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Abstract—In this paper, we consider the problem of distributed
consensus-based estimation in cooperative networks, e.g., wireless
sensor networks (WSNs). To solve this problem and achieve
an accurate consensus-based estimate solution, many iterative
distributed algorithms require the information exchange among
nodes at each iteration suffering from huge communication
overhead. In our previous work, a new strategy of virtual
clustering was discussed with the purpose of reducing communi-
cation overhead for distributed consensus-based estimation. By
classifying the data using virtual clusters, data with reduced size
will be transmitted during the distributed processing. Here, we
further propose two methods to reduce the size of transmitted
data for arbitrary network topologies. One method is based on
finding the shortest path in a network and the other relies on
linear independence of constraint qualification (LICQ). The study
shows that both methods can successfully reduce communication
overhead. Moreover, the second method outperforms the first one
and provides the optimal communication cost for the distributed
consensus-based estimation.

I. INTRODUCTION

Cooperative communication over networks and its applica-
tions have been widely discussed by the research community
in recent years, e.g., monitoring and detecting environmental
parameters or spacial fields via wireless sensor networks
(WSNs) [1]-[3], tracking of objects or exploration of an area
using multi-agent systems (MASs) [4]-[6] as well as multi-
user detection in dense small-cell (SC) mobile networks [7].
In a common scenario, a group of nodes receives messages
or senses physical parameters from sources with an objective
to recover the common source information in a cooperative
way. Thus, the local available information can be jointly used
for successful reconstruction. One possible way to realize
jointly reconstruction is performing in a centralized fashion,
where a central node in the network is deployed as a ’fusion
center’ [8] to aggregate information of the whole network
and performs centralized processing. However, the risk of a
single point of failure and complicate routing protocol for
multi-hops transmission in a large-scale system will restrict
the application of centralized scheme. An alternative scheme
for jointly reconstruction is processing in a distributed fashion,
in which nodes are homogeneous with both processing and
communication capabilities. Each node will perform the local
estimation and only exchange information with its neighbors
via inter-node links, which provides more flexible and robust

estimation over the whole network compared to the centralized
processing.

Consensus in distributed estimation is also an interesting
topic investigated in a plenty of works. Among them, the
average consensus scheme [9], [10] is extensively used. In
this work, we consider distortions on the observations due to,
e.g., fading channel, the common source messages cannot be
properly recovered at each node using averaging operation.
Thus, distributed consensus-based estimation by introducing
consensus constraints to a general objective function of the
estimation problem is preferred. This triggers the development
of some primal and dual method-based algorithms [11]-[14],
which are mainly focused on in this paper.

To obtain an accurate consensus-based estimation result,
primal and dual method-based distributed algorithms involved
in iterative processing suffer from huge communication cost,
because they require the information exchange among nodes
at each iteration to achieve the overall estimate solution. Con-
sidering efficiency and energy saving, it is necessary to reduce
the communication overhead, and three aspects can be taken
into account. Firstly, the acceleration of convergence speed of
iterative algorithm can be pursued, e.g., [15]. Secondly, cutting
down some transmitted variables can be considered, e.g.,
[14]. Thirdly, reducing the size or dimension of transmitted
elements is also a feasible aspect such as the approaches
described in [16] and [17]. Inspired by the works related to the
third aspect, the virtual clustering (VC) strategy proposed in
[18] is an effective communication cost reduction method for
the distributed consensus-based estimation. Here, we specify
the VC strategy by exploiting two methods to significantly
reduce the amount of transmitted data for arbitrary network
topologies.

The organization of this paper is summarized as follows. In
Section II, the general estimation problem will be introduced.
Then, we review the VC strategy of our previous work applied
in distributed consensus-based estimation in Section III. Next,
two methods to determine virtual data selection (VDS) matrix
for partial transmission as the major part of this work will be
discussed in Section IV. In Section V, numerical simulation
results are given to show the advantages of our novel VC
strategy based algorithm applying both methods. Finally, the
work is summarized in Section VI.



