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Abstract—We propose an adaptive scheme for distributed learn-
ing of nonlinear functions by a network of nodes. The proposed
algorithm consists of a local adaptation stage utilizing multiple
kernels with projections onto hyperslabs and a diffusion stage to
achieve consensus on the estimates over the whole network. Multi-
ple kernels are incorporated to enhance the approximation of func-
tions with several high- and low-frequency components common
in practical scenarios. We provide a thorough convergence analy-
sis of the proposed scheme based on the metric of the Cartesian
product of multiple reproducing kernel Hilbert spaces. To this end,
we introduce a modified consensus matrix considering this specific
metric and prove its equivalence to the ordinary consensus matrix.
Besides, the use of hyperslabs enables a significant reduction of the
computational demand with only a minor loss in the performance.
Numerical evaluations with synthetic and real data are conducted
showing the efficacy of the proposed algorithm compared to the
state-of-the-art schemes.

Index Terms—Distributed adaptive learning, kernel adaptive fil-
ter, multiple kernels, consensus, spatial reconstruction, nonlinear
regression.

I. INTRODUCTION

A. Background

D ISTRIBUTED learning within networks is a topic of high
relevance due to its applicability in various areas such as

environmental monitoring, social networks and big data [1]–[3].
In such applications, observed data are usually spread over the
nodes, and thus, they are unavailable at a central entity. In envi-
ronmental monitoring applications, for instance, nodes observe
a common physical quantity of interest such as temperature,
gas or humidity at each specific location. For a spatial recon-
struction of the physical quantity over the area covered by the
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network non-cooperative strategies will not deliver a satisfactory
performance. Rather distributed learning algorithms relying on
information exchanges among neighboring nodes are required
to fully exploit the observations available in the network.

Distributed learning of linear functions has been addressed
by a variety of algorithms in the past decade, e.g. [4]–[12].
In contrast to these works, we address the problem of dis-
tributed learning of nonlinear functions/systems. To this end,
we exploit kernel methods, which have been used to solve e.g.
nonlinear regression tasks [13], [14]. Based on a problem for-
mulation in a reproducing kernel Hilbert space (RKHS) linear
techniques can be applied to approximate an unknown non-
linear function. This function is then modeled as an element
of the RKHS, and corresponding kernel functions are utilized
for its approximation. This methodology has been exploited to
derive a variety of kernel adaptive filters [15]–[25]. In partic-
ular, the naive online regularized risk minimization [15], the
kernel normalized least-mean-squares, the kernel affine projec-
tion [20] or the hyperplane projection along affine subspace
(HYPASS) [23], [26] enjoy significant attention due to their
limited complexity and their applicability in online learning
scenarios. The HYPASS algorithm has been derived from a
functional space approach based on the adaptive projected sub-
gradient method (APSM) [27] in the set-theoretic estimation
framework [28], [29]. It exploits a metric with regard to the
kernel Gram matrix showing faster convergence and improved
steady-state performance. The kernel Gram matrix determines
the metric of a subspace of an RKHS and is decisive for the
convergence behavior of gradient-descent algorithms [30]. In
[31], [32] kernel adaptive filters have been extended by multi-
ple kernels to increase the degree of freedom in the estimation
process. By this, a more accurate approximation of functions
with high and low frequency components is possible with a
smaller number of dictionary samples compared to using a single
kernel.

Regarding distributed kernel-based estimation algorithms,
several schemes have been derived [33]–[42]. In [33] a dis-
tributed consensus-based regression algorithm based on ker-
nel least squares has been proposed and extended by multi-
ple kernels in [34]. Both schemes utilize alternating direction
method of multipliers (ADMM) [43] for distributed consensus-
based processing. Recent works in [35]–[37] apply diffusion-
based schemes to the kernel least-mean-squares (KLMS) to
derive distributed kernel adaptive filters where nodes pro-
cess information in parallel. The functional adapt-then-combine
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KLMS (FATC-KLMS) proposed in [35] is a kernelized ver-
sion of the algorithm derived in [9]. The random Fourier fea-
tures diffusion KLMS (RFF-DKLMS) proposed in [36] uses
random Fourier features to achieve a fixed-size coefficient
vector and to avoid an a priori design of a dictionary set.
However, the achievable performance strongly depends on the
number of utilized Fourier features. Besides, the aforemen-
tioned schemes incorporate update equations in the ordinary
Euclidean space and thus, do not exploit the metric induced
by the kernel Gram matrix. Furthermore, the majority of these
schemes do not consider multiple kernels in their adaptation
mechanism.

B. Main Contributions

For the derivation of the proposed algorithm we rely on the
previous work of [10]. However, while [10] only considers dis-
tributed learning for linear functions in a Euclidean space we
specifically derive a kernel-based learning scheme in an RKHS
and its isomorphic Euclidean space, respectively. More specifi-
cally, we propose a distributed algorithm completely operating
in the Cartesian product space of multiple RKHSs. The Carte-
sian product space has been exploited by the Cartesian HYPASS
(CHYPASS) algorithm for adaptive learning with multiple ker-
nels proposed in [32]. When operating in the corresponding
Euclidean parameter space a metric based on the kernel Gram
matrix of each employed kernel needs to be considered. This
metric is determined by a block diagonal matrix of which the
block diagonals are given by kernel Gram matrices. To derive
a distributed learning scheme we rely on average consensus
on the coefficient vectors for each kernel. The key idea of our
proposed scheme is to fully conduct distributed learning in a
Euclidean space considering the metric of the Cartesian product
space. This metric is responsible for an enhanced convergence
speed of the adaptive algorithm. Operating with this metric im-
plies that the consensus matrix used for diffusion of information
within the network needs to be adapted to it. To this end, we
introduce a modified consensus matrix operating in the metric
of the product space. In fact, we show that the modified consen-
sus matrix coincides with the consensus matrix operating in the
ordinary Euclidean space as used in [10]. This finding actually
implies that the metric of the product space does not alter the
convergence properties of the average consensus scheme. This is
particularly important in proving the monotone approximation
property of our proposed scheme. We provide a thorough con-
vergence analysis considering the metric of the product space.
Specifically, we prove monotone approximation, asymptotic op-
timization, asymptotic consensus, convergence and characteri-
zation of the limit point within the framework of APSM. As
a practical implication we demonstrate that by projecting the
current estimate onto a hyperslab instead of the ordinary hy-
perplane we can significantly reduce the computational demand
per node. By varying the hyperslab thickness (similar to an error
bound), a trade-off between error performance and complexity
per node can be adjusted. We corroborate our findings by exten-
sive numerical evaluations on synthetic as well as real data and
by mathematical proofs given in the appendices.

II. PRELIMINARIES

A. Basic Definitions

We denote the inner product and the norm of the Euclidean
space RM by 〈·, ·〉RM and || · ||RM , respectively, and those in
the RKHSH by 〈·, ·〉H and || · ||H, respectively. Given a positive
definite matrix K ∈ RM×M , 〈x,y〉K := xTKy, x,y ∈ RM ,
defines an inner product with the norm ||x||K :=

√〈x,x〉K .
The norm of a matrix X ∈ RM×M induced by the vector norm
|| · ||K is defined as ||X||K := maxy �=0 ||Xy||K/||y||K . The
spectral norm of a matrix is denoted as ||X||2 when we choose
K = IM as the M ×M identity matrix [44]. A set C ⊂ RM

is said to be convex if αx + (1− α)y ∈ C, ∀x,y ∈ C, ∀α ∈
(0, 1). If in addition the setC is closed, we call it a closed convex
set. The K-projection of a vector w ∈ RM onto a closed convex
set C is defined by [45], [46]

PK
C (w) := min

v∈C
||w − v||K . (1)

B. Multikernel Adaptive Filter

In the following we present the basics regarding multikernel
adaptive filters which have been applied to online regression of
nonlinear functions [31], [32]. We denote a multikernel adap-
tive filter by ϕ : X → R where X ⊆ RL is the input space of
dimension L and R the output space. The filter/function ϕ em-
ploys Q positive definite kernels κq : X × X → R with q ∈
Q = {1, 2, . . . , Q}. Each kernel κq induces an RKHSHq [13],
and ϕ uses corresponding dictionaries Dq = {κq (·, x̄�)}r�=1 ,
each of cardinality r. Here, each dictionary Dq contains kernel
functions κq centered at samples x̄� ∈ X . For simplicity, we
assume that each dictionary Dq uses the same centers {x̄�}r�=1
although this assumption is not required. The multikernel adap-
tive filter ϕ is then given by

ϕ :=
∑

q∈Q

r∑

�=1

wq,�κq (·, x̄�). (2)

The output of ϕ for arbitrary input samples x can be computed
via

ϕ(x) =
∑

q∈Q

r∑

�=1

wq,�κq (x, x̄�) = 〈w,κ(x)〉Rr Q . (3)

Here, vectors w and κ(x) are defined as

w(q) := [wq,1 , . . . , wq,r ]T ∈ Rr ,

w := [wT
(1) , . . . ,w

T
(Q) ]

T ∈ RrQ ,

κq (x) := [κq (x, x̄1), . . . , κq (x, x̄r )]T ∈ Rr ,

κ(x) := [κT
1 (x), . . . ,κT

Q (x)]T ∈ RrQ .

