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Abstract—Free licensed spectral bands have become rare due
to the increasing number of wireless users and their demand for
high data rates. Likewise, the static allocation of these bands
results in an under-utilization of the spectrum. Cognitive Radio
(CR) has emerged as a promising solution to the dilemma by
allowing opportunistic users to transmit in the absence of licensed
users. Spectrum sensing is therefore the key component of CR
and coexistence management in general. In order to detect as
much transmission opportunities as possible, a large bandwidth
has to be monitored which according to Shannon-Nyquist ne-
cessitates high sampling rates. For fast and accurate spectrum
estimation, we propose a novel approach called Compressed
Edge Spectrum Sensing (CESS) which exploits the sparsity of
power spectrum edges and allows for sampling down to 6% of
Nyquist without losses in the detection accuracy of occupied and
unoccupied spectrum regions.

I. INTRODUCTION

The number of devices with a need for higher data rates is
growing due to the transition from voice-only to multimedia-
type applications [1]. The concept of Cognitive Radio (CR)
[2] has evolved as a result of the ever-increasing demand for
new spectral bands and the under-utilization of those already
statically allocated. Herein, secondary users are allowed to
use vacant bands in the absence of licensed primary users.
Similar, Coexistence Management (CM) [3] for Industry 4.0
applications should enable coordination of several wireless
connected systems in crowded industrial environments. There-
fore, a crucial aspect of CR and CM is spectrum sensing to
detect these opportunities for transmission, the so-called white
spaces. In order to find as much white spaces as possible and
to enhance throughput, a wideband must be sensed with the
result of high Nyquist rates. Otherwise, a bank of tunable
narrowband bandpass filters, to search one narrowband at a
time, would become necessary, which means a considerable
implementation challenge and results in a high power con-
sumption not favored in wireless devices. Fortunately, several
measurements have shown the spectrum to be under-utilized
[1] so that it can be assumed sparse. Therefore, Compressed
Sensing (CS) is often mentioned as a way of reducing the load
[4], [5], [6]. However, two problems result. On the one hand,
CS algorithms add processing complexity and delay. Since the
time for detecting sudden interference to a primary user has to
be as low as possible, algorithms have to be chosen that can
be executed very fast. On the other hand, the Power Spectral
Density (PSD) may not always be sparse but crowded, e.g., in a
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Fig. 1. Sparse spectrum with white spaces.

busy environment, which makes application of CS difficult and
requires representation in another basis. Because many spectra
in practical applications like those of OFDM transmissions
exhibit sharp boundaries and can be approximated as piecewise
flat, the derivative has a few non-zero elements which depict
edges. Thus, it seems reasonable to use the edge spectrum
as the sparsity basis which we exploit in this paper. In the
following, the underlying theory is described and extended to
build a whole processing chain which is able of seeking and
classifying occupied and free frequency bands.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Usually, the Nyquist rate equaling the bandwidth of interest
is chosen and N samples x ∈ CN×1 of the continuous signal
x(t) are obtained in order to perform spectrum sensing. The
signal consists of the several transmissions x =

∑
i xi with

a piecewise flat PSD of height σ2
i as illustrated in Fig. 1.

The transmissions have to be detected and are additionally
supposed to be zero-mean wide-sense stationary. These as-
sumptions are valid for many signals appearing in real world
settings, e.g., OFDM transmissions [4], since well-defined
spectrum masks are employed. To introduce CS, we consider
a subsampling approach. It is represented by the subsampling
matrix V ∈ CM×N and generates compressed measurements
y ∈ CM×1. Relating the measurements to the amplitude
spectrum c through

y = Vx = VF−1c = Ac (1)

with F ∈ CN×N being the DFT matrix, we formulate the CS
reconstruction problem

ĉ = arg min
c
‖c‖0 s.t. y = Ac (2)



to find c with under-determined A assuming sparsity in c.
Here, ‖c‖0 counts the number of non-zero elements in c.