II. PROBLEM STATEMENT

We consider a network with a set of nodes J := {1, · · · , J}
connected with assumed error-free links. These nodes forming
a certain time-invariant topology can be represented by a
geometric graph G = {J , E}. Here, E describes the set of
edges. We assume the graph is connected which means each
node is able to reach any other node by multi-hops. The task of
these nodes in the network is to observe data sent by U sources
and estimate the overall source messages. In this scenario,
we model each source and node to be equipped with NT
transmit and NR receive antennas, respectively. Therefore, a
total NI = NT ·U system input from a stacked source vector
x = [xT1 , .., xTU ]T ∈ CNI is monitored by each node j ∈ J
resulting in the local observation yj ∈ CNR determined by

yj = Hjx + nj (1)

with the channel coefficient matrix Hj ∈ CNR×NI known lo-
cally and zero mean additive white Gaussian noise nj ∈ CNR .
In this work, we assume NI > NR, hence (1) is an under-
determined system. Each node can not estimate the source
message x properly only use the local information. Therefore,
jointly estimation is preferred to obtain an accurate and unique
estimate solution for all nodes based on the global knowledge
of Hj and yj . Here, the centralized Least-Square (LS) criterion
[19] is adopted to minimize the overall sum of residuals:

xcen = arg min
{x′∈CNI}

‖ycen −Hcenx
′
‖2, (2)

where ycen =
[
yT
1 , .., yTJ

]T ∈ CJNR and Hcen =
[
HT

1 , ...,HT
J

]T
∈ CJNR×NI (JNR > NI) are stacked observation vector and
stacked channel coefficient matrix, respectively. The problem
in (2) can be solved in a central node by centralized process-
ing. The solution of (2) can be obtained by, e.g., the Zero
Forcing (ZF) approach resulting in

xZF = (HH
cenHcen)

−1HH
cenycen. (3)

Obviously, the information aggregation in the central node
through the network requires routing protocols and commu-
nication effort, which is a big problem especially for a large-
scale network. Hence, we prefer to solve (2) in a distributed
way over the network and still achieve the central solution
among all the nodes eventually.

To realize the distributed estimation, the centralized LS
problem in (2) can be decomposed into several parallel local
estimation problems by imposing a set of consensus con-
straints xj = xi,∀j ∈ J ,∀i ∈ Nj which enforce an agreement
on the estimates. Thus, we reformulate (2) into an constrained
optimization problem as

min
{xj |j∈J}

1

2

J∑
j=1

‖yj −Hjxj‖2

s.t. xj = xi, ∀j ∈ J ,∀i ∈ Nj ,

(4)

where xj ∈ CNI is the local estimate on source data x at
node j. (4) can be solved in a distributed way using the

Fig. 1. A network of J nodes with J original virtual clusters. All nodes
cooperate through inter-node links to detect the common messages from U
sources located in different virtual clusters.

distributed consensus-based estimation (DiCE) algorithm [11],
where auxiliary variables zj ∈ CNI per node j are introduced
to decouple the consensus constraints, i.e., xj = zj and
xj = zi, j ∈ J , i ∈ Nj , and to facilitate parallel processing.
When we define a set N ′j = Nj∪{j}, all consensus constraints
of DiCE can be written as xj = zi, i ∈ N ′j . Utilizing the
alternating direction method of multipliers (ADMM) [20],
the DiCE algorithm provides the update equations of local
estimate xk+1

j and variable zk+1
j by minimizing the Lagrange

cost function of (4) w.r.t. xj and zj in iteration k + 1:

xk+1
j = min

xj
Lj(xj , zki ,αkji), (5)

zk+1
j = min

zj
L

′

j(zj , x
k+1
i ,αkij), (6)

with the update of Lagrange multipliers αji ∈ CNI

αk+1
ij = αkij −

1

µ
(xk+1
j − zk+1

i ), (7)

where µ is a positive step size parameter. Obviously, the
update of xk+1

j and zk+1
j need the information on zki and

xk+1
i , respectively. Hence, after the update (5) each node
j ∈ J transmits xk+1

j to its neighboring nodes i ∈ Nj
and then update zk+1

j based on (6). After that, each node
j ∈ J transmits zk+1

j to its neighboring nodes i ∈ Nj for
the calculation of estimate in the next iteration. In order to
reduce the communication overhead, we will exploit the VC
strategy in the following.

