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Abstract—Consider an extended version of noisy source coding
in which the compressed data must be transmitted over an
imperfect (forward) channel before being further processed. An
interesting criterion for designing the quantizer in such cases
is to maximize the end-to-end transmission rate. Since finding
the globally optimal solution via the naive brute-force search is
practically infeasible, a number of routines have been proposed
aiming at providing complexity-wise tractable procedures at the
expense of converging to local optima. In this paper, we study
the relation between two particular devised heuristics appeared
in totally different applications and prove their equivalence
through an in-depth analytical investigation of their counterpart
algorithmic steps. We further substantiate our presented line of
argumentation by means of computer-generated simulations.

I. INTRODUCTION

In this study, we focus on lossy joint source-channel coding.
Explicitly, we consider the case for which the goal is to
quantize an observed signal (e.g., at the output of an access
channel) from a given source with the extra knowledge that
the compressed signal has to be transmitted over a non-ideal
(forward) channel to be fed into a distant signal processing
chain. This, in fact, is the underlying scenario in a variety of
practical applications, e.g., cooperative transmission through
relaying with noisy links when quantize-and-forward strategy
is chosen (see, e.g., [1]), distributed inference sensor networks
with non-ideal links to the fusion center (see, e.g., [2]), recep-
tion schemes with unreliable memories (see, e.g., [3]), and
Cloud-based Radio Access Networks (C-RANs) with noisy
fronthaul links (see, e.g., [4], [5]). In such cases, the imperfect
forward/fronthaul channel effects shall be incorporated into the
quantizer design setup.

A rather straightforward approach to do so is to treat the
observed variable as a virtual source and try to adapt the
conventional methods from Rate-Distortion (RD) theory [6] by
extending the distortion measure function such that the impacts
of the imperfect forward channel are taken into account [7],
[8]. The facts that in such procedures, the actual source is not
explicitly brought into the design setup and furthermore there
is no way to systematically achieve the appropriate distortion
measure for any particular case of relevance, are incentives to
think of a novel framework for quantization.

As an interesting alternative paradigm to work with, the
Information Bottleneck (IB) method [9] can be deployed.

It was firstly proposed in the context of machine learning
wherein the goal was to extract the relevant information
w.r.t. a desired variable from a typically huge dataset through
clever clustering [10]. Performing this type of dimensionality
reduction is an indispensable part in many practical fields
exploiting statistical analysis to process data (see, e.g., [11]).
To get an overall picture of the IB framework and a variety of
pertinent algorithmic approaches and their relations, interested
readers are referred to [12], [13].

Inspired by the primary IB methodology, instead of min-
imizing the average distortion w.r.t. an extended distortion
measure, one can think of maximizing the Mutual Information
(MI) between the source and the final variable to be processed.
Unlike the conventional methods from RD theory, this leads
to a symmetric design setup wherein both precision and
complexity of the resultant outcome are characterized through
MI terms. Consequently, the quantizer design becomes purely
statistical and therefore irrelevant to the realizations of the
variable to be compressed which makes it fundamentally
different from conventional approaches. Moreover, in this
fashion, for a given input statistics, the resultant quantizer
maximizes the overall transmission rate which is absolutely
desired for almost all communications systems. As will be
discussed, for such quantizers obtaining the globally optimal
solution within a tractable complexity is quite demanding.
Thus, recently a number of iterative heuristics have been
proposed in the literature aiming at yielding complexity-wise
efficient routines at the expense of converging to local optima.

In this paper, we consider two specific devised rou-
tines, namely, the Channel-Optimized Information Bottleneck
(“Algorithm 1” in [14]) and the Channel-Aware Double Max-
ima (“Algorithm 1” in [15]) approaches. The former has been
developed to yield a novel rate-maximizing vector quantizer
while the latter has been proposed in the context of dis-
tributed source coding when multiple observations of a given
source shall be smartly quantized before being transmitted
over noisy links to a fusion center for further processing.
We carry out a comprehensive analysis to clearly prove their
algorithmic equivalence for the overlapping scenario of the
scalar quantization of a single noisy observation. To this end,
we firstly introduce the presumed system model and provide
the mathematical insights into the pertinent optimization task
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in Section II. Then, after an in-depth discussion about the
aforementioned routines in Section III, we present our analysis
in Section IV along with the simulation results of a typical
digital transmission setup as corroborative evidence before
summarizing the salient points at the end.

This theoretical inquiry elucidates the precise relation be-
tween the suggested procedures derived from totally different
approaches taken to solve a given problem. One shall note
although it may sound expectable that different routines attack-
ing the same problem may be similar, proving their identicality
is fundamentally different from having the coarse intuition of
similarity that is our very contribution here.

II. JOINT SOURCE-CHANNEL CODING SETUP

channel quantizer
channel
forward

data source
y ∈ Y z̃ ∈ Z̃z ∈ Zx ∈ X

p(x) p(y|x)

access
channel

p(z|y) p(z̃|z)

Fig. 1. System model for joint source-channel coding/compression

For the considered system model depicted in Fig. 1 we as-
sume a discrete memoryless source x (with realizations x ∈ X )
having the a priori distribution p(x) followed by a Discrete
Memoryless Channel (DMC) being described via transition
probability distribution p(y|x). Presumably, the direct access
to the source is not available. Thus, the observed variable y
(with realizations y ∈ Y) at the output of the access channel
has to be compressed to the variable z (with realizations
z ∈ Z) before being transmitted over the forward DMC
which is characterized through conditional distribution p(z̃|z).
Furthermore, we assume that