A. Power Spectrum Sensing

To reconstruct the PSD instead of the amplitude spectrum,
we make use of the autocorrelation matrix [5]:

Ry = E
[
yyH

]
= E

[
Ac(Ac)H

]
= ARcA

H . (3)

By definition [5], s = E
[
|c|2
]

holds so that we can find
the entries of s on the diagonal of Rc. Owing to the wide-
sense stationarity of all signals, Rc is a diagonal matrix. After
vectorization and exploitation of the diagonal structure, the
following relation can be obtained according to [5]:

vec (Ry) = (A∗ ⊗A) vec (Rc) = (A∗ �A) s = Φs. (4)

Here, A∗ denotes the complex conjugate of A, ⊗ the Kro-
necker product and � the column-wise Kronecker product,
also known as ”Khatri-Rao product”. The new PSD sensing
matrix Φ has the dimensions M2 × N and (4) may thus
exhibit a unique solution for M2 ≥ N . However, the minimum
number of measurements required to solve (4) uniquely is
derived in [5] and equals M > N/2 due to the specific
problem structure. In fact, this allows for subsampling without
assuming sparsity and solving the overdetermined equation
system where ry = vec (Ry) with the Least Squares (LS)
method:

ŝ = arg min
s
‖ry −Φs‖22 ⇒ ŝ = Φ†ry. (5)

† indicates the Moore-Penrose pseudoinverse and enables
solutions also for underdetermined equation systems which
can be treated as l2-approximations of the l0-norm in the
equivalent CS reconstruction problem. This problem can be
stated as

ŝ = arg min
s
‖s‖0 s.t. ry = Φs (6)

and allows for further subsampling since it can be solved
uniquely for M > ‖s‖0 as derived in [5]. In other words,
a minimum average sampling rate equaling the actual occu-
pied bandwidth becomes necessary lowering the requirements
in a practical implementation. The compression ratio reads
κ = M/N > ‖s‖0/N . This means a reduction of 50%
compared to (2) and is due to the assumptions made about
stationarity. For the previous bounds to be valid, A has to be
full spark.

B. Practical Considerations

In a practical implementation, solving (6) requires Q mea-
surements yi to approximate the expected value of the auto-
correlation by the mean where high values of Q lead to a high
noise or error reduction:

R̂y =
1

Q

Q∑
i=1

yiy
H
i . (7)

These measurements are obtained in a time window of length
∆t assuming wide-sense stationarity as illustrated in Fig. 2. It
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Fig. 2. Occupation of a spectrum in time t and frequency f . The spectrum
is assumed stationary in one time window ∆t equaling the time resolution.

shows the varying occupation of spectrum which remains con-
stant in one time window. If TS denotes the Nyquist sampling
period and N the frequency resolution, the whole sampling
time for (7) amounts to ∆t = QNTS. Therefore, a trade-off
between fast detection, resolution and noise suppression has to
be considered. Because noise is present in practical settings,
(6) has to be modified to include a bounded error ε of the
`2-norm:

ŝ = arg min
s
‖s‖0 s.t. ‖ry −Φs‖2 ≤ ε. (8)

III. COMPRESSED EDGE SPECTRUM SENSING

A. One-dimensional Edge Spectrum Sensing

Unfortunately, there is no guarantee for the spectrum to be
sparse since it can be crowded or full in worst case. One
solution to overcome this problem is to consider the edges z
of the piecewise constant spectrum due to the fact that there are
considerably fewer edges (exactly J) than occupied entries of
the PSD and entries in general (J = ‖z‖0 ≤ ‖s‖0 � N ). The
definition of a new CS problem where the power spectrum in
(4) is replaced by the edge spectrum immediately suggests
itself. Both are related to each other through a numerical
derivation

s = Γ−1z, (9)

with Γ ∈ CN×N being the difference matrix

Γ =


1 0 . . . 0

−1 1
. . . 0

0
. . . . . .