III. VIRTUAL CLUSTERING STRATEGY FOR DISTRIBUTED
CONSENSUS-BASED ESTIMATION

The VC strategy is defined to classify the estimates into
different sets. Thus, the consensus constraints in (4) can be
split into several partial constraints with smaller dimension,
which enables the reduction of unnecessary transmission.



A. Virtual clustering for partial consensus constraint

In the VC strategy, we assume that J nodes are uniformly
distributed in an area where U sources exist. We define an
original virtual cluster (OVC) around each node to cover one
or more sources close to it. Fig. 1 illustrates an example of
regular virtual clustering setting, where J hexagonal OVCs
are defined for J nodes in a fully meshed topology. We
further define that a source u ∈ {1, · · · , U} located in one
specific OVC κ ∈ {1, .., J} belongs to set Vκ, where κ
denotes cluster index. More specifically, if source u is close
to node j, it is set to be located in the corresponding OVC
j. Thus, based on the virtual clustering classification, the
estimate xj of node j can be classified into a set of sub-
vectors {xj,1, xj,2, ..., xj,J}, where each xj,κ denotes estimate
on all sources u ∈ Vκ. Note that, in this paper, the first index
of vector xj,κ denotes different nodes j and the second index
indicates different clusters κ. Correspondingly, the consensus
constraints xj = xi,∀j ∈ J ,∀i ∈ Nj in (4) can be rewritten
with respect to the sub-vector xj,κ leading to partial consensus
constraints, i.e., xj,κ = xi,κ, κ ∈ {j, i}, between node j and
its neighboring nodes i ∈ Nj . For example, if we set J = 4 in
Fig. 1, the estimate xj of node j can be equivalently expressed
by four stacked sub-vectors [xTj,1, xTj,2, xT

j,3, xTj,4]T ∈ CNI .
Thus, the overall consensus constraint can be split into partial
constraints as

x1 = x2 = x3 = x4 ⇒


x1,1 = x2,1 = x3,1 = x4,1,
x1,2 = x2,2 = x3,2 = x4,2,
x1,3 = x2,3 = x3,3 = x4,3,
x1,4 = x2,4 = x3,4 = x4,4.

(8)

As mentioned in the DiCE algorithm, the exchanged vectors
between nodes highly depend on the corresponding con-
straints. By constructing the partial consensus constraints,
the exchanged local information in every iteration does not
need to be the entire vector as before but sub-vector. In this
way, it is possible and flexible to abandon some unnecessary
information for transmission, i.e., transmit the reduced size of
data, in order to achieve communication cost reduction.

B. Virtual data selection matrix

To describe each specific data sub-vector, a VDS matrix
Cjκ is defined at each node j ∈ J to select the partial data
from node j as well as neighboring nodes i ∈ Nj related to the
source in cluster κ ∈ {j, i} as xj,κ = Cjκxj and xi,κ = Cjκxi.
Referring to the example with full mesh topology in Fig. 1,
the sub-vectors with respect to each cluster κ ∈ {1, · · · , 4}
can be obtained by VDS matrices Cj1 = [I, 0, 0, 0],Cj2 =
[0, I, 0, 0],Cj3 = [0, 0, I, 0],Cj4 = [0, 0, 0, I], j = 1, .., 4. Note
that the network topology will influence the size of the VDS
matrices. How to determine the VDS matrices for a random
topology will be discussed in Section IV.

