(11)

holds up to a scaling constant. The orthogonal complement in
RN of such hyperspaces V := (v1, · · · ,vN−1) of size N − 1
is given by its left null space or equivalently the right null
space of its transpose V>(

v1, · · · ,vN−1
)⊥

= null
(
v1, · · · ,vN−1

)>
(12)

The next section will now clarify in more details, how the
SparkDict dictionary learning algorithm exploits orthogonal
complements to build hyperspaces of N − 1 dictionary ele-
ments. To present the main reasoning more clearly, in we first
examine the noiseless case and then later adapt the algorithm
to cope with noise.

III. DESIGN OF SPARKDICT

Most dictionary learning approaches try to find few dic-
tionary elements that can well represent a high amount of
the data. But to get a good understanding of the data, the
represented part is as important as the missing pieces. Imagine
choosing a set of columns YI taken out of the samples Y,
corresponding to an index set I in a way that all N dictionary
elements but one are present. Then this set can be used
to compute the orthogonal complement of YI . If for every
dictionary element Ψi a set of columns YI can be found
where only this i-th element is missing, the dictionary can be
reconstructed. Consequently, the main problem of this section
is how to find a suitable set of samples out of Y.

A. The search for suitable index sets

For a given set I , it is possible to find the amount of direc-
tions spanned by YI by computing its rank. If rank(Ψ) = d
and thus rank(Y) = d as well and for one subset YI the
condition rank(YI) < d holds, it is very likely (but not
guaranteed) that one dictionary element is missing in YI .
Without any further knowledge about the samples the best
solution is to pick random subsets I of size d and test YI for
its rank. If the rank is d − 1 two possible example outcomes
can occur (∗ stands for nonzero entries):

YI = Ψ


∗ 0 ∗ 0 ∗
0 ∗ ∗ 0 0
0 ∗ 0 ∗ ∗
∗ 0 0 ∗ 0
0 0 0 0 0

 or YI = Ψ


∗ 0 0 0 0
0 ∗ ∗ 0 ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ 0
∗ 0 0 0 0


Both systems have rank d − 1, but only the left system is
subject of missing one component of Ψ (the last column in
this example). In contrast to that, the right system has a linear
dependency between the second, third and fifth column of YI

with only two present columns of the dictionary inside them,
so again a rank deficiency occurs. To differentiate between
these two systems without knowledge over C, we use the
spark of the subset. Due to Y = ΨC with no kernel in Ψ,

null(YI) = null(CI) ∀I (13)

holds and consequently

spark(YI) = spark(CI) ∀I (14)

follows. If spark(YI) < d, it follows that a linear dependency
happened, thus the subset needs to be dismissed. However, if

rank(YI) = d− 1 and spark(YI) = d, (15)

exactly one column of Ψ is missing. The orthogonal comple-
ment of YI can then be used to determine the corresponding
orthogonal complement of all columns of Ψ that were present
in the underlying source structure. Thus, one row of Ψ−1 can
be computed. To test if both conditions for the randomly drawn
set are fulfilled, the results from section II can be utilized. The
orthogonal complement can be easily computed with equation
(12) and the spark computation follows equation (7).
In other words, the left and right null space of YI need to
be computed, which can be done by the standard SVD. This
step is repeated d times for different missing columns of Ψ,
until all orthogonal complements Ψ⊥i are present. With this
information, we can compute Ψ as the inverse of Ψ⊥. The
resulting sparse coefficient matrix C is then computed by

C = Ψ⊥Y. (16)

In the real world, measurements are corrupted by noise, so
rank and null space computations are meaningless. However,
this can easily be altered by using the aforementioned SVD
and testing the lowest singular value and its corresponding
singular vector. The complete algorithm with regard to noise
is depicted in algorithm 1. Finding an appropriate threshold
tol (set to 10−3 in the algorithm) for the noise is not an easy
task and can only be chosen via a sufficiently good model
assumption.

Algorithm 1 SparkDict
Require: Y, tol

D=svd(Y), d =sum(D >tol), founditems= 0, Ψ = [ ]
while founditems< d do

Get random subset I of size d
[U,D,V] =SVD(YI)
if sum(D >tol) == d− 1 and
sum(abs(V(:, end) >tol) == d then

if U(:, end) is not in Ψ⊥ then
Ψ⊥(:, founditems) = U(:, end), founditems++

end if
end if

end while
Compute Ψ = (Ψ⊥)−1

Compute C = Ψ⊥Y
return Ψ, C



B. Numerical improvements

For high d, the SVD computation becomes computationally
prohibitive. Luckily, this problem can be avoided. We discard
the higher singular values without using them, so a direct
computation of the lowest singular values would be enough.
Due to the dominance of the highest singular values this is
not directly possible, but the following idea can be used to
avoid this problem: Let λ1, · · · , λN be the singular values
of a matrix A. It directly follows, that the singular values
of A2 := λ21I − A>A are 0, λ21 − λ22, · · · , λ21 − λ2N . As
λ1 is the biggest singular value, the highest difference now
is λ21 − λ2N . Additionally, the right singular vectors of A
and A2 are identical, because the matrix is only shifted by
a constant diagonal term. Due to this fact, the dominant
singular value of A2 corresponds to the lowest singular value
of A. In other words, only the dominant singular value of
A and A2 needs to be computed (for example via power
iteration) to identify the null space. If both values are identical,
λ21 − λ2N = λ21 ⇒ λN = 0 follows, so that the corresponding
singular vector is the right null space vector. If not, the
subset can be discarded as there is no null space present.
Repeating this process for A3 := λ21I − AA> gives rise
to the corresponding left null space vector. This procedure
leads to a vast decrease in computation time, especially in
high dimensions since the computation complexity of power
iteration is only O(d2)[17], a substantial difference to the
O(d3)[17] complexity of the standard SVD.

