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Department of Communications Engineering
University of Bremen, 28359 Bremen, Germany

Email: {hassanpour, wuebben, dekorsy}@ant.uni-bremen.de

Abstract—In the context of noisy source coding, contrary
to the conventional Rate-Distortion theory, the so-called Infor-
mation Bottleneck method formulates the existent fundamen-
tal complexity-precision trade-off in a symmetric and purely
information-theoretic fashion. Since the pertinent optimization
task to design the quantizer is quite demanding, a number of
heuristics have been developed to provide practically feasible
procedures at the expense of yielding suboptimal solutions. In this
paper, we consider two pertinent routines originally appeared in
totally different applications and set out to precisely prove their
algorithmic equivalence by conducting a thorough analysis over
the corresponding algorithmic steps. We further corroborate our
theoretical investigation employing computer-based simulations.

I. INTRODUCTION

The problem of lossy data compression/source coding is
dealt with by the celebrated Rate-Distortion (RD) theory under
the presumption of direct access to the source [1]. There, to
characterize the precision of the outcome a distortion measure
function has to be defined a priori (before the quantizer design)
which quantifies the amount of distortion among the original
signal and its representative after compression. Alas, the RD
theory has no answer regarding the basic question of how
to systematically achieve the proper distortion function in
any case of relevance. Therefore, in many practical situations,
irrespective of the structure of the signals and solely for the
sake of simplicity, the square Euclidean distance (between the
quantizer’s input/output values) is chosen.

In cases for which only a noisy version of the source
is available for compression, one can either resort to the
conventional established methods by treating this observed
variable as a virtual source [2] or, instead, think of having a
new framework which directly incorporates the actual source
of interest into the design setup. Moving in the direction of
the latter with the aim of bypassing the present faults in the
conventional theory, the Information Bottleneck (IB) paradigm
[3] can be exploited successfully.

The IB framework primarily emerged in the context of
machine learning as a novel method performing dimension-
ality reduction through clustering [4]. This approach can be
exploited in a variety of applications concerning data transmis-
sion systems, among others, designing analog-to-digital con-
verters (ADCs) [5], construction of polar codes [6] and imple-
mentation of modern discrete decoding schemes [7], [8] with

reduced complexity and still quite promising performance.
In this study, we focus on the noisy source coding scenario.

There, contrary to the RD theory, through the IB formula-
tion the precision of the outcome is quantified by the so-
called relevant information, i.e., the mutual information (MI)
between the actual source and the quantized representation.
Hence, a novel symmetric (in the sense of employing two
MI terms to mathematically found the underlying trade-off)
design setup [3] results that obviates the requirement of an a
priori distortion measure specification. Moreover, unlike other
approaches, performing the IB-based quantization wherein
merely entropy calculations are involved, is purely statistics-
based and completely independent of specific realizations of
the variable to be compressed.

The focal challenge in the IB-based quantizer design setup
lies in the pertinent optimization task. As it will be discussed,
finding the globally optimal solution through a practically
feasible algorithm is far from trivial and up to now it is only
achieved for the special case of binary input alphabets [9].
Consequently, in recent years a number of heuristics have
been developed aiming at yielding complexity-wise tractable
routines at the expense of converging to local optima.

In this article, we consider two specific routines, explic-
itly, the KL-Means algorithm [10] and the Double Maxima
approach ([11], Algorithm 1). The former can be regarded
as an adapted version of the well-known K-Means algorithm
[12] and the latter has been proposed to address the problem
of distributed noisy source coding. To analyze the relation
between the mentioned approaches, we first introduce the
general IB setup and after providing the mathematical insights
into the respective optimization tasks, we discuss both methods
in detail. Then, through scrutinizing the corresponding steps
that each algorithm performs within the iterations to produce
its final result, we evince their equivalence.