0 . . . −1 1

 . (10)

This leads to the CS problem

ẑ = arg min
z
‖z‖0 s.t. ry =

(
ΦΓ−1

)
z (11)

defining a new approach that combines the ideas of [4] and [5].
In the following, we designate this approach one-dimensional
Compressed Edge Spectrum Sensing (1D CESS). It allows
unique reconstruction of the edge spectrum for compression
ratios up to κ = M/N > J/N which is a result of the fact
that the new sensing matrix ΦΓ−1 has the same spark as the
old one. Just the mapping to the null space changes, but not



the properties of the problem itself. One problem occurring
now is that the inverse Γ−1 is a summation matrix summing
up a certain amount of entries of the respective rows of Φ.
In every j-th column of ΦΓ−1, N − j columns φi of Φ
are summed up:

∑N
i=j φi. Therefore, the coherence should

increase significantly which suggests that the CS problem (11)
is in contrast to (6) not robust against noise. This indicates that
the Restricted Isometry Property (RIP) is just fulfilled barely.

B. Two-dimensional Edge Spectrum Sensing

So far, only edges in the frequency domain have been
exploited. But the spectrum also exhibits edges in the time
domain as depicted in Fig. 2. This stems from the fact that
communication systems are only active for a limited time to
adhere to regulation or because of intermittent activity. Hence,
this additional structure can be used to create an advanced
spectrum sensing algorithm based on the Total Variation Norm
(TVN) in two dimensions. For this purpose, K equations from
(11) obtained in time windows of length ∆t with subsampling
matrices Φi are stacked together into one equation system:

rT =


ry1

ry2

...
ryK

 =


Φ1 0 . . . 0

0 Φ2
. . .

...
...

. . . . . . 0
0 . . . 0 ΦK

 ·


s1
s2
...

sK

 = ΦT · sT .

(12)
For maximum sampling efficiency, the sampling process in a
practical CS system should be designed to include randomness
[7]. Hence, the Φi are different from each other so that
additional information can be used. In order to reconstruct the
edges in the time and frequency domain, the 2D-derivative of
sT has to be minimized which leads to the following TVN
minimization problem:

ŝT = arg min
sT
‖Γ2DsT ‖1 s.t. rT = ΦT sT . (13)

The 2D-difference matrix Γ2D = [Γf ,Γt]
T consists of the

difference operation in the frequency domain Γf = IK ⊗ Γ1,
with Γ1 ∈ {−1, 0, 1}N−1×N denoting

Γ1 =


−1 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1

 (14)

and IK ∈ {0, 1}K×K the identity matrix, and the difference
operation in the time domain Γt ∈ {−1, 0, 1}(K−1)N×KN :

Γt =



−11,1 0 . . . 0
0 −12,2 . . . 0
...

...
. . .

...
1N+1,1 0 . . . −1(K−1)N,(K−1)N

0 1N+2,2 . . . 0
...

...
. . .

...
0 0 . . . 1KN,(K−1)N



T

. (15)

From here on, this algorithm will be denoted as 2D CESS. The
motivation for applying it is simple: The necessary minimum
number of measurements should intuitively decrease when
considering piecewise-constant spectra as depicted in Fig. 2
since more information is exploited. In comparison to the one-
dimensional case, the results are expected to allow for greater
compression and performance, respectively. But this should
happen at the cost of a delay T = K∆t, the time for collecting
the samples.

IV. PROCESSING CHAIN

Fig. 3 shows the whole proposed processing chain to
perform spectrum sensing. First, the signals arrive through
a mitigating channel H and are superimposed with AWGN.
After subsampling, the power spectrum s is reconstructed
according to (5), (6), (11) and (13), respectively. Now, the
question has to be asked where the bands are located and
whether they are occupied or not. Therefore, we apply a simple
feature detection. It consists of the Wavelet Edge Detector
(WED) and the Energy Detector (ED) [1], [4].