C. Virtual clustering based DiCE algorithm

As mentioned in Section II, the DiCE algorithm is devel-
oped to solve the constrained optimization problem (4). We

apply the VC strategy to the DiCE algorithm resulting in
the VC-DiCE algorithm. First of all, we combine the VDS
matrices with the constraints of DiCE and the corresponding
optimization problem with consensus sub-constraints can be
written as

min
{xj |j∈J}

1

2

J∑
j=1

‖yj −Hjxj‖2

s.t. Cjixj = Cjizi,

Cjjxj = Cjjzi, ∀j ∈ J ,∀i ∈ N
′

j .

(9)

By applying the ADMM approach for solving the above
problem, the Lagrangian multipliers λji and νji have to
be introduced which are associated with the constraint in
(9). Note that, the dimensions of λji and νji are initialized
according to the VDS matrices Cji and Cjj , respectively. The
corresponding augmented Lagrangian cost function L( · ) over
all nodes can be obtained and decomposed into J local sub-
functions Lj(xj , · ) w.r.t. xj :

L(x, z,λ,ν) = 1

2

J∑
j=1

‖yj −Hjxj‖2

−
J∑
j=1

∑
i∈N ′

j

[
λT
ji(Cjixj − Cjizi) + νT

ji(Cjjxj − Cjjzi)
]

+

J∑
j=1

∑
i∈N ′

j

1

2µ

[
‖Cjixj − Cjizi‖2 + ‖Cjjxj − Cjjzi‖2

]
=

J∑
j=1

Lj(xj , z,λ,ν), (10)

where µ is a positive step size parameter. The local cost
function Lj(xj , · ) can be minimized w.r.t. xj at each node
j ∈ J individually. Given zk, λk and νk, we firstly calculate
the update of xk+1

j by minimizing Lj(xj , zk,λk,νk), i.e.,
∂Lj(xj , zk,λk,νk)/∂xj = 0 resulting in

xk+1
j =

[
HH
j Hj +

1

µ

∑
i∈N ′

j

(
CT
jjCjj + CT

jiCji
)]−1

[
HH
j yj +

∑
i∈N ′

j

(
CT
jiλ

k
ji + CT

jjν
k
ji

)

+
∑
i∈N ′

j

1

µ

(
CT
jiCjiz

k
i + CT

jjCjjz
k
i

)]
. (11)

After the estimate xk+1
j is updated by each node j ∈ J ,

partial vectors Cijxk+1
j and Ciixk+1

j will be transmitted from
node j to its neighboring nodes i ∈ Nj . Next, following the
derivation in [11], the overall cost function in (10) can be
rewritten into the sum of local cost function L′

j(zj , · ) w.r.t.
zj . Then, the update equation of zk+1

j is calculated by setting
∂L′

j(zj , xk+1,λk,νk)/∂zj = 0, and we obtain



Algorithm 1 VC-DiCE Algorithm

1: Initialize λ0
ji = 0, ν0

ji = 0, x0
j = z0j = 0 for all j ∈

J , i ∈ N ′j
2: for k = 0, · · · ,K, each node j do
3: update the local estimate xk+1

j according to (11), and
transmit the partial estimates Ciixk+1

j , Cijxk+1
j to its

neighboring nodes i ∈ Nj
4: update the auxiliary variable zk+1

j according to (12),
and transmit the partial variables Ciizk+1

j ,Cijzk+1
j to

neighboring nodes i ∈ Nj
5: update the multipliers λk+1

ji and νk+1
ji according to

(13) and (14), respectively, and transmit the multipliers
λk+1
ji ,νk+1

ji to its neighboring nodes i ∈ Nj
6: end for

zk+1
j =

[
1

µ

∑
i∈N ′

j

(
CT
jjCjj + CT

jiCji
)]−1

[
−
∑
i∈N ′

j

(
CT
jjλ

k
ij + CT

jiν
k
ij

)

+
∑
i∈N ′

j

1

µ

(
CT
jjCjjx

k+1
i + CT

jiCjix
k+1
i

)]
. (12)