A commonly used kernel function is the Gaussian kernel
defined as

κq (x1 ,x2) = exp
(
−||x1 − x2 ||2RL

2ζ2
q

)
, x1 ,x2 ∈ X , (4)

where ζq > 0 is the kernel bandwidth. The metric of an RKHS is
determined by the kernel Gram matrix. It contains the inherent
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correlations of a dictionaryDq with respect to (w.r.t.) the kernel
κq and is defined as

Kq :=

⎡

⎢
⎣

κq (x̄1 , x̄1) . . . κq (x̄1 , x̄r )
...

. . .
...

κq (x̄r , x̄1) . . . κq (x̄r , x̄r )

⎤

⎥
⎦ ∈ Rr×r . (5)

Assuming that each dictionary Dq is linearly independent
it follows that each Kq is positive-definite [46]. More-
over, we introduce the multikernel Gram matrix K :=
blkdiag{K1 ,K2 , . . . ,KQ} ∈ RrQ×rQ being the block-
diagonal matrix of the Gram matrices of all kernels. Then, by
virtue of Lemma 1 from [47] we can parameterize ϕ by w in the
Euclidean space RrQ using the K inner product 〈·, ·〉K . In fact,
the K-metric in the Euclidean space corresponds to the metric
of a functional subspace in the Cartesian product of multiple
RKHSs [32]. Indeed, we can express (3) equivalently by

ϕ(x) = 〈w,κ(x)〉Rr Q = 〈w,K−1κ(x)〉K . (6)

Instead of applying a learning method to the function ϕ in the
Cartesian product space we can directly apply it to the coeffi-
cient vector w ∈ RrQ in

(
RrQ , 〈·, ·〉K

)
. This representation is

based on the parameter space approach from the kernel adap-
tive filtering literature with the functional space approach as its
equivalent counterpart, see [31, Appendix A]. In the following,
we will formulate the distributed learning problem in the param-
eter space

(
RrQ , 〈·, ·〉K

)
to facilitate an easy understanding.

However, we emphasize that this formulation originates from
considerations in an isomorphic functional space. The interested
reader is referred to Appendix A for a problem formulation in
the functional space.

III. PROBLEM FORMULATION AND OBJECTIVE

A. System Model

We address the problem of distributed adaptive learning of
a continuous, nonlinear function ψ : X → R by a network
of J nodes. The function ψ is assumed to lie in the sum
space ofQRKHSs defined asH+ := H1 +H2 + · · ·+HQ :={∑

q∈Q fq | fq ∈ Hq

}
. We label a node by index j and the

time by index k. Each node j observes the nonlinear function
ψ ∈ H+ by sequentially feeding it with inputs xj,k ∈ RL . Then
each node j acquires the measurement dj,k ∈ R per time index
k via

dj,k = ψ(xj,k ) + nj,k , (7)

where nj,k ∈ R is a noise sample. Based on the nodes’ obser-
vations, at each time index k we have a set of J acquired input-
output samples {(xj,k , dj,k )}Jj=1 available within the network.

To describe the connections among the nodes in the net-
work we employ a graph G = (J , E) with a set of nodes
J = {1, . . . , J} and a set of edges E ⊆ J × J . Each edge in
the network represents a connection between two nodes j and i
given by (j, i) ∈ E where each node j is connected to itself, i.e.,
(j, j) ∈ E . We further assume that the graph is undirected, i.e.,
edges (j, i) and (i, j) are equivalent to each other. The set of
neighbors for each node j is given asNj = {i ∈ J | (j, i) ∈ E}

containing all nodes connected to node j (including node j it-
self). Furthermore, we consider the graph to be connected, i.e.,
each node can be reached by any other node over multiple hops.
The objective of the nodes is to learn the nonlinear function ψ
based on the acquired input-output samples {(xj,k , dj,k )}j∈J
in a distributed fashion. To this end, nodes are able to exchange
information with their neighboring nodes to enhance their indi-
vidual estimate of the unknown function ψ.

B. Problem Formulation in Parameter Space

Based on the parametrization of the multikernel adaptive fil-
ter ϕ by the coefficient vector w we formulate an optimization
problem in the parameter space of w. The objective is to find
a w such that the estimated output ϕ(x) = 〈w,K−1κ(x)〉K
is close to the function output ψ(x) for arbitrary input sam-
ples x ∈ X . This has to be achieved in a distributed fashion for
each node j in the network based on the acquired data pairs
{(xj,k , dj,k )}j∈J . Thus, we equip each node j with a multiker-
nel adaptive filter (2) parameterized by its individual coefficient
vector wj . Furthermore, each node j is assumed to rely on
the same dictionaries Dq , q ∈ Q, i.e., they are globally known
and common to all nodes. To specify the coefficient vectors
which result in an estimate close to the node’s measurement,
we introduce the closed convex set Sj,k per node j and time
index k:

Sj,k :=
{
wj ∈ RrQ : |〈wj ,K

−1κ(xj,k )〉K − dj,k | ≤ εj
}
,

where εj ≥ 0 is a design parameter. The set Sj,k is a hyper-
slab containing those vectors wj which provide an estimate
ϕ(xj,k ) =

〈
wj ,K

−1κ(xj,k )
〉

K
with a maximum distance of

εj to the desired output dj,k [48]. The parameter εj controls the
thickness of the hyperslab Sj,k , and is introduced to consider the
uncertainty caused by measurement noise nj,k . The key issue
is to find an optimal wj ∈ Sj,k . To this end, we define a local
cost function Θj,k at time k per node j as the metric distance
between its coefficient vector wj and the hyperslab Sj,k in the
K-norm sense:

Θj,k (wj ) := ||wj − PK
Sj , k (wj )||K . (8)

This cost function gives the residual between wj and its K-
projection onto Sj,k . Due to the distance metric Θj,k (wj ) is
a non-negative, convex function with minimum value Θ	

j,k :=
minwj

Θj,k (wj ) = 0. Then we define the global cost of the
network at time k to be the sum of all local costs by

Θk :=
∑

j∈J
Θj,k (wj ) (9)

where each individual cost Θj,k can be time-varying. The ob-
jective is to minimize the sequence (Θk )k∈N of global costs (9)
over all nodes in the network where due to convexity of Θj,k the
global cost Θk is also convex. Simultaneously, the coefficient
vectors wj of all nodes have to converge to the same solution,
which guarantees consensus in the network. To this end, we
consider the following optimization problem at time k as in [8],
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[10], [49]:

min
{wj |j∈J }

Θk :=
∑

j∈J
Θj,k (wj ) (10a)

s.t. wj = wi , ∀i ∈ Nj . (10b)

Constraint (10b) enforces all coefficient vectors to converge
to the same solution, i.e., w1 = w2 = · · · = wJ guaranteeing
consensus within the network.

C. Optimal Solution Set

From the definition (8) of the local cost Θj,k we directly
see that its minimizers are given by points in the hyperslab
Sj,k . Since each local cost Θj,k is a metric distance with mini-
mum value zero the minimizers of the global cost Θk at time k
are given by the intersection Υk :=

⋂
j∈J Sj,k . Points in Υk

minimize each local cost Θj,k and therefore also their sum
Θk =

∑
j∈J Θj,k (wj ). Thus, a point minimizing each local

cost Θj,k ,∀j ∈ J , is also a minimizer of the global cost Θk . To
consider arbitrary many time instants k ≥ 0 we can now define
the optimal solution set to problem (10):

Υ	 :=
⋂

k≥0

⋂

j∈J
Sj,k . (11)

Points in the set Υ	 minimize the global cost Θk for any time in-
stant k ≥ 0 and at any node j. We therefore call a point w	 ∈ Υ	

ideal estimate. However, finding w	 is a challenging task par-
ticularly under practical considerations. Due to limited memory,
for instance, not all measurements can be stored over time at
each node. Hence, information about the set Υ	 is unavailable
and thus an ideal estimate w	 cannot be acquired. An alterna-
tive, feasible task is the minimization of all but finitely many
global costs Θk . This approach stems from the intuition that a
good estimate should minimize as many costs Θk as possible.
To acquire such an estimate the nodes should agree on a point
contained in the set

Υ := lim inf
k→∞

Υk =
∞⋃

k=0

⋂

m≥k
Υm ⊃ Υ	 (12)

where the overbar gives the closure of a set. Finding a point in
Υ is clearly a less restrictive task than finding one in Υ	 since
all global costs Θk excluding finitely many ones need to be
minimized. Therefore, our proposed algorithm should achieve
estimates in the set Υ. It has been shown that the APSM con-
verges to points in the set Υ [27], [50].