First, the WED detects the band boundaries f̂i by looking
for the local maxima in the derivative z. We notice that
direct reconstruction of edges with CESS should make this
step redundant since boundaries are expected to be where the
derivative is non-zero. However, CS reconstruction as well as
spectrum shapes are not perfect and noise makes it impossible
to find the true solution. To suppress noise induced edges, we
thus additionally apply a thresholding operation. For the sake
of simplicity, we do not apply a Gaussian kernel on the PSD
or use it even in the reconstruction step, in contrast to [4]. In
order to choose a reasonable threshold ηWED, its relation to
detection and false alarm rates has to be derived:

To begin with, we model the amplitude spectrum as a mul-
tivariate complex gaussian random vector c ∼ CN (0,Σ) with
covariance matrix Σ. Here, Σ = diag {. . . ,Σi, . . . } + σ2

n IN
is a block diagonal matrix where each band transmission is
represented by its power level Σi = σ2

i IBi
and bandwidth

Bi with
∑

iBi = N . Some bands are empty (σ2
i = 0) and

consist only of the noise level σ2
n . So the received Nyquist-

sampled signal x consists of additive correlated Gaussian
noise. According to (3) and (7), the average of the squared
absolute values of c is the approximated estimate of the power
spectrum. For Q = 1, one point is distributed according to the
chi-square distribution χ2

2 with two degrees of freedom and
variance (σ2

i + σ2
n )2. If more realizations are examined, the

variance decreases by the number of frames Q. Additionally,
this results in convergence to a normal distribution according
to the central limit theorem. After numerical derivation, the
variance Var [Z] of one point in the edge spectrum z is the
sum of two neighboring variances in the PSD. Hence, the rate

PF,WED = 2 · FN
(
−ηWED/

√
Var [Z]

)
(16)

for exceeding an absolute value ηWED can be stated, with
FN denoting the cumulative function of the standard normal
distribution. In order to generate a threshold satisfying a
false alarm rate PF,WED, we invert the equation. We choose
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Fig. 3. Proposed design of the spectral estimator.

TABLE I
DEFAULT SIMULATION PARAMETER SET.

parameter N Q κ β σ2
n PF,WED

value 100 1000 0.06 0.4 0.1 0.1%

the part of the spectrum with highest signal power σ2
i for

calculating the variance Var [Z] = 2
(
σ2
i + σ2

n

)2
/Q of the

random variable since we have to cover the worst case.
Analogously, the missed detection rate

PMD,WED = FN

(
ηWED − µ√

Var [Z]

)
− FN

(
−ηWED − µ√

Var [Z]

)
(17)

at one noise-signal edge with variance Var [Z] = σ4
n/Q +(

σ2
i + σ2

n

)2
/Q and height µ = σ2

i − σ2
n can be derived.

In the last step, the energy detector similarly compares
the average carrier amplitude between two boundaries to a
threshold depending on the noise level. In contrast to literature
[1], [8], we choose it to be the same except for the noise
level that was not considered at the WED stage and has to
be added: ηED = ηWED + σ2

n . This is reasonable since the
height of rectangular shapes corresponds to the height of the
respective edges. Because the spectrum is expected not to be
fully occupied, the noise floor can be extracted from a band
with the lowest energy which was done in the simulations. In
the end, one receives the binary vector b̂ comprised of the
information regarding occupation in every single band.

V. SIMULATION RESULTS

A. Test Setup

To evaluate CESS, we assumed allocation of the 2.45GHz-
ISM-band in accordance with the 802.11g/n-standard. In addi-
tion, we added a fifth band at 90 MHz to those at 10, 30, 50 and
70 MHz to enable full occupation of a spectrum with 100 MHz
bandwidth. Signals were modeled as lowpass-filtered AWGN
as before, with a bandwidth of 20 MHz and carrier power
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Fig. 4. Detection and false alarm rates of 1D CESS in comparison to LS and
CS reconstruction for various compression κ.