Once the new update of zk+1
j is achieved, each node j shares

partial vectors Cijzk+1
j and Ciizk+1

j with its neighboring
nodes i ∈ Nj . Finally, with the new update of xk+1

j and zk+1
j ,

each node j can update the Lagrangian multipliers λji and
νji locally, following the update equations:

λk+1
ji = λkji −

1

µ

(
Cjixk+1

j − Cjizk+1
i

)
, (13)

νk+1
ji = νkji −

1

µ

(
Cjjxk+1

j − Cjjzk+1
i

)
. (14)

Observing the update equations (11)-(14) of the VC-DiCE
algorithm, the update of xj , zj ,λji,νji on each node j only
need the sub-vectors xi,i = Cjixi, xi,j = Cjjxi, zi,i =
Cjizi, zi,j = Cjjzi selected by the VDS matrices Cjκ,
κ ∈ {j, i} and multipliers λij ,νij with reduced dimension
received from the neighboring nodes i via inter-node links.
This is quite different from the DiCE algorithm where the
entire vectors are exchanged between neighboring nodes. Ob-
viously, by partial transmission of vectors between neighbors,
VC-DiCE can reduce the inter-node communication overhead
compared to DiCE. The transmitted sub-vectors with reduced
dimensions are determined by some VDS matrices which
do not have full column rank, i.e., rank(Cjκ) < NI, j ∈
J , κ ∈ {j, i}, i ∈ Nj . The whole procedure of the VC-DiCE
algorithm is summarized in Algorithm 1.

IV. METHODS TO DETERMINE THE VDS MATRIX

The key issue of VC strategy applied to distributed
consensus-based estimation is the determination of the VDS

matrices Cjκ, j ∈ J , κ ∈ {j, i}, i ∈ Nj . For different network
topologies, the VDS matrices are also different. In this section,
two methods to determine the VDS matrices for arbitrary
network topologies will be introduced. First of all, we define a
matrix A ∈ RJ×J as the adjacency matrix of the cooperative
network with all diagonal elements to be 0. Besides, Aij = 1
stands for node i and node j are connected directly and
Aij = 0 means unconnected otherwise. Both methods are
developed under the assumption that each node has knowledge
of A. In addition, we also assume that the link between two
nodes is bidirectional, which implies that xj,i = xi,i and
xi,i = xj,i are two different pair-wise constraints.

A. Method 1

To ensure that the algorithm using the VC strategy con-
verges to the central solution, the design of the VDS matrices
Cjκ, κ ∈ {j, i} should make the partial constraints in (9)
finally reach the condition xj,i = xi,i, ∀j, i ∈ J w.r.t. each
OVC. In the existing consensus-based algorithms such as
DiCE [11] and ALCE [14], at each node j, the consensus
constraints xj = xi, ∀j ∈ J ,∀i ∈ Nj are on the entire vector
of estimate variables. For the nodes which do not have direct
connections, the consensus represented by constraints of each
node will be realized by multi-hops. More specifically, the
intermediate nodes, as a ’bridge’ to connect two nodes in an
indirect connected link, deliver the entire vectors to neigh-
boring nodes in order to achieve the consensus. However, for
algorithm using VC strategy, partial consensus constraints are
used, which indicates that only partial estimate is transmitted
from one node to another. Which part of estimate transmitted
by the intermediate nodes in the indirect link of two node is of
vital importance to achieve the overall consensus for arbitrary
network topologies.

Method 1 is developed based on finding the shortest path
from one node to another with the least number of intermediate
nodes in between. Thus, once the information is transmitted
through the shortest path, it is unnecessary to enforce the
node to deliver this information again through the other paths
with more intermediate nodes. Here, we define the set Sjm
containing the intermediate nodes in the shortest path from
node j to another indirect connected node m. There are several
well known algorithms such as Dijkstra’s or Bellman-Ford
algorithm [21] can be applied to calculate the shortest path
from one node to another. To obtain the VDS matrices Cjκ at
node j, two Rules must be followed:
Rule 1: each node j ∈ J must transmit the estimate xj,j w.r.t.
OVC j to its neighbors.
Rule 2: each intermediate node n ∈ Sjm must transmit the
partial estimate xn,j w.r.t. OVC j to neighbors.