Remark 1: For the above considerations we need to assume
that Υ	 �= ∅. To enable Υ	 �= ∅ the hyperslab threshold εj of
Sj,k should be chosen sufficiently large depending on the noise
distribution and its variance. Examples on how to choose εj in
noisy environments have been proposed in [48]. For impulsive
noise occurring finitely many times one can regard the time
instant of the final impulse as k = 0 to guarantee Υ	 �= ∅. If
however impulsive noise occurs infinitely many times on the
measurements it is not straightforward to ensure Υ	 �= ∅ and
convergence of the APSM which will be introduced later on.
Nevertheless, whenever the impulsive noise occurs the error

signal in the APSM will abruptly change. Based on this change
those noisy measurements can be detected and discarded in
practice so that Υ	 �= ∅ is satisfied.

IV. PROPOSED ALGORITHM: DIFFUSION-BASED MULTIKERNEL

ADAPTIVE FILTER

To solve (10) in a distributed way we employ a two-step
scheme consisting of a local adaptation and a diffusion stage
which has been commonly used in the literature, see e.g. [4],
[35], [49]:

1) a local APSM update per node j on the coefficient vector
wj giving an intermediate coefficient vector w′j ;

2) a diffusion stage to fuse vectors w′i from neighboring
nodes i ∈ Nj to update wj .

Step 1) ensures that each local cost Θj,k is reduced, and,
hence the global cost Θk is reduced as well. Step 2) seeks for a
consensus among all coefficient vectors {wj}j∈J through infor-
mation exchange among neighboring nodes to satisfy constraint
(10b). By this exchange each node inherently obtains the prop-
erty sets from its neighbors which can be exploited to improve
the convergence behavior of the learning algorithm.

A. Local APSM Update

The APSM asymptotically minimizes a sequence of non-
negative convex (not necessarily differentiable) functions [27]
and can thus be used to minimize the local cost function
Θj,k (wj ) in (8) per node j. For the coefficient vector wj,k ∈
RrQ at node j and time k a particular case of the APSM update
with the K-norm reads

w′j,k+1 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wj,k − μj,k
Θj,k (wj,k )−Θ	

j,k

||Θ′j,k (wj,k )||2K
Θ′j,k (wj,k )

if Θ′j,k (wj,k ) �= 0

wj,k otherwise
(13)

where Θ′j,k (wj,k ) is a subgradient1 of Θj,k (wj,k ) at wj,k .
The parameter μj,k ∈ (0, 2) is the step size. Since the learn-
ing scheme is to operate with the K-metric it is used for the
squared norm in the denominator. A subgradient for (8) is given
by [27]

Θ′j,k (wj,k ) =
wj,k − PK

Sj , k (wj,k )

||wj,k − PK
Sj , k (wj,k )||K , for wj,k /∈ Sj,k .

(14)
This subgradient gives ||Θ′j,k (wj,k )||2K = 1 and thus we arrive
at the following APSM update per node j:

w′j,k+1 := wj,k − μj,k
(
wj,k − PK

Sj , k (wj,k )
)
. (15)

As we can see, the difference vector wj,k − PK
Sj , k (wj,k ) is used

to move the coefficient vector wj,k into the direction of the
hyperslab Sj,k controlled by the step size μj,k . Note that this
update solely relies on local information, i.e., no information

1A vector Θ′(y) ∈ RM is a subgradient of a function Θ : RM → R at
y ∈ RM if Θ(y) + 〈x− y,Θ′(y)〉 ≤ Θ(x) for all x ∈ RM .
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from neighboring nodes is needed. The projection PK
Sj , k (wj,k )

is calculated by [45]

PK
Sj , k (w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w, if w ∈ Sj,k
w − wTκ(xj,k )− dj,k − εj

||K−1κ(xj,k )||2K
K−1κ(xj,k ),

if wTκ(xj,k ) > dj,k + εj

w − wTκ(xj,k )− dj,k + εj

||K−1κ(xj,k )||2K
K−1κ(xj,k ),

if wTκ(xj,k ) < dj,k − εj .
(16)

B. Diffusion Stage

To satisfy constraint (10b) and reach consensus on the coef-
ficient vectors wj , each node j fuses its own vector w′j with
those of its neighbors {w′i}i∈Nj . To this end, we employ a sym-
metric matrix G ∈ RJ×J assigning weights to the edges in the
network. The (j, i)-entry of G is denoted by gji and gives the
weight on the edge between nodes j and i. If no connection is
present among both nodes, the entry will be zero. The fusion
step per node j at time k follows

wj,k :=
∑

i∈Nj
gjiw

′
i,k . (17)

To guarantee that all nodes converge to the same coefficient
vector, G needs to fulfill the following conditions [10]:

||G− (1/J)1J1T
J ||2 < 1, G1J = 1J , (18)

where 1J is the vector of J ones. The first condition guarantees
convergence to the average of all states in the network while the
second condition keeps the network at a stable state if consensus
has been reached. Such matrices have been vastly applied in
literature for consensus averaging problems, see e.g. [4], [51],
[52]. Our proposed algorithm to solve (10) is then given by the
following update equations per node j and time index k:

w′j,k+1 := wj,k − μj,k
(
wj,k − PK

Sj , k (wj,k )
)

(19a)

wj,k+1 :=
∑

i∈Nj
gjiw

′
i,k+1 (19b)

where the projection PK
Sj , k (wj,k ) is given in (16). In each itera-

tion k each node j performs a local APSM update and transmits
its intermediate coefficient vector w′j,k to its neighbors i ∈ Nj .
After receiving the intermediate coefficient vectors w′i,k from
its neighbors, each node j fuses these with its own vector w′j,k
by a weighted average step.

In fact, (19a) comprises the projection in the Cartesian prod-
uct of Q RKHSs which is used by the CHYPASS algorithm
[32]. Therefore, we call our proposed scheme diffusion-based
CHYPASS (D-CHYPASS) being a distributed implementation
of CHYPASS.

Remark 2: If the diffusion stage (19b) in D-CHYPASS is
omitted the algorithm reduces to a local adaptation or non-
cooperative scheme where each node individually approximates
ψ based on its node-specific measurement data. However, in this
case each node j has access to its individual property set Sj,k

only per time instant k. In contrast, by diffusing the coefficient
vectors among neighboring nodes each node j inherently obtains
information about the property sets {Si,k}i∈Nj of its neighbors.
This can be simply observed when inserting (19a) into (19b).
Therefore, compared to local adaptation D-CHYPASS will show
a faster convergence speed and a lower steady-state error due to
a cooperation within the network. Several works have shown the
benefit of distributed approaches over non-cooperative strategies
in the context of diffusion-based adaptive learning, see [4] and
references therein.

V. THEORETICAL ANALYSIS

A. Consensus Matrix

To analyze the theoretical properties of the D-CHYPASS
algorithm, let us first introduce the definition of the consensus
matrix.

Definition 1 (Consensus Matrix [10]): A consensus matrix
P ∈ RrQJ×rQJ is a square matrix satisfying the following two
properties.

1) Pz = z and P Tz = z for any vector z ∈ C :={
1J ⊗ a ∈ RrQJ |a ∈ RrQ

}
.

2) The rQ largest singular values of P are equal to one and
the remaining rQJ − rQ singular values are strictly less
than one.

We denote by ⊗ the Kronecker product. We can further es-
tablish the following properties of the consensus matrix P :

Lemma 1 (Properties of Consensus Matrix [10]): Let en ∈
RrQ be a unit vector with its n-th entry being one and
bn = (1J ⊗ en )/

√
J ∈ RrQJ . Further, we define the consen-

sus subspace C := span{b1 , . . . , brQ} and the stacked vector of
all coefficient vectors in the network zk = [wT

1,k , . . . ,w
T
J,k ]

T ∈
RrQJ . Then, we have the following properties.