This theoretical investigation yields the valuable compre-
hension of the exact relation between different procedures
trying to find locally optimal solutions for a given problem by
following quite various strategies. Please note that although
it may seem expectable that different heuristics attacking the
same problem may be similar, proving their identicality is
fundamentally different from having the coarse intuition of
similarity and that is our very contribution in this work.
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II. INFORMATION BOTTLENECK SOURCE CODING SETUP

data source quantizerchannel
y ∈ Y z ∈ Zx ∈ X

p(y|x) p(z|y)p(x)

Fig. 1: System model for noisy source coding/compression

For the noisy source coding scenario we consider the system
model depicted in Fig. 1. It is assumed that there is no direct
access to the discrete memoryless source x (with realizations
x ∈ X = {x1, · · · , x|X |})1 characterized by the a priori distri-
bution p(x). The goal is then to compress the observed variable
y (with realizations y ∈ Y = {y1, · · · , y|Y|}) at the output
of the discrete memoryless channel specified by transition
probabilities p(y|x), to the random variable z (with realizations
z∈Z = {z1, · · · , z|Z|}). It shall be noted that, in general, Z
is not necessarily a subset of Y . Furthermore, it is presumed
that the joint probability distribution p(x, y) = p(x) p(y|x) is
known and x↔ y↔ z is a first-order Markov chain, i.e.,
p(z|x, y) = p(z|y). Within the IB framework, the complexity
of the outcome is quantified through the compression rate
given by the quantizer’s input/output MI2, I(y; z), and its
resultant precision is quantified through the relevant informa-
tion, I(x; z). To establish the existent trade-off, a non-negative
Lagrange multiplier 0 6 β 6 ∞ is exploited and the design
setup for the quantizer p(z|y) is formulated via [3]:

p?(z|y) = argmin
p(z|y)

1

β+1

(
I(y; z)−βI(x; z)

)
for |Z|≤N , (1)

where N is the allowed number of output clusters and the
factor 1

β+1 is considered solely for the sake of mathematical
clarity when investigating the extreme cases for the trade-off
parameter. One may note that the trade-off parameter β can be
twiddled in order to strengthen (or weaken) the information
preservation capability. In addition, it is noteworthy that the
resultant mapping p(z|y) has stochastic nature in general, i.e.,
0≤p(z|y)≤1 fulfilling

∑
z∈Zp(z=z|y=y)=1 for each y∈Y .

Obviously, the case of β→0 is not of interest as the relevant
information term I(x; z) in (1) is dropped and the minimum
compression rate I(y; z) = 0 could be achieved by making
the quantizer’s output z being statistically independent of y.
For finite β, it can be shown that the objective function in (1)
is neither convex nor concave w.r.t. the mapping p(z|y) [13].
Thus, the optimization itself is of neither type and therefore
finding the globally optimal solution becomes quite challeng-
ing. Regarding asymptotically large values of β, taking the
limit of (1) by letting β→∞, the design formulation reduces
to:

p?(z|y) = argmax
p(z|y)

I(x; z) for |Z|≤N , (2)

where the minimization in (1) is substituted by the maximiza-
tion in (2) by omitting the minus sign. It can be shown that the

1| · | denotes the cardinality (the number of elements) of a given set.
2The MI between discrete random variables a and b with the marginal

and the joint distributions p(a), p(b) and p(a, b), respectively is defined as
I(a; b) ,

∑
a

∑
b
p(a, b) log

p(a,b)
p(a)p(b)

.

optimization task in (2) is of convex maximization3 type and
the optimal solution is achieved via deterministic mappings
[9]. It is worth bearing in mind that executing the naive
brute-force search over all deterministic mappings results in
an exponential complexity w.r.t. |Y| that makes it evidently
intractable in practice.

All in all, it is inferred that for non-zero values of β the
relevant optimization task is far from trivial and therefore
heuristics have been proposed to address the corresponding
design problems efficiently. In the next section after presenting
the primarily suggested algorithm for the general IB-based
quantizer design (1), we focus on the salient case of β being
asymptotically large (2) in which the goal is to maximize
the end-to-end transmission rate via keeping as much rel-
evant information as possible under the side-constraint on
the cardinality of the output representative signal. One shall
note that the present constraint on the cardinality of the
representatives |Z| ≤N in the problem formulation restricts
the compression rate I(y; z) in any case. Thus, even for the
extreme case of β→∞, the compression rate is upper-bounded
by I(y; z) ≤ log2(N) bits.

III. CONSIDERED ROUTINES

A. Iterative Information Bottleneck (It-IB)

After introducing the IB framework in [3], Tishby et al. ex-
ploited the variational calculus to deduce the optimal mapping

p(z|y) =
p(z)

ψ(y, β)
e−βDKL

(
p(x|y)‖p(x|z)

)
(3)

as the stationary point of the objective function in (1). The
normalization function ψ(y, β) secures a valid mapping p(z|y)
for each y ∈ Y and DKL(· ‖ · ) is the Kullback-Leibler (KL)
divergence4. It should be noted that the provided solution in
(3) has an implicit form, since distributions p(z) and p(x|z)
appearing on the right-side of (3) are related to the quantizer
p(z|y) through

p(z) =
∑
y∈Y

p(y)p(z|y) (4)

and
p(x|z) =

1

p(z)

∑
y∈Y

p(x, y)p(z|y) . (5)

The principal idea behind the Iterative IB (It-IB) algorithm
is to utilize the derived optimal mapping (3) in an iterative
manner (commencing with a random valid distribution p(z|y))
through exploiting the consistency conditions (4) and (5).

For β being finite, the outcome will be usually a soft,
i.e., stochastic mapping. Contrarily, letting β → ∞, the
resultant mapping becomes hard, i.e., deterministic ([14]).

3Also known as concave optimization, is about finding the maxima of a
convex function over a closed convex set. This is totally different compared to
the convex optimization wherein the aim is to find the minimum of a convex
function.

4The KL divergence, also known as relative entropy, between two prob-
ability distributions p(a) and q(a) over the same event space A of the
random variable a, is defined as DKL

(
p(a)‖q(a)) ,

∑
a∈A p(a) log

p(a)
q(a)

[1]. The relation between MI and KL divergence is established through
I(a; b) = DKL

(
p(a, b)‖p(a)p(b)).
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Explicitly, in every iteration, each channel’s output element
y is mapped with probability 1 to the specific cluster z which
shows the least KL divergence among all candidate bins.

B. KL-Means Information Bottleneck (KL-Means-IB)

As already discussed, in case of β being asymptotically
large, (2) shall be regarded as the corresponding design setup.
Considering the definition of MI as difference of entropies5 it
has been shown in [10] that the following holds

I(x; z) = I(x; y)−
(
H(x|z)−H(x|y)

)
(6a)

= I(x; y)− Ey,z

{
DKL

(
p(x|y)‖p(x|z)

)}
. (6b)

Hence, maximization of the relevant information I(x; z) trans-
lates into minimization of the expectation term in (6b), as the
available information I(x; y) is given and fixed (it is a function
of the joint distribution p(x, y), assumed to be known).

At this point, the connection of the present design problem
to the renowned K-Means clustering method can be realized.
The conventional K-Means algorithm [15] intends to cluster
a number of points into K bins such that the average square
Euclidean distance between the points and the empirical means
of the clusters is minimized. This task is done in an iterative
fashion through two distinct steps, namely the assignment
and the update steps. In the assignment step, each particular
point is allocated to the very bin with the closest respective
mean among all candidates. Subsequently, in the update step
clusters’ representatives are recalculated as the corresponding
means (hence the name).

An interesting interpretation of this approach of clustering
(regarding the model-based derivation of K-Means [16] with
isotropic spherical Gaussian noise assumption) from the com-
munications perspective, is to treat the points to be clustered as
noisy versions of K originally transmitted points6 and aiming
for learning the most fitting underlying constellation. This
methodology can be generalized to apply different types of
distortion measures. For instance, in [12] a specific family of
divergences including the KL divergence has been considered.

One may note that irrespective of the specific choice of
y ∈ Y it applies

∑
x∈X p(x = x|y = y) = 1, introducing a

(|X | − 1)-dimensional probability simplex, referred to as the
backward channel simplex. Therefore, as suggested in [10],
transforming the primary quantization space (i.e., the space
in which y values are defined) to the backward channel sim-
plex by considering p(x|y = y)7 and p(x|z = z)(the pertinent
points in the transformed space) instead of y and z, respec-
tively and treating the KL divergence as the given distortion
measure, the design problem (2) can be perceived as a special
K-Means clustering task. Specifically, the KL-Means-IB [10]
is initiated by choosing N different points p(x|y) as the
primary means. Subsequently, through the assignment step,

5I(a; b) = H(a)−H(a|b) = H(b)−H(b|a) where the entropy function
is defined as H(a) , −

∑
a
p(a) log p(a).

6In communications terminology it is referred to as the signal constellation.
7It is defined as p(x|y = y) , [p(x1|y = y), · · · , p(x|X||y = y)]. Each

entry of this vector can be considered as a coordinate of the pertinent point.

p(x1|y = y) p(x2|y = y)

p(x3|y = y)

a) Backward channel simplex

` = 1
I(x; z) = 0.313

p(x1|y = y) p(x2|y = y)

p(x3|y = y)

b) After 1st iteration

` = 2
I(x; z) = 0.321

p(x1|y = y) p(x2|y = y)

p(x3|y = y)

c) After 2nd iteration

` = 12
I(x; z) = 0.325

p(x1|y = y) p(x2|y = y)

p(x3|y = y)

d) After final iteration

Fig. 2: Evolution of the KL-Means-IB result (N=8) through iterations ` for
3-PSK signaling over an AWGNC (σ2

n = 1) with the red dots demonstrating
the clusters’ representatives p(x|z) and the acquired I(x; z)

each point p(x|y) is clustered to the particular bin z for which
the corresponding representative p(x|z) shows the least KL
divergence. Mathematically, p(z|y) = δz,z?(y)

8 where the host
cluster z for each particular y value is chosen as

z?(y) = argmin
z

DKL
(
p(x|y)‖p(x|z)

)
. (7)

Next, clusters’ representatives are updated as the bins’ centers
of mass [12]

p(x|z) =

∑
y∈Yz

p(y)p(x|y)∑
y∈Yz

p(y)
, (8)

wherein Yz denotes the subset of Y for which all members are
allocated to the bin z. The mentioned procedure is repeated till
either a convergence criterion or a maximum number of itera-
tions is met. To clearly visualize what happens in the backward
channel simplex during the iterations of the KL-Means-IB,
we demonstrate the corresponding 2-dimensional simplex for
an example of 3-PSK signaling in Fig. 2. Explicitly, each
point inside the drawn simplex corresponds to a particular
p(x|y = y) = {p(x1|y = y), p(x2|y = y), p(x3|y = y)} for a
certain y value received at the output of an additive white
Gaussian noise channel (AWGNC) with the noise variance of
unity (σ2

n = 1). The aforementioned clustering procedure for
N = 8 is then performed in this space and as can be seen,
through iterations the clustering results are getting refined.

The complexity of the KL-Means-IB is dominated by its
assignment step. Thus, as suggested by (7), per iteration, the
KL-Means-IB has the complexity of O(|X | · |Y| · |Z|), since

8Here, δ represents the Kronecker delta function.
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for each specific value y, the KL divergence to all |Z| possible
candidates has to be calculated where each of these divergence
calculations sums up |X | terms. It is worth noting that the
KL-Means-IB is algorithmically equivalent to the It-IB under
the assumption of β being asymptotically large [14].

C. Double Maxima Information Bottleneck (Double-Max-IB)

Quite recently, inspired by [17], a new heuristic has been
proposed in [11] (called Algorithm 1) which henceforth we
refer to as Double-Max-IB. This routine addresses the problem
of distributed noisy source coding. To this end, the general
system setup in [11] considers M different noisy observa-
tions (measurements) y1, y2, · · · , yM of the source x and the
suggested solution encodes/quantizes them locally (but not
independently, i.e., in a jointly fashion), such that the MI
between the source and the random vector comprising all M
individual representatives z1, z2, · · · , zM is maximized.

What makes this algorithm interesting is, as investigated
in [11], in this fashion a set of high-quality general purpose
quantizers is achieved that can be successfully employed for a
variety of applications, e.g., the CEO problem [18]. Explicitly,
it has been shown that performance-wise its acquired result is
quite comparable with (and in some cases even better than)
the resultant outcomes of the schemes specifically designed
for estimation [19] or detection [20] purposes. In addition,
the proposed routine can be readily adapted to the more
realistic scenario of having non-ideal transmission channels
from distributed sensors to the fusion center, thereby providing
a novel distributed joint source-channel coding scheme.

Having the assumed system model of Fig. 1 in mind, to
discuss the Double-Max-IB, we restrict ourselves to the case
in which only one noisy observation is available, i.e., M = 1.
Exploiting the chain rule of MI, the objective function in (2)
can be expanded as

I(x; z) = I(x, y; z)− I(y; z|x) (9a)
= H(x, y)−H(x, y|z)−H(y|x) +H(y|x, z) . (9b)

Since the entropies H(x, y) and H(y|x) in (9b) are fixed
(functions of the given joint distribution p(x, y)), it is directly
concluded that (2) translates into

p?(z|y)=argmax
p(z|y)

[
H(y|x, z)−H(x, y|z)

]
(10a)

=argmax
p(z|y)

∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z)log p(x|z) (10b)

=argmax
p(z|y)

∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y)p(z|y)log p(x|z), (10c)

where from (10b) to (10c) the assumed Markovian property is
exploited. Assuming q(y, z)=p(z|y) and f(x, z) as an arbitrary
function such that for each specific value z∈Z it applies∑
x∈X f(x = x, z) = 1, the authors in [11] have defined a

generalized objective function, L, as

L(q, f) =
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y) q(y, z) log f(x, z) . (11)

Then, utilizing the method of Lagrange multipliers, it has been
shown that for a given q(y, z), the optimal function f?(x, z)
that maximizes L is achieved by

f?(x, z) =

∑
y∈Y

p(x, y)p(z|y)∑
x′∈X

∑
y∈Y

p(x′, y)p(z|y)
. (12)

Having the assumed Markovian property in mind and not-
ing the respective marginalization of the joint distribution
p(x, y, z) at both the numerator and the denominator of (12)
reveals that f?(x, z) = p(x,z)

p(z) which is p(x|z) by definition.
Correspondingly, to obtain the optimal mapping q?(y, z)

that maximizes L for a given f(x, z), it must be satisfied that
for each y ∈ Y , p(z|y) = δz,z?(y), wherein

z?(y) = argmax
z

∑
x∈X

p(x, y) log f(x, z) . (13)

As the objective function in (10c) is nothing else than the
maximum of the generalized objective function L over f(x, z)
for a given q(y, z), the pertinent optimization task can be
secured by performing double (alternating) maximization of
L over f(x, z) and q(y.z) in an iterative manner (hence the
name). Explicitly, the Double-Max-IB algorithm is initialized
to a valid random deterministic mapping p(z|y) and then
iterates over (12) (update step) and the resultant mapping by
(13) (assignment step), till convergence to a local optimum.

Analogous to the KL-Means-IB, the complexity of the
Double-Max-IB approach is dominated by its assignment step.
Thus, as suggested by (13), per iteration, the Double-Max-IB
routine has the complexity of O(|X | · |Y| · |Z|). Specifically,
for each y value, the objective function in (13) that comprises
the summation of |X | terms, must be calculated for all |Z|
possible candidates.

The main contribution of this work lies in the next section,
in which through an in-depth examination of the KL-Means-IB
and the Double-Max-IB steps, we plainly demonstrate their
algorithmic equivalence. While the KL-Means-IB reformulates
the optimization (2) through a double (alternating) mini-
mization [10], the Double-Max-IB offers a totally different
approach of alternating maximization. Surprisingly, it turns
out that they provide identical solution procedures.

IV. STEPWISE COMPARISON OF KL-MEANS-IB AND
DOUBLE-MAX-IB ALGORITHMS

A. Analysis

Basically, to prove the equivalence of the considered ap-
proaches, we have to illustrate that the respective assignment
and update steps are identical for both routines.

Here, we embark on our analysis by considering the assign-
ment step in Double-Max-IB. Substituting the resultant f(x, z)
from (12) to (13), for each y ∈ Y the allocated cluster z is
determined by

z?(y) = argmax
z

∑
x∈X

p(x, y) log p(x|z) (14a)

= argmin
z

∑
x∈X

p(x, y)
(
− log p(x|z)

)
, (14b)
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wherein the maximization is substituted by minimization
through introduction of the minus sign. (14b) can be further
rewritten as

z?(y) = argmin
z

∑
x∈X

p(x, y)
(

log
p(x|y)

p(x|z)
− log p(x|y)

)
. (15)

Recalling p(x, y) = p(y)p(x|y) and noting that the respective
minimization in (15) is independent of p(y), it applies

z?(y) = argmin
z

∑
x∈X

p(x|y)
(

log
p(x|y)

p(x|z)
− log p(x|y)

)
. (16)

Expanding the objective function in (16) yields

z?(y)=argmin
z

(∑
x∈X

p(x|y) log
p(x|y)

p(x|z)
−
∑
x∈X

p(x|y) log p(x|y)
)

or equivalently

z?(y)=argmin
z

(
DKL

(
p(x|y)‖p(x|z)

)
+H(x|y = y)

)
. (17)

Since the conditional entropy H(x|y=y) in (17) is fixed by
the given distribution p(x, y), the ultimate cluster allocation’s
rule for Double-Max-IB is determined as

z?(y) = argmin
z

DKL
(
p(x|y)‖p(x|z)

)
. (18)

Considering (18) and (7) together, it is immediately realiz-
able that the assignment steps of the KL-Means-IB and the
Double-Max-IB routines are identical.

Next, we consider the corresponding update steps. Specifi-
cally, regarding (12) and (8) it can be readily seen that both
algorithms update the same distribution p(x|z). Nonetheless,
to clearly discern that (12) is indeed identical to (8), one may
note that the mapping p(z|y) in (12) is deterministic, i.e., it is
equal to 1 iff y ∈ Yz . Moreover, since p(x, y) = p(y)p(x|y),
it applies∑
y∈Y

p(x, y)p(z|y) =
∑
y∈Yz

p(x, y) =
∑
y∈Yz

p(y)p(x|y) . (19)

Thus, it becomes clear that the numerators in (12) and (8) are
the same. In addition, the present summation over all x′∈X at
denominator of (12) marginalizes the joint distribution p(x′, y)
into p(y) and consequently it applies∑
x′∈X

∑
y∈Y

p(x′, y)p(z|y)=
∑
x′∈X

∑
y∈Yz

p(x′, y)=
∑
y∈Yz

p(y) . (20)

Therefore, the identicality of both denominators becomes
evident as well. All in all, via the performed analysis, we
plainly proved the algorithmic equivalence of KL-Means-IB
and Double-Max-IB. This brings about the profound insight
that although these heuristics aim to solve the design problem
in (2) through different approaches, surprisingly, they eventu-
ally provide exactly identical solution procedures.

Please note that since both heuristics converge to a local
optimum, their respective outcome heavily depends on the
choice of initialization. So, it can be asserted that assuming
a sufficiently large number of runs (to achieve independence
from initialization), both routines engender the same mapping.

B. Simulation Results
In this part, we set out to investigate the performance

of discussed approaches over a typical digital transmission
scenario. Specifically, we consider the equiprobable bipolar
4-ASK signaling (X={±1,±3}) at the input with the variance
σ2
x = 5. To obtain the transition probability distribution p(y|x),

we firstly clip the corresponding conditional probability den-
sity functions (pdf) of an AWGN channel with three different
noise variances σ2

n = 1, 2, 3 to the part with the absolute value
not higher than 6, 7.2 and 8.1, respectively (to set the border
guard interval of 3σn to assure 99.7% coverage) and then
uniformly discretize them into |Y| = 128 parts.

First, we aim for comparing conventional and IB-based
quantization approaches. To do so, as a prevalent RD-based
quantizer, we deploy the well-known Lloyd-Max algorithm
[21], [22] wherein the square Euclidean distance is chosen
as distortion measure function. As an IB-based approach,
we consider the It-IB with β = 400 which results in (an
almost) hard clustering. Fig. 3 depicts the mutual information
loss defined as ∆I=I(x; y)−I(x; z) for different allowed
number of clusters N . It shall be mentioned that to obtain
the corresponding curves, each algorithm was run for U=105

different initializations with the best result taken. It is observed
that irrespective of the channel quality (noise variance), the
It-IB algorithm always outperforms the Lloyd-Max routine
in preservation of the information (about the source) con-
tained in the quantizer output. Although the performances
are comparable for relatively high signal-to-noise ratio (SNR)
values, the results suggest that in general, the superiority of the
It-IB performance becomes more tangible in critical cases of
degraded channel quality (i.e., the region of low SNR values).

Next, we focus on the performances of the three discussed
IB-based routines. For that, Fig. 4 is generated wherein the
noise variance is assumed to be σ2

n = 1. It can be seen
from Fig. 4 a) that for β = 400, the performances of the
It-IB and the KL-Means-IB are (almost) the same over the
entire range of N . The reason behind is thoroughly discussed
in [14] in which the algorithmic equivalence of these two
routines is shown for β → ∞. Regarding the KL-Means-IB
and the Double-Max-IB curves, at first glance it may seem
that their performances are not the same over the entire range
of N . Nonetheless, it can be observed that by increasing U
the respective curve of the KL-Means-IB is swept by the
Double-Max-IB for higher values of N . This clearly indicates
that by increasing U , the present gap between the perfor-
mances can be bridged for higher and higher values of N . In
other words, as will be shown subsequently, for sufficiently
large values of U (to assure independence from choice of
initialization), irrespective of N , both routines produce the
same result. To get an impression about the complexity-
precision trade-off, the corresponding compression rates are
drawn in Fig. 4 b). The main message inferable is the higher
the required precision, the higher the pertinent complexity (in
information theoretic sense, i.e., the resultant compression rate
I(y; z) by provided mapping p(z|y)) as well.

As a final inquiry, instead of initializing the Double-Max-IB
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algorithm by any random deterministic mapping, we fed it
by the resultant mapping at the end of the first iteration of
the KL-Means-IB routine and registered the evolution of the
acquired solution (with the arbitrary choices of N = 8 and
σ2
n=1) for both algorithms over the iterations. Fig. 5 illustrates

the corresponding results. At this point, it becomes clear that
initializing both routines identically, their behavior through
convergence would be exactly the same.

V. SUMMARY

In this paper, we firstly presented the Information Bottle-
neck framework as an alternative to the conventional methods
on the subject of noisy source coding and then discussed three
individual heuristics appeared in the literature to address the
corresponding design problem. Afterwards, we analyzed the

relation between KL-Means-IB and Double-Max-IB routines
and plainly proved their equivalence via the scrutiny of the
respective algorithmic steps they make to produce the favor-
able result. Finally, we substantiated our conducted analysis by
performing simulations over a typical transmission scenario.
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