The reason to follow Rule 1 is the path-loss effect in practice
is taken into consideration in our work. According to the
definition of OVC, the range of OVC j will cover the sources
close to node j. On the other hand, each node j observes
the messages from all sources located in all OVCs. Hence,
each node j obtains a better observation w.r.t. the sources



Fig. 2. An network example using Method 1: there are 4 nodes with 4 original
virtual clusters (left) and 4 extended virtual clusters (right) after processing
of Method 1

in OVC j due to lower influence of path-loss, compared
to the observation on the sources in the other OVCs. The
corresponding estimate on this part of source data at node
j is xj,j . Intuitively, the spreading of the estimate xj,j in
the network will improve the performance of our VC-DiCE
algorithm.

Following Rule 2, the partial estimate xj,j is spread from
node j to all the other indirect connected nodes in the
network. Correspondingly, we assume that the OVC area of
each intermediate node n ∈ Sjm is extended resulting in an
extended virtual cluster (EVC) which covers additional sources
located in OVC j. If the OVC of one node does not change
after processing, we directly enforce the EVC of this node to
be identical to its OVC. In this way, for all nodes j ∈ J we can
obtain the VDS matrices Cjκ which select partial transmitted
data related to EVC κ ∈ {j, i}. As defined before, the set Vκ
contains the sources in OVC. Now, we further define a set V ′

κ

containing the sources in EVC.
Without of loss of generality, an example of a random

network topology is shown in Fig. 2. Following Method 1,
the extended sets regarding to sources in EVC κ = 1, .., 4 are
V ′

1 = {1, 2},V ′

2 = {1, 2, 3, 4, 5, 6, 7, 8},V ′

3 = {5, 6},V ′

4 =
{7, 8}. Obviously, only the set of OVC 2 are extended,
because in this example node 2 is an intermediate node in all
potential shortest paths. Thus, the determined VDS matrices
are C11 = C21 = [I, 0, 0, 0],C12 = C22 = C32 = C42 =
diag(I, I, I, I),C23 = C33 = C43 = [0, 0, I, 0],C24 = C34 =
C44 = [0, 0, 0, I], of which some matrices do not have full
column rank. Hence, sub-vectors with reduced dimensions will
be exchanged between neighbors resulting in the reduction of
communication overhead using Method 1. Then we summarize
the whole procedure explicitly in the processing steps of
Method 1.

However, some redundancy still remains in the communi-
cation after processing of Method 1. To further reduce com-
munication overhead, another method is exploited to calculate
the VDS matrices.

B. Method 2

Recalling the general consensus constraints in (4), based on
the overall knowledge of the adjacency, all constraints can also

Processing Steps of Method 1
1: Set V ′

κ = Vκ for all OVC κ ∈ {1, .., J}
2: for j = 1, · · · , J do
3: for m ∈ {1, · · · , J |m 6= j} do
4: find the shortest path from node j to m based on

adjacency matrix A, save the intermediate nodes in
set the Sjm

5: for all intermediate node n ∈ Sjm do
6: extend the corresponding virtual cluster to EVC:

V ′

n ← V
′

n ∪ Vj
7: end for
8: end for
9: end for

10: for all j ∈ {1, ..., J} do
11: determine the Cjκ which can select partial transmit data

related to sources in V ′

κ, κ ∈ {j, i}, i ∈ Nj
12: end for

be rewritten into a centralized form as

Bxs = 0 (15)

where vector xs = [xT1,1, .., xT1,J , ..., xT
J,1, .., xT

J,J ]
T ∈ CJNI

is a stacked segmented estimate from all J nodes w.r.t. all
OVC κ ∈ {1, .., J} and B ∈ R2|E|NI×JNI is a block matrix
containing block elements I,−I and 0. Here, |E| is the number
of edges of the network graph.