1) The consensus matrix P can be decomposed into
P = BBT + X with B := [b1 . . . brQ ] ∈ RrQJ×rQ and
X ∈ RrQJ×rQJ satisfying XBBT = BBTX = 0 and
||X||2 < 1.

2) The nodes have reached consensus at time index k if and
only if (IrQJ −BBT)zk = 0, i.e., zk ∈ C.

A consensus matrix can be constructed by matrix G as
P = G⊗ IrQ where IrQ is the rQ× rQ identity matrix.
The matrix P is then said to be compatible to the graph G
since zk+1 = Pzk can be equivalently calculated by wj,k+1 =∑

i∈Nj gjiwi,k (see (17)) [10]. By definition of the consensus
matrix we know that ||P ||2 = 1 holds. However, for further
analysis of the D-CHYPASS algorithm, we need to know the
norm w.r.t. matrix K since D-CHYPASS operates with the K-
metric. Therefore, we introduce a modified consensus matrix P̂
satisfying ||P̂ ||K = 1, where K := IJ ⊗K.

Lemma 2 (Modified Consensus Matrix): Suppose that P is
a consensus matrix defined as in Definition 1. Let

P̂ := K−1/2PK1/2

be the modified consensus matrix where K is the block-diagonal
matrix with J copies of K:

K := IJ ⊗K ∈ RrQJ×rQJ . (20)
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Assume further, that the dictionary Dq = {κq (·, x̄�)}r�=1 for
each q ∈ Q is linearly independent, i.e., its corresponding kernel
Gram matrix Kq is of full rank, and thus K is also linearly
independent. Then, the K-norm of P̂ is given by ||P̂ ||K = 1.
In particular, it holds that both consensus matrices are identical
to each other, i.e., P̂ = P .

Proof: The proof is given in Appendix B. �
Due to Lemma 2, for further analysis we are free to use either

P or P̂ and it holds that ||P ||K = ||P̂ ||K = 1.

B. Convergence Analysis

From (19) we can summarize both update equations of the
D-CHYPASS in terms of all coefficient vectors in the network
by defining

zk :=

⎡

⎢
⎣

w1,k
...

wJ,k

⎤

⎥
⎦, yk :=

⎡

⎢
⎣

μ1,k (w1,k − PK
S1 , k

(w1,k ))
...

μJ,k (wJ,k − PK
SJ , k (wJ,k ))

⎤

⎥
⎦

and rewriting (19a) and (19b) into

zk+1 = (G⊗ IrQ )(zk − yk ). (21)

We show the convergence properties of D-CHYPASS for fixed
and deterministic network topologies. Although the space under
study is the K-metric space unlike [8], [10] we can still prove
the properties due to Lemmas 1 and 2.

Theorem 1: The sequence (zk )k∈N generated by (21) satis-
fies the following.

1) Monotone approximation: Assume that wj,k /∈ Sj,k with
μj,k ∈ (0, 2) for at least one node j and that μi,k ∈
[0, 2] (i �= j). Then, for every w	

k ∈ Υk and z	k :=
[(w	

k )
T, (w	

k )
T, . . . , (w	

k )
T]T ∈ RrQJ it holds that

||zk+1 − z	k ||K < ||zk − z	k ||K (22)

where Υk �= ∅ since we assume that Υ	 �= ∅.
For the remaining properties we assume that μj,k ∈ [ε1 , 2−

ε2 ] with ε1 , ε2 > 0 and that a sufficiently large hyperslab thresh-
old εj per node j has been chosen such that w	 ∈ Υ	 �= ∅.
We further define z	 := [(w	)T, (w	)T, . . . , (w	)T]T. Then the
following holds:

2) Asymptotic minimization of local costs: For every z	

the local costs Θj,k (wj,k ) = ||wj,k − PK
Sj , k (wj,k )||K are

asymptotically minimized, i.e.,

lim
k→∞

Θj,k (wj,k ) = 0,∀j ∈ J . (23)

3) Asymptotic consensus: With the decomposition P =
BBT + X and ||X||2 < 1 the sequence (zk )k∈N asymp-
totically achieves consensus such that

lim
k→∞

(IrQJ −BBT)zk = 0. (24)

4) Convergence of (zk )k∈N: Suppose that Υ	 has a
nonempty interior, i.e., there exists ρ > 0 and interior
point ũ such that {v ∈ RrQ | ||v − ũ||K ≤ ρ} ⊂ Υ	 .
Then, the sequence (zk )k∈N converges to a vector ẑ =
[ŵT, . . . , ŵT]T ∈ C satisfying (IrQJ −BBT)ẑ = 0.

5) Characterization of limit point ẑ: Suppose for an interior
ũ ∈ Υ	 that for any ε > 0 and any η > 0 there exists a
ξ > 0 such that

min
k∈I

∑

j∈J
||wj,k − PK

Sj , k (wj,k )||K ≥ ξ, (25)

where

I :=
{
k ∈ N |

∑

j∈J
dK(wj,k , lev≤0Θj,k ) > ε

and
∑

j∈J
||ũ−wj,k ||K ≤ η

}

and lev≤0Θj,k := {w ∈ RrQ |Θj,k (w) ≤ 0}. Then it
holds that ŵ ∈ Υ with Υ defined as in (12).

Proof: The proofs of Theorems 1.1–1.3 can be directly de-
duced from the corresponding proofs of Theorems 1a)–1c)
in [10, Appendix III] under the consideration that ||P ||2 =
||P ||K = 1 (see Lemma 2) and that Θj,k (wj ) is a non-negative
convex function. Note that the proof of Theorem 1.1 needs to
be derived considering the K-metric and not the ordinary Eu-
clidean metric as in [10]. The proofs of Theorems 1.4 and 1.5
are given in Appendix C. �

VI. NUMERICAL EVALUATION

In the following section, we evaluate the performance of the
D-CHYPASS by applying it to the spatial reconstruction of
multiple Gaussian functions, real altitude data and the track-
ing of a time-varying nonlinear function by a network of
nodes. The nodes are distributed over the unit-square area
A = [0, 1]2 and each node j uses its Cartesian position vec-
tor xj = [xj,1 , xj,2 ]T ∈ X as its regressor. We assume that the
positions of the nodes stay fixed, i.e., xj,k does not change
over time. This is not necessary for the D-CHYPASS to be ap-
plicable, e.g. it can be applied to a mobile network where the
positions change over time as investigated in [42]. Per time in-
dex k the nodes take a new measurement dj,k of the function
ψ at their position xj . Hence, the network constantly monitors
the function ψ. For all experiments we assume model (7) with
zero-mean white Gaussian noise of variance σ2

n . Since in this
scenario measurements of the function ψ are spatially spread
over the nodes a collaboration among the nodes is inevitable
for a good regression performance. Thus, it is an appropriate
application example where the benefit of distributed learning
becomes clear.

We compare the performance of the D-CHYPASS to the RFF-
DKLMS [36], the FATC-KLMS [35] and the multikernel dis-
tributed consensus-based estimation (MKDiCE) [34] which are
state of the art algorithms for distributed kernel-based estima-
tion. Both RFF-DKLMS and FATC-KLMS are single kernel
approaches based on a diffusion mechanism. Assuming that
the FATC-KLMS only considers local data in its adaptation
step, both schemes exhibit the same number of transmissions
per node as the D-CHYPASS. To enable a fair comparison we
restrict the adaptation step of the FATC-KLMS to use local
data only and extend the algorithm by multiple kernels as in
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D-CHYPASS. We call this scheme the diffusion-based multik-
ernel least-mean-squares (DMKLMS). Its update equation per
node j is given by

w′j,k+1 := wj,k + μj,k
(
dj,k −wT

j,kκ(xj,k )
)
κ(xj,k ) (26a)

wj,k+1 :=
∑

i∈Nj
gjiw

′
i,k+1 . (26b)

The RFF-DKLMS approximates kernel evaluations by ran-
dom Fourier features such that no design of a specific dictionary
set is necessary. However, its performance is highly dependent
on the number of the utilized Fourier features which determines
the dimension of the vectors to be exchanged. The MKDiCE is a
distributed regression scheme based on kernel least squares with
multiple kernels using the ADMM for its distributed mechanism.
The number of transmissions per iteration is higher compared
to the D-CHYPASS, RFF-DKLMS and DMKLMS. Naturally,
it is not an adaptive scheme but is included here for reference
purposes. As benchmark performance, we consider the central
CHYPASS given by

wk+1 := wk − μ
∑

j∈J

(
wk − PK

Sj , k (wk )
)
. (27)

The central CHYPASS requires all node positions and measure-
ments {(xj,k , dj,k )}j∈J per time index k at a single node to
perform the projection PK

Sj , k (wk ) onto each set Sj,k .
Regarding the dictionaries we assume that each Dq uses the

same samples {x̄�}r�=1 . These samples are a subset of the node
positions {xj}j∈J in the network and are selected following the
coherence criterion: A node position xj is compared to every
dictionary entry {x̄�}r�=1 and is included as dictionary sample
x̄r+1 if it satisfies

max
q∈Q

max
�=1,...,r

|κq (xj , x̄�)| ≤ τ. (28)

Here, 0 < τ ≤ 1 is the coherence threshold controlling the car-
dinality of Dq . The dictionary Dq is generated a priori over all
node positions before the algorithm iterates. After that it stays
fixed throughout the reconstruction process for the specific al-
gorithm.