C. Further application: Spark computation of arbitrary ma-
trices

The spark of a matrix A is defined as the cardinality of the
sparsest element in the kernel of A (cf. (5)). In other words
if we find a sparse basis for the null space Y = null(A), we
can compute the number of nonzero elements in each basis
vector and use the best fit Ymin. If the computation of the
sparse basis was optimal, it follows that

‖Ymin‖0 = spark(A) (17)

Normally the dictionary learning algorithm described above
tries to find a sparse C, so we need to reformulate it by
transposing the problem. Due to

Y = ΨC with C sparse ⇒ Y> = C>Ψ> (18)

we can use any dictionary learning approach on Y> to get the
sparse coefficient matrix C, so that the sparse basis Y = C>

for the kernel of A emerges.
This idea can be combined with every state of the art dictio-
nary learning algorithm, but as most of them only tend to zero
and SparkDict analytically enforces zeros the computed spark
for SparkDict will be much more precise.

IV. COMPARISON TO OTHER ALGORITHMS

This section compares our contribution with three other
state of the art algorithms, namely the K-SVD [9] and MOD
[10] algorithm with their intrinsic OMP solver [6] and the
convex optimization algorithm ERSpuD [12]. Figure 1 shows
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Fig. 1: Relative mean sparsity for different dictionary sizes (x-
axis) and sparsities (y-axis) with m = 5d · log(d) after 1000
trials.

the relative mean sparsity in C that was achieved through the
computation, depicted versus the sample size. In the simulated
setting, several synthetic Gaussian (µ = 0, σ = 1) dictionaries
with varying sizes Ψ ∈ Rd×d for 10 ≤ d ≤ 50 were created
and multiplied with a coefficient matrix C ∈ Rd×5d·log(d) that
had 1 ≤ k ≤ 10 non-zero Gaussian (µ = 0, σ = 1) random
elements in each of the columns. After 1000 trials the relative
mean sparsity per column of C = Ψ\Y of all results was
taken and depicted in a 2D plot (see figure 1) against the
dictionary size d and the sparsity k. Here, blue (dark) areas
describe low sparsity regions while yellow (light) areas show
that the algorithm failed (see the attached color map). Due to
our construction of Ψ we can guarantee that in the noiseless
case the small entries in C are in the order of 10−10 in contrast
to K-SVD and MOD which only tend to zero. To achieve a
fair comparison figure we used the threshold tthresh = 10−2

as border to zero.

A. Numerical results

In comparison, the four algorithms show completely differ-
ent behaviors. K-SVD and MOD both perform best for low
sparsities as their approach of finding the dominant eigenvector
works best in that case. Up to around a sparsity k of 10
percent of the dictionary size, they nearly get a perfect result.
K-SVD shows a steep ascend around that border until it breaks
consistently for higher sparsities while outperforming MOD in
the very low sparsity region. On the other side, MOD shows
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Fig. 2: Mean sparsity in the presence of noise

an overall gradual ascend with slightly better overall results.
ERSpuD achieves the best results at the cost of computational
complexity. Again, lower sparsity regions are better suited
with a much higher breaking point at around 25 percent (off
the chart for d ≥ 40). Unfortunately, the computation time
increases dramatically for higher d as one complex optimiza-
tion problem has to be solved for every single data point. If
speed is not an issue, ERSpuD is a versatile and powerful
algorithm. Our contribution, SparkDict, shows a completely
different behavior. As mentioned in section II, a very high and
a very low sparsity lead to problems as they both make it hard
to find a subset of columns of the data with exactly one missing
column of the dictionary. Because of this, there is a sweet
spot in the middle region of the sparsity, in which SparkDict
vastly outperforms the other algorithms. Because the working
regions of K-SVD and SparkDict are nearly non overlapping,
a combination of both algorithms will lead to a powerful and
versatile algorithm with much less computation complexity
than ERSpuD. Especially, it is possible to do an a posteriori
evaluation regarding the number of nonzero elements in the
coefficient matrix and then choose the corresponding better
dictionary. Figure 2 depicts the four algorithms in the presence
of noise. With m = 120 samples and d = 10 dictionary
elements, the mean sparsity per column is plotted against
the SNR in dB. Here SparkDict shows a unique behavior.
In the low SNR region, the algorithm completely fails to
find the fitting hyperplanes and thus can not increase the
sparsity in C. At around 20 dB, the plot shows a steep descent
as the missing elements can be detected correctly. At the
same time, the speed increases, because the samples get more
reliable, so correct orthogonal complements can be detected
more easily. In contrast to that, K-SVD and MOD show a
more fluent increase of the overall performance in the low
SNR region, but then saturate at around 25 dB into the (in
comparison worse) convergence point. Their computational

complexity is far worse in comparison to SparkDict, with
MOD still outperforming K-SVD. ERSpuD achieves the best
performance by getting to the optimum even in lower SNR
regions, but again at the price of the highest computational
complexity by far.

V. CONCLUSION

We presented the new dictionary learning algorithm Spark-
Dict which uses orthogonal complements and computations
of the spark. This algorithm increases the utility of dictionary
learning as it works best in regions where state of the art
algorithms like K-SVD and MOD break and SparkDict fails
in already utilized regions. Additionally, the algorithm can run
without the need for additional third party algorithms and does
not need to be tuned towards the concrete problem.
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