To fully remove the redundancy in constraint of (15),
Method 2 is developed based on linear independence of
constraint qualification (LICQ) [22], [23]. It holds at any
feasible point of optimization variable if the set of gradients
of the active constraints is linear independent [22]. LICQ can
make sure that the set of constraints is well-defined without
any redundancy. In our case, Method 2 should also follow the
same Rule 1 considering the influence of path-loss. Hence, the
corresponding sub-constraint pairs always exist and should be
reserved in (15). Then we reduce all the redundancy in the
rest part of (15).

To implement Method 2, we introduce another matrix P with
elements 1,−1 and 0, which has the similar form to matrix
B1. Now, each row of P indicates the gradient of a specific
sub-constraint, i.e., xj,κ = xi,κ, with specific j, i and OVC
κ. Following Rule 1, the rows related to the pair-wise sub-
constraints xj,j = xi,j , xi,j = xj,j , ∀j ∈ J , i ∈ Nj should
always be retained in P. In addition, for each specific j and
i, the corresponding two rows in P which indicate pair-wise
constraints, e.g., x1,1 = x2,1, x2,1 = x1,1, are regarded as
linear independent in this work. Then the task is to remove
the linear dependent rows in the rest part of matrix P, which
is equivalent to abandon all the redundant sub-constraints
with respect to OVCs. In fact, the consensus on estimate
expressed by the redundant sub-constraints can be achieved

1We assume that the dimension of the sub-vector xTj,κ of node j w.r.t.
OVC κ is ignored, i.e., xTj,κ is considered as an element in xs. Thus, matrix
B collapses into matrix P with elements 1,−1 and 0.



Processing Steps of Method 2
1: Based on A, rewrite a centralized form consensus con-

straint as (15)
2: Generate matrix P from B
3: Retain the corresponding rows in P related to pair-wise

constraints xj,j = xi,j , xi,j = xj,j , ∀j ∈ J , i ∈ Nj , w.r.t.
OVC

4: Remove linear dependent rows in the rest of P and get a
reduced form matrix Pre

5: From Pre, determine the corresponding Cjκ, ∀j ∈ J , i ∈
Nj , κ ∈ {j, i} by fixing Cjj

via multiple remaining sub-constraints. We name the reduced
matrix as Pre after removing redundancy in P. From Pre,
we can get all reserved and non-redundant sub-constraints
and further determine the corresponding VDS matrices Cjκ,
∀j ∈ J , i ∈ Nj , κ ∈ {j, i}. Here, we fix Cjj as the j-th row of
matrix diag(I, I, · · · , I) in order to select the partial estimate
related to sources in OVC j following Rule 1. Note that, if we
fix Cjj in another form according to Pre, the determined VDS
matrices can be different, but the total number of surviving
sub-constraints are the same and the number is related to
the rank of matrix P. Accordingly, we summarize the general
process described above in the processing steps of Method 2.

Compared to Method 1, all unnecessary sub-constraints
are abandoned, which leads to different VDS matrices Cjκ
in Method 2. Considering the same topology in Fig. 2, we
take Cjκ w.r.t. cluster 2 as an example and they are deter-
mined by Method 2 as C12 = [0, I, 0, 0; 0, 0, I, 0; 0, 0, 0, I],
C22 = [0, I, 0, 0] and C32 = C42 = [I, 0, 0, 0; 0, I, 0, 0], which
have smaller sizes compared to the full column rank matrices
Cj2 using Method 1. Thus, when all the redundancy in the
consensus constraints are removed by Method 2, the sizes of
VDS matrices and the corresponding transmitted sub-vectors
can be further reduced leading to the least communication
cost. For an time-invariant network topology, both processing
of Method 1 and 2 can be performed off-line to determine the
VDS matrices for VC-based algorithms.

V. SIMULATION RESULTS

In the following, to show the performance of proposed
virtual clustering strategy based algorithm, numerical simu-
lation results are presented in this section. We assume that the
channel between sources to nodes is i.i.d complex Gaussian
and influenced by path-loss which is inversely proportional to
the distance with loss exponent of 1. J nodes forms a network
with connectivity ratio r defined as

r =
|E|

0.5× J(J − 1)
. (16)

Different algorithms are evaluated by using the metric of the
averaged mean square error between the local estimate and the
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Fig. 3. MSE vs. number of total communication overhead, J = U = 6, NT =
1, NR = 2, the network is randomly connected, each marker represents an
increment of 50 iterations

true source message x defined by

MSE =
1

J

J∑
j=1

E{
∥∥xkj − x

∥∥2}, (17)

where the expectation is approximated by averaging over 1000
Monte Carlo experiments with random realizations of source
message vectors x, measurement noise vectors nj , channel
coefficient matrices Hj and network topologies.

Fig. 3 depicts the MSE w.r.t. communication overhead
for DiCE, VC-DiCE and the central solution (3). The com-
munication overhead, defined as transmitted vector elements
over node to node (N2N) links, increases along with the
increasing number of iterations. The result shows that all
algorithms asymptotically converge to the central solution
after a sufficient number of iterations. For the same MSE
performance level, VC-DiCE outperforms DiCE with a faster
convergence rate and a considerable overhead reduction, which
is in accord with our analysis in Section IV. Further, Method
2 can reduce more overhead than Method 1, because Method
2 enables the reduction of all unnecessary redundancy in
consensus constraints providing the optimal communication
cost for distributed consensus-based estimation.

Next, a systematic description of N2N communication
overhead per iteration under different connectivity ratios r
generated by DiCE and VC-DiCE is summarized in Fig. 4.
We show 3 cases where J = U varies, i.e., J = U = 5, 10, 15.
For every specific r in each case, the overhead per iteration
is averaged under randomly generated network topology by
Monte Carlo simulation. The results show that VC-DiCE
definitely outperforms DiCE. When r increases, the overhead
produced by DiCE will also increase. However, in contrast,
still comparatively small overhead will be produced by VC-
DiCE with a large connectivity ratio. The reason is that in
highly connected networks with large r, many possible paths
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Fig. 4. Number of N2N communication overhead per iteration vs. varying
connectivity ratio r = 0.4, 0.6, 0.8, 1.0, under 3 cases a) J = U = 5, b)
J = U = 10, c) J = U = 15 generated by the DiCE algorithm (lines), the
VC-DiCE algorithm Method 1 (dots) and the VC-DiCE algorithm Method 2
(grid), NT = 1, NR = 2.

exist from one node to another. This leads to huge unnecessary
transmission (redundancy). By applying VC-DiCE, this redun-
dant transmission can be abandoned and only small parts of
estimate are transmitted by each node to its neighbors. Along
with the increasing of r and network scale, VC-DiCE can
save more overhead compared with DiCE. Especially for the
case when r = 1.0 and J = U = 15, VC-DiCE has almost
87% reduction on overhead compared with DiCE. Moreover,
independent from r , Method 2 can always offer an optimal
number of communication cost per iteration and the number
related to the rank of matrix P, i.e., rank(P) does not change
with r under an specific number of J . In general, Method 2
outperforms Method 1.

VI. CONCLUSION

In this paper, we develop the virtual clustering strategy to
reduce inter-node communication overhead for the distributed
consensus-based estimation. Two methods are proposed to
determine the VDS matrices. We show that the VC-DiCE
algorithm using either Method 1 or Method 2 achieves a
significant reduction on communication overhead compared
to the DiCE algorithm without sacrificing the performance.
Moreover, Method 2 can further reduce the communication
overhead compared to Method 1. It should be noticed that the
virtual clustering strategy developed here is not limited to one
specific algorithm but is also applicable to other distributed
algorithms for consensus-based estimation.
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