As error metric we consider the network NMSEk per time k
over the area A. It evaluates the normalized squared-difference
between reconstructed field ϕj (x) and the true field ψ(x) aver-
aged over all nodes:

NMSEk :=
1
J

∑

j∈J

E
{∫

A |ψ(x)−wT
j,kκ(x)|2dx

}

∫
A |ψ(x)|2dx . (29)

The expectation in the numerator is approximated by averag-
ing over sufficiently many independent trials. The integrals are
approximated by a sum over regularly positioned grid points
which sample the area A.

A. Multiple Gaussian Functions

As a first example we apply the D-CHYPASS algorithm
to the reconstruction of two Gaussian functions with different

TABLE I
PARAMETER VALUES FOR EXPERIMENT IN SECTION VI-A

bandwidths given as follows:

ψ(x) := 2 exp
(
−||x− p1 ||2R2

2 · 0.12

)
+ exp

(
−||x− p2 ||2R2

2 · 0.32

)

with p1 = [0.5, 0.7]T,p2 = [0.3, 0.1]T, and the Cartesian coor-
dinate vector x = [x1 , x2 ]T. We use J = 60 nodes randomly
placed over A following a uniform distribution where nodes
share a connection if their distance to each other satisfies
D < 0.3. We assume a noise variance of σ2

n = 0.3 at the nodes
and average the performance over 200 trials with a new net-
work realization in each trial. Regarding the kernel choice we
use two Gaussian kernels (Q = 2) with bandwidths ζ1 = 0.1
and ζ2 = 0.3. For all diffusion-based algorithms we use the
Metropolis-Hastings weights [53] where each entry gji is deter-
mined by

gji =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
max{δj , δi} if j �= i and (j, i) ∈ E

1−∑i∈Nj \{j}
1

max{δj , δi} if j = i

0 otherwise

and δj = |Nj | denotes the degree of a node j. For all algorithms
we set the coherence threshold τ such that the same average
dictionary size of r̄ = 33 is utilized. Single kernel approaches
use the arithmetic average of the bandwidths chosen for the
multikernel schemes as their kernel bandwidth. We evaluate the
D-CHYPASS (I) with a hyperplane projection, i.e., εj = 0, and
the D-CHYPASS (II) with a hyperslab projection with εj = 0.5.
The chosen parameter values for the considered algorithms are
listed in Table I.

Fig. 1 compares the NMSE learning curves of D-
CHYPASS (I) and D-CHYPASS (II) to a local adaptation and
the central CHYPASS. Clearly, the local adaptation completely
fails to approximate ψ while both D-CHYPASS (I) and D-
CHYPASS (II) perform close to the central CHYPASS. Fig. 2
compares the performance of D-CHYPASS (I) to state of the art
schemes. D-CHYPASS (I) significantly outperforms the com-
pared algorithms in terms of convergence speed and steady-state
error. Regarding monokernel approaches, FATC-KLMS outper-
forms RFF-DKLMS (I) in its steady-state error although it uses
a dictionary of only r̄ = 33 samples compared to rRFF = 100
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Fig. 1. Comparing learning curves of D-CHYPASS to central and local adap-
tation.

Fig. 2. Learning curves for the reconstruction of multiple Gaussian functions.

random Fourier features. By increasing the number of Fourier
features to rRFF = 500 the performance can be significantly
improved, cf. RFF-DKLMS (II). Nevertheless, this improve-
ment comes with a huge increase in communication overhead
since the number of Fourier features is equal to the dimension
of the coefficient vectors to be exchanged. While DMKLMS
exchanges vectors with r̄Q = 66 entries only, the coefficient
vectors in RFF-DKLMS (II) have rRFF = 500 entries. Thus,
by relying on an a priori designed dictionary as in DMKLMS
and D-CHYPASS, huge savings in communication overhead
and computational complexity can be achieved. The enhanced
performance by D-CHYPASS compared to the other multiker-
nel approaches is due to a better metric in form of the K-norm
and the normalization factor ||K−1κ(xj,k )||2K in the projec-
tion PK

Sj , k (wj,k ) which adapts the step size μj,k . By exploiting
the projection w.r.t. the K-norm the shape of the cost func-
tion Θj,k (wj,k ) is changed such that convergence speed is
improved [54].

From Fig. 1, D-CHYPASS (I) and (II) show a similar perfor-
mance with a negligible loss for D-CHYPASS (II). However,
this minor loss comes with a huge reduction in complexity per
node j. Since D-CHYPASS (II) projects onto a hyperslab with
εj = 0.5 there is a higher probability that wj,k is contained
in Sj,k than in D-CHYPASS (I) where εj = 0. If wj,k ∈ Sj,k ,
the vector wj,k is not updated saving a significant amount of

Fig. 3. Number of updates per node and NMSE for different values of the
hyperslab threshold εj for the D-CHYPASS.

Fig. 4. Contour plots of the true ψ(x) (left) and its reconstruction ϕ(x)
(right) at one node using the D-CHYPASS at steady state. Green circles show
the node positions and filled circles the chosen dictionary entries.

computations. In contrast, when using a hyperplane (εj = 0) the
vector wj,k has to be updated in each iteration. Fig. 3 shows the
number of local APSM updates (19a) per node in logarithmic
scale over the hyperslab threshold εj . Additionally, the NMSE
averaged over the last 200 iterations in relation to the thresh-
old is depicted. For thresholds εj > 0 a step size of μj,k = 0.5
is used. We can observe that using hyperslab thresholds up to
εj = 0.5 saves a huge amount of complexity while keeping
the error performance constant. E.g. for D-CHYPASS (II) with
εj = 0.5 in average 5,468 updates are executed per node. Com-
pared to 15,000 updates for D-CHYPASS (I) a reduction of
approximately 64% in computations can be achieved. This is
crucial especially for sensors with low computational capability
and limited battery life. However, from Fig. 3 it is also clear
that the computational load cannot be arbitrarily reduced with-
out degrading the reconstruction performance. This is visible
especially for thresholds εj > 1.

In Fig. 4 we depict the contour plot of the true function ψ(x)
together with an exemplary set of node positions and the recon-
structed function ϕ(x) by D-CHYPASS (I). The reconstruction
is shown for one node in the network at steady state. By virtue
of the consensus averaging step each node in the network will
have the same reconstruction. We can observe that both Gaus-
sian functions are approximated with good accuracy. The peaks



SHIN et al.: DISTRIBUTED ADAPTIVE LEARNING WITH MULTIPLE KERNELS IN DIFFUSION NETWORKS 5513

Fig. 5. NMSE over dictionary size for the reconstruction of multiple Gaussian
functions.

Fig. 6. Learning curves for the reconstruction of multiple Gaussian functions
for a coherence threshold τ = 0.99 corresponding to an average dictionary size
of r̄ = 53 samples.

of both functions can be clearly distinguished. However, at outer
regions some inaccuracies can still be seen. These are expected
to be reduced when increasing the dictionary size.