σ2
i ∈ {4, 6, 8, 10, 12}. We fixed occupation β = ‖s‖0 /N , and

thus the number of signals, to maintain the same condition
and modulated them to a randomly selected carrier. For inves-
tigation of 2D CESS, also time behavior had to be modeled.
Hence, a Markov model with the states empty and occupied
was defined for every single band with the same mean and
starting occupation β. Here, the probability for changing the
state after one time slot ∆t from empty to occupied was set
to 1/30 and 1/20 vice versa. For CS reconstruction, we used
the OMP (Orthogonal Matching Pursuit) algorithm, and for
TVN minimization, the convex optimization toolbox CVX
[9] with the solver SDPT3. In both cases, we chose the
stopping criterion to be the true residual ε = ‖Ry − R̂y‖F
calculated with the ideal spectrum shape in order to show the
best theoretical performance. In practice, other criteria have
to be used. Table I shows the default simulation parameters
reflecting practical settings. An appropriate threshold ηWED to
realize a sufficient dynamic range for the test signals can be
obtained by dynamically estimating V̂ar [Z] = 2 ·max(ŝ)2/Q
and choosing PF,WED = 0.1%. To fulfill null space criterion
and RIP with high probability, the subsampling matrix V was
set to a Gaussian random matrix with normalized columns.
Finally, the number of Monte Carlo trials was chosen as 1000.

B. 1D CESS

In Fig. 4 the detection rates PD and the false alarm rates
PF for different methods are illustrated as a function of the
compression κ. Above κ = 15%, LS, CS and 1D CESS all
show perfect reconstruction. Below 15%, LS has a higher de-
tection rate than CS, but vastly more false alarms. In contrast,
1D CESS begins to deteriorate significantly at a very low
compression ratio of 6%. In the chosen test setup the number
of non-zero elements is reduced from 40 spectral points to
J = 5 edges. Thus, the reconstruction quality is adequate even
at the minimal compression ratio κ = 6/100 > J/N = 5/100
which offers unique reconstruction. Furthermore, this leads to
reduced complexity in terms of OMP iterations. Altogether, it
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Fig. 5. Detection and false alarm rates of 2D and 1D CESS for K = 20
time instances versus compression κ.

TABLE II
NMSE OF 2D AND 1D CESS FOR K = 20 TIME INSTANCES AND κ.

κ [%] 3 6 10 20

2D CESS [dB] −13.56 −20.73 −25.19 −30.26

1D CESS [dB] −5.27 −12.57 −18.49 −27.44

can be clearly seen that 1D CESS outperforms the other two
approaches in the test setup.

C. 2D CESS

The performance of the spectral estimator in terms of
detection and false alarm rates when using 2D CESS and
K = 20 can be deduced from Fig. 5. In comparison to
1D CESS, slightly higher detection rates are achieved for
relevant compression up to 3% whereas false alarms can be
significantly reduced at least by half, e.g., from 7.5% to 1%
at κ = 6%. Another measure for comparing the performance
regarding reconstruction accuracy is the normalized Mean
Square Error (nMSE) which is related to the ideal spectrum
and given for some values of κ in table II. It can be clearly
seen that 2D CESS achieves an at least 3 dB smaller nMSE
for relevant compression than 1D CESS. In summary, it can
be stated that in accordance with the first guess 2D CESS
offers performance benefits because it utilizes the additional
structural information in the time domain. However, 2D CESS
introduces a delay due to the longer time window T = K∆t.
For a delay oriented comparison, we fixed the threshold to
ηWED = 1.5 and depicted Q in Fig. 6. We can see that at lower
Q mainly false alarm performance is better for 2D CESS. As
a result, Q can be reduced, e.g., by a factor of K = 20 from
2000 to 100 for constant PF ≈ 5%, in comparison to 1D CESS.
Hence, both 2D and 1D CESS can have the same sampling
time at a comparable false alarm rate. But this does not hold
for detection rates: A reduction by K ≈ 6.7 from 2000 to 300
is possible here. In conclusion, 2D CESS introduces a delay
and additionally has a higher computational complexity.
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Fig. 6. Detection and false alarm rates of 2D and 1D CESS for K = 20
time instances as a function of frames Q. Fixed ηWED = 1.5 and κ = 6%.

VI. CONCLUSION

The main results of called work can be summarized as
follows: 1D CESS can provide a lower compression ratio than
the CS and LS approach due to exploitation of the inherent
signal structure. Good performance can be achieved until the
actual edge spectrum occupation of 5% is reached. 2D CESS
allows for an even better performance if time-domain edges
are exploited. Therefore, we assume CESS to be a proper
candidate for future CR and CM applications.
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