Fig. 5 shows the error performance of the algorithms over
the averaged dictionary size r̄ for 200 trials. The NMSE val-
ues are calculated as an average over the last 200 iterations
with again 15,000 iterations for each algorithm. We observe
that D-CHYPASS (I) outperforms its competitors with grow-
ing dictionary size. In particular, DMKLMS and MKDiCE lose
in performance for dictionary sizes r̄ > 33 while D-CHYPASS
steadily improves its reconstruction. This is due to the reason
that for DMKLMS and MKDiCE the step size has to be adjusted
to the growing dictionary size to avoid an increasing steady-state
error. In DMKLMS the step size is not normalized to the squared
norm of the kernel vector κ(x) as in D-CHYPASS which can
lead to divergence. Regarding FATC-KLMS a similar effect is
expected to appear for higher dictionary sizes r̄ > 60 since it
uses one kernel only. Therefore, in the range of 40 to 60 dictio-
nary samples it performs better than DMKLMS and MKDiCE.
To show that the performance of MKDiCE and DMKLMS can
be improved, in Fig. 6 we depict the NMSE performance for
an adapted step size over the iteration with τ = 0.99. This
coherence threshold results in an average dictionary size of

TABLE II
PARAMETER VALUES FOR EXPERIMENT IN SECTION VI-B

r̄ = 53, a point where MKDiCE and DMKLMS show degrading
performance according to Fig. 5. The step sizes are chosen as
μj,k = 0.05 for DMKLMS and μj,k = 0.2 for MKDiCE, re-
spectively. We observe that by adjusting the step size to the
dictionary size the steady-state performance at r̄ = 53 is im-
proved compared to Fig. 5. Now, both MKDiCE and DMKLMS
outperform FATC-KLMS.

Remark 3: Regarding D-CHYPASS (I) it should be noted
that for τ > 0.98 divergence was observed. This is caused by
the inversion of an ill-conditioned kernel Gram matrix K. This
occurs if the dictionary employs node positions close to each
other leading to linear dependency in K. With a higher co-
herence threshold the probability of such a case increases. To
numerically stabilize the inversion of K a scaled identity ma-
trix γIrQ is added to the matrix as regularization. The matrix
K in (16) is then substituted by K + γIrQ . For thresholds
τ > 0.98 a regularization parameter of γ = 0.01 was used in
this experiment to achieve a stable performance.

B. Real Altitude Data

We apply D-CHYPASS to the reconstruction of real altitude
data where each node measures the altitude at its position xj .
For the data we use the ETOPO1 global relief model which
is provided by the National Oceanic and Atmospheric Admin-
istration [55] and which exhibits several low/high frequency
components. In the original data the position is given by the
longitude and latitude and the corresponding altitude ψ(x) is
delivered for each such position. As in [56], we choose an area of
31× 31 points with longitudes {138.5, 138.5 + 1

60 , . . . , 139}
and latitudes {34.5, 34.5 + 1

60 , . . . , 35}. However, for easier
handling we map longitudes and latitudes to Cartesian coordi-
nates in the unit-square area such that x ∈ [0, 1]2 . We consider
J = 200 nodes randomly placed over the described area. Nodes
with a distance D < 0.2 to each other share a connection. We
assume noise with σ2

n = 0.3. The coherence threshold is set
such that each algorithm employs a dictionary of average size
r̄ = 105 while the RFF-DKLMS uses rRFF = 200 Fourier fea-
tures. The performances are averaged over 200 independent tri-
als. Table II lists the chosen parameter values for the considered
algorithms.

Fig. 7 depicts the NMSE performance over the itera-
tion. Again D-CHYPASS outperforms the other algorithms in
terms of convergence speed and steady-state error. Although
DMKLMS performs very close to D-CHYPASS it can be ob-
served that the convergence speed of D-CHYPASS is faster.
FATC-KLMS and RFF-DKLMS perform worst since their
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Fig. 7. Learning curves for the reconstruction of altitude data.

Fig. 8. Contour plots of the altitude reconstruction by one node for the
D-CHYPASS, DMKLMS, and MKDiCE.

reconstruction capability is limited by the use of one kernel
only. While RFF-DKLMS converges faster than FATC-KLMS
it should be noted that it produces a higher communication
overhead due to the use of rRFF = 200 Fourier features com-
pared to r̄ = 105 dictionary samples in FATC-KLMS. The con-
tour plots for the multikernel approaches at steady-state at
one node are shown in Fig. 8. For the D-CHYPASS we can
observe a good reconstruction of the original ψ(x) although
details in the area around [0.4, 0.7]T and [0.4, 0.3]T are miss-
ing. The reconstructions by DMKLMS and MKDiCE show a
less accurate approximation especially in the areas around the
valley [0.4, 0.3]T.

C. Time-Varying Nonlinear Function

In the following, we examine the tracking performance of
the D-CHYPASS w.r.t. time-varying functions. To this end, we
consider the following function being dependent on both the

TABLE III
PARAMETER VALUES FOR EXPERIMENT IN SECTION VI-C

Fig. 9. NMSE performance over iteration number for the tracking of a time-
varying function.

position x and time k:

ψ(x, k) = 0.8 exp
(
− ||x− p1 ||2R2

2(1− 0.5 sin(2π10−3k)) · 0.32

)

+ exp
(
− ||x− p2 ||2R2

2(1 + 0.5 sin(2π10−3k)) · 0.12

)

with p1 = [0.6, 0.5]T and p2 = [0.25, 0.3]T. This function con-
tains two Gaussian shapes whose bandwidths are expanding
and shrinking over time k. We apply the D-CHYPASS to the
reconstruction of the time-varying function ψ(x, k) and com-
pare it to the MKDiCE and DMKLMS. We use a network of
J = 80 nodes randomly distributed over the unit-square area
and average the performance over 200 trials with a new net-
work realization in each trial. The noise variance is σ2

n = 0.3.
For the considered algorithms we set τ such that an average
dictionary size of r̄ = 36 samples is achieved. We evaluate the
D-CHYPASS with one and two kernels. Table III lists the chosen
parameter values for the considered algorithms.

Fig. 9 shows the NMSE over the iteration number k. The
fluctuations in the error curves are due to the time-varying band-
widths in ψ(x, k). For all algorithms these fluctuations stay in
a specific error range illustrating that the function ψ(x, k) can
be tracked within a certain range of accuracy. We observe that
D-CHYPASS (I) and (II) significantly outperform the remaining
algorithms. Additionally, the range of the fluctuations in the er-
ror is lower for D-CHYPASS compared to the other algorithms.
It is also visible that utilizing two kernels in D-CHYPASS (I)
improves the tracking performance compared to using one ker-
nel as in D-CHYPASS (II). Nevertheless it is worth noting, that
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TABLE IV
COMPUTATIONAL COMPLEXITY AND OVERHEAD OF ALGORITHMS

Fig. 10. Computational complexity and communication overhead of the
algorithms per iteration k over the dictionary size r.

even with only one kernel the D-CHYPASS (II) outperforms the
multikernel approaches DMKLMS and MKDiCE illustrating
the significant gain by employing the K-norm in the algorithm.

D. Computational Complexity and Communication Overhead

We analyze the complexities and communication overhead
per iteration of the algorithms. For the complexities we con-
sider the number of multiplications and assume that Gaussian
kernels are used. Each dictionary Dq is designed a priori, stays
fixed over time k and is common to all nodes. Therefore, the ker-
nel Gram matrix K can be computed offline before the iterative
process of D-CHYPASS avoiding an inversion in each iteration.
Note that K is block diagonal such that Q inversions of r × r
matrices have to be computed. This results in a complexity of
order O(JQr3) in the network before D-CHYPASS starts it-
erating. To further reduce the complexity of D-CHYPASS the
selective-update strategy can be applied. It selects the s most
coherent dictionary samples such that only s entries of the co-
efficient vector wj,k are updated [47]. Usually, s ≤ 5 so that
s� r. Then per iteration k the inverse of an s× s matrix has
to be computed while reducing the number of multiplications.
For the overhead we count the number of transmitted scalars
among all nodes. All algorithms except the MKDiCE use a
consensus averaging step that causes broadcast transmissions
only. The MKDiCE comprises also unicast transmissions of
vectors which depend on the receiving node and which increase
the overhead significantly. Table IV lists the complexities and
overhead of the algorithms where the complexity for an in-
version of a p× p matrix is denoted by vinv(p) := p3 . Fig. 10

depicts the complexity and the overhead over the dictionary
size r for L = 2, s = 7, Q = 2 and a network of J = 60 nodes
with |E| = 300 edges. The RFF-DKLMS with rRFF = 500 is
included as reference. Clearly, the complexity and overhead of
the ADMM-based MKDiCE are highest among the algorithms
due to the inversion of a Qr ×Qr matrix per iteration k and
the transmission of unicast vectors, respectively. Furthermore,
for dictionary sizes up to r = 50 the D-CHYPASS has lower
complexity than the RFF-DKLMS. By including the selective-
update strategy the complexity of D-CHYPASS is significantly
reduced and is even lower than the FATC-KLMS. D-CHYPASS
and DMKLMS exhibit the same overhead per iteration which is
lower compared to RFF-DKLMS for r < 200.

VII. CONCLUSION

We proposed an adaptive learning algorithm exploiting multi-
ple kernels and projections onto hyperslabs for the regression of
nonlinear functions in diffusion networks. We provided a thor-
ough convergence analysis regarding monotone approximation,
asymptotic minimization, consensus and the limit point of the
algorithm. To this end, we introduced a novel modified con-
sensus matrix which we proved to be identical to the ordinary
consensus matrix. As an application example we investigated the
proposed scheme for the reconstruction of spatial distributions
by a network of nodes with both synthetic and real data. Note
that it is not restricted to such a scenario and can be applied in
general to any distributed nonlinear system identification task.
Compared to the state of the art algorithms we could observe
significant gains in error performance, convergence speed and
stability over the employed dictionary size. In particular, our
proposed APSM-based algorithm significantly outperformed an
ADMM-based multikernel scheme (MKDiCE) in terms of error
performance with highly decreased complexity and communi-
cation overhead. By embedding the hyperslab projection the
computational demand per node could be drastically reduced
over a certain range of thresholds while keeping the error per-
formance constant.

APPENDIX A
DERIVATION IN CARTESIAN PRODUCT SPACE

OF MULTIPLE RKHSS

A. Equivalent Functional Problem Formulation

Since ψ lies in the sum space H+ of Q RKHSs
it is decomposable into the sum ψ :=

∑
q∈Q ψ(q) where

ψ(q) ∈ Hq . To estimate ψ we utilize a multikernel adap-
tive filter ϕ following (2). Then ϕ can be expressed as
a decomposable sum ϕ :=

∑
q∈Q ϕ(q) ∈ H+ with ϕ(q) :=∑r

�=1 wq,�κq (·, x̄�) ∈ Hq . Each monokernel filter ϕ(q) is an el-
ement of the dictionary subspaceMq := span{κq (·, x̄�)}r�=1 .
Hence, ϕ lies in the sum of Q dictionary subspaces

M+ :=M1 +M2 + · · ·+MQ ⊂ H+ . (30)

To estimate ψ by each node j in the network, we first define the
following hyperslab containing all functions ϕ of bounded local
instantaneous error to the current measurement dj,k at node j
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and time k:

S̆j,k := {ϕ ∈M+ : |〈ϕ, κ(·,xj,k )〉H+ − dj,k | ≤ εj}, (31)

where here κ :=
∑Q

q=1 κq is the reproducing kernel of the sum
spaceH+ . To each node j we assign a multikernel adaptive filter
ϕj ∈ H+ as an individual estimate of ψ. To pursue an adaptive
learning approach of ψ in the sum spaceH+ we define the local
cost to be the metric distance between the estimate ϕj and its
projection PH

+

S̆j , k (ϕj ) onto the hyperslab S̆j,k :

Θ̆j,k (ϕj ) = ||ϕj − PH+

S̆j , k (ϕj )||H+ . (32)

Then we can formulate the following consensus-based op-
timization problem w.r.t. the estimates {ϕj}j∈J in the sum
spaceH+ :

min
{ϕj |j∈J }

∑

j∈J
Θ̆j,k (ϕj ) (33a)

s.t. ϕj = ϕi, ∀i ∈ Nj . (33b)

However, in the sum space H+ the norm and inner product
have no closed-form expressions, since functions might not be
uniquely decomposable depending on the chosen kernels [32].
Thus, solving (33) with (32) in closed form inH+ is not possi-
ble. An alternative approach is to formulate the problem in the
Cartesian product spaceH× defined as

H× := H1 ×H2 × · · · × HQ (34a)

:= {(f1 , f2 , . . . , fQ ) : fq ∈ Hq , q ∈ Q}. (34b)

InH× the non-unique decomposability issue does never occur
since the tuple of functions is considered rather than their sum
[32]. Its norm has the closed-form expression

||F ||H× :=
√∑

q∈Q
||f(q) ||2Hq

, ∀F := (f(q))q∈Q ∈ H×. (35)

Instead of the sum ϕ =
∑

q∈Q ϕ(q) we consider the Q-tuple
Φ := (ϕ(q))q∈Q in H× with Φ : X → RQ . In the same way for
ψ we consider the Q-tuple Ψ := (ψ(q))q∈Q. Since each monok-
ernel filterϕ(q) is an element of the dictionary subspaceMq , the
tuple Φ lies in the Cartesian product of Q dictionary subspaces

M× :=M1 ×M2 × · · · ×MQ ⊂ H×. (36)

To formulate (33) in the product space H×, we design the hy-
perslab

S̃j,k := {Φ ∈M× : |〈Φ, κ̃(·,xj,k )〉H× − dj,k | ≤ εj} (37)

for each node j containing all Φ s of bounded local instantaneous
error at time instant k. Here, κ̃ : X × X → RQ , (x,x′) �→
(κq (x,x′))q∈Q with x,x′ ∈ X and κ̃(·,x) := (κq (·,x))q∈Q ∈
H×. The estimated output for xj,k is then given by ϕ(xj,k ) =
〈Φ, κ̃(·,xj,k )〉H× =

∑
q∈Q

〈
ϕ(q) , κq (·,xj,k )

〉
Hq

using the re-
producing property of each kernel. To each node j we assign
a corresponding tuple Φj . By analogy with (32) we define the
local cost function Θ̃j,k per node j inH× as

Θ̃j,k (Φj ) = ||Φj − PH×S̃j , k (Φj )||H× . (38)

The respective global optimization problem w.r.t. the functions
{Φj}j∈J in the network reads

min
{Φ j |j∈J }

∑

j∈J
Θ̃j,k (Φj ) (39a)

s.t. Φj = Φi , ∀i ∈ Nj . (39b)

Since the norm inH× has the closed-form expression (35), prob-
lem (39) is tractable. In general, an optimal solution of (33) in the
sum space H+ corresponds to multiple different tuples in H×
as points inH+ are not uniquely decomposable. In other words,
every such optimal tuple in H× sums up to the same optimal
solution inH+ . Regarding the relation between the product and
parameter spaces we note that the finite-dimensional dictionary
subspace (M×, 〈·, ·〉H×) is isomorphic to the Euclidean param-
eter space (RrQ , 〈·, ·〉K), see [47, Lemma 1]. In the parameter
space the inner product ofH× is preserved by 〈·, ·〉K and Φj is
equivalent to the respective coefficient vector wj ∈ RrQ . Then,
under the correspondenceM× � Φj ←→ wj ∈ RrQ problem
(39) is the equivalent formulation in the product space H× of
problem (10) such that Θ̃j,k (Φj ) = Θj,k (wj ) holds.

B. Derivation of Local APSM Update

For the derivation of the local update in D-CHYPASS based
on (39) we first consider the local APSM update for Φj,k under
the assumption that Φj,k /∈ S̃j,k :

Φ′j,k+1 = Φj,k − μj,k
Θ̃j,k (Φj,k )− Θ̃	

j,k

||Θ̃′j,k (Φj,k )||2H×
Θ̃′j,k (Φj,k ) (40)

A subgradient of Θ̃j,k (Φj,k ) is given by

Θ̃′j,k (Φj,k ) :=
Φj,k − PH×S̃j , k (Φj,k )

||Φj,k − PH×S̃j , k (Φj,k )||H×
. (41)

Inserting (38) and (41) into the APSM update (40) we achieve

Φ′j,k+1 = Φj,k − μj,k
(
Φj,k − PH×S̃j , k (Φj,k )

)
. (42)

The projection PH
×

S̃j , k (Φj,k ) can be calculated by [32]

PH
×

S̃j , k (Φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ, if Φ ∈ S̃j,k
Φ− Φ(xj,k )− dj,k − εj

∑
q∈Q ||PHq

Mq
(κq (·,xj,k ))||2Hq

×∑q∈Q P
Hq

Mq
(κq (·,xj,k )),

if Φ(xj,k ) > dj,k + εj

Φ− Φ(xj,k )− dj,k + εj
∑

q∈Q ||PHq

Mq
(κq (·,xj,k ))||2Hq

×∑q∈Q P
Hq

Mq
(κq (·,xj,k )),

if Φ(xj,k ) < dj,k − εj

(43)

where P
Hq

Mq
is the projection operator onto the dictionary

subspace Mq . By virtue of [32, Lemma 1] it holds that

P
Hq

Mq
(κq (·,xj,k )) =

∑r
�=1 α

(q)
j,� κq (x̄� , ·) with the coefficients
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α
(q)
j := [α(q)

j,1 , . . . , α
(q)
j,r ]

T = K−1
q κq (xj,k ). The squared norm

in the denominator of the projection PH
×

S̃j , k (Φ) yields

||PHq

Mq
(κq (·,xj,k ))||2Hq

= 〈PHq

Mq
(κq (·,xj,k )), κq (·,xj,k )〉Hq

=
r∑

�=1

α
(q)
j,� κq (x̄� ,xj,k ).

Thus, the denominators in (43) can be computed by

∑

q∈Q
||PHq

Mq
(κq (·,xj,k ))||2Hq

=
∑

q∈Q

r∑

�=1

α
(q)
j,� κq (x̄� ,xj,k )

= ||K−1κ(xj,k )||2K .
By parameterizing each Φj in terms of wj and assuming a fixed
dictionaryDq for each kernel κq we arrive at the update equation
presented in (19a) with the projection (16).

APPENDIX B
PROOF OF LEMMA 2

Let us consider the squared K-norm of P̂ :

||P̂ ||2K := max
x �=0

||P̂ x||2K
||x||2K

= max
x�=0

xTP̂
TKP̂ x

xTKx

We assume K to be non-singular. Hence, K−1/2 exists and we
can insert P̂ = K−1/2PK1/2 :

||P̂ ||2K = max
x�=0

xTK1/2P TK−1/2KK−1/2PK1/2x

xTKx

= max
y �=0

yTP TPy

yTy
with y = K1/2x.

By definition of the consensus matrix P it follows that ||P̂ ||2K =
1. We now show that the modified consensus matrix P̂ is iden-
tical to P . Assume that P is compatible to the graph G of any
connected, undirected network via the matrix G ∈ RJ×J . Then,
it holds that P = G⊗ IrQ . By examining the definition of P̂
we find

P̂ = K−1/2PK1/2 = K−1/2(G⊗ IrQ )K1/2

=

⎡

⎢
⎣

K−1/2 0
. . .

0 K−1/2

⎤

⎥
⎦

×

⎡

⎢
⎣

g11IrQ . . . g1J IrQ
...

. . .
...

gJ 1IrQ . . . gJ J IrQ

⎤

⎥
⎦

⎡

⎢
⎣

K1/2 0
. . .

0 K1/2

⎤

⎥
⎦

=

⎡

⎢
⎣

g11K
−1/2IrQK1/2 . . . g1JK−1/2IrQK1/2

...
. . .

...
gJ 1K

−1/2IrQK1/2 . . . gJ JK−1/2IrQK1/2

⎤

⎥
⎦

= G⊗ IrQ = P

Thus, matrices P̂ and P are equivalent to each other.

APPENDIX C
PROOF OF THEOREM 1

A. Proof of Theorem 1.4

We mimic the proof of [49, Th. 2.3] to show the con-
vergence of (zk )k∈N . From Theorem 1.1 we know that
the sequence (||zk − z	 ||2K)k∈N converges for every z	 =
[(w	)T, . . . , (w	)T]T where w	 ∈ Υ	 . Thus, the sequence
(zk )k∈N is bounded and every subsequence of (zk )k∈N has an
accumulation point. Then, according to the Bolzano-Weierstrass
Theorem the bounded real sequence (zk )k∈N has a convergent
subsequence (zkl )kl ∈N . Let ẑ be the unique accumulation point
of (zkl )kl ∈N . With limk→∞(IrQJ −BBT)zk = 0 it follows
that

lim
k→∞

(IrQJ −BBT)zkl = (IrQJ −BBT)ẑ = 0.

Hence, ẑ lies in the consensus subspace C. To show that this
point is a unique accumulation point suppose the contrary,
i.e., ẑ = [ŵT, . . . , ŵT]T ∈ C and z̃ = [w̃T, . . . , w̃T]T ∈ C are
two different accumulation points. For every z	 the sequence
(||zk − z	 ||2K)k∈N converges and hence it follows that

0 = ||ẑ − z	 ||2K − ||z̃ − z	 ||2K
= ||ẑ||2K − ||z̃||2K − 2(ẑ − z̃)TKz	

= ||ẑ||2K − ||z̃||2K − 2J(ŵ − w̃)TKw	 .

It thus holds that w	 ∈ H :=
{
w | 2J(ŵ − w̃)Kw = ||ẑ||2K −

||z̃||2K
}

where ŵ − w̃ �= 0 (⇔ ẑ �= z̃). Since we assume that
w	 ∈ Υ	 this implies that Υ	 is a subset of the hyperplane H .
This contradicts the assumption of a nonempty interior of Υ	 .
Hence, the bounded sequence (zk )k∈N has a unique accumula-
tion point, and so it converges.

B. Proof of Theorem 1.5

In this proof we mimic the proof of [27, Th. 2(d)], [50, Th.
3.1.4] and [8, Th. 2(e)] to characterize the limit point ŵ of the
sequence (wj,k )k∈N ,∀j ∈ J . Furthermore, we need [27, Claim
2] which is proven for any real Hilbert space and thus, also holds
for the K-metric Euclidean space.

Fact 1 ([27, Claim 2]): Let C ⊂ RrQ be a nonempty closed
convex set. Suppose that ρ > 0 and ũ satisfies {v ∈ RrQ | ||v −
ũ||K ≤ ρ} ⊂ C. Assume w ∈ RrQ/C and t ∈ (0, 1) such
that ut := tw + (1− t)ũ /∈ C. Then dK(w, C) > ρ 1−t

t =
ρ ||ut−w||K
||ut−ũ||K > 0 with dK(w, C) := ||w − PK

C (w)||K .
Assume the contrary of our statement, i.e., ŵ �∈

lim infk→∞ Υk . Denote by ũ an interior point of Υ	 . There-
fore, there exists ρ > 0 such that {v ∈ RrQ | ||v − ũ||K ≤
ρ} ⊂ Υ	 . Furthermore, there exists t ∈ (0, 1) such that ut :=
tŵ + (1− t)ũ /∈ Υ ⊃ lim infk→∞Υk . Since limk→∞wj,k =
ŵ (∀j ∈ J ) there exists N1 ∈ N such that ||wj,k − ŵ||K ≤
ρ 1−t

2t ,∀k ≥ N1 ,∀j ∈ J . Then, by ut /∈ lim infk→∞Υk for
any L1 > N1 there exists k1 ≥ L1 satisfying ut /∈ Υk1 =⋂
j∈J (lev≤0Θj,k1 ). It follows that there exists a node i ∈ J such

that ut /∈ lev≤0Θi,k1 . By Υ ⊂ Υk ⊂ lev≤0Θi,k1 and Fact 1
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for node i it holds that

dK(wi,k1 , lev≤0Θi,k1 ) ≥ dK(ŵ, lev≤0Θi,k1 )

− ||wi,k1 − ŵ||K

≥ ρ1− t
t
− ρ

2
1− t
t

=
ρ

2
1− t
t

=: ε > 0

Thus, it follows that
∑

j∈J dK(wj,k1 , lev≤0Θj,k1 ) ≥ ε. By the
triangle inequality we have

||ũ−wj,k1 ||K ≤ ||ũ− ŵ||K + ||wj,k1 − ŵ||K

≤ ||ũ− ŵ||K +
ρ

2
1− t
t

(j ∈ J )

so that
∑

j∈J
||ũ−wj,k1 ||K ≤ J ||ũ− ŵ||K + J

ρ

2
1− t
t

=: η > 0.

Given a fixed L2 > k1 , we can find a k2 ≥ L2
such that

∑
j∈J dK(wj,k2 , lev≤0Θj,k2 ) ≥ ε and

∑
j∈J ||ũ−

wj,k2 ||K ≤ η. Thus, we can construct a subsequence {kl}∞l=1
satisfying
∑

j∈J
dK(wj,kl , lev≤0Θj,kl ) ≥ ε and

∑

j∈J
||ũ−wj,kl ||K ≤ η.

With the assumptions of the theorem there exists a ξ > 0 such
that

∑
j∈J Θj,kl (wj,kl ) ≥ ξ for every l ≥ 1. However, this con-

tradicts limk→∞Θj,k (wj,k ) = 0,∀j ∈ J from Theorem 1.2.
Thus, it follows that ŵ ∈ lim infk→∞Υk and the proof is
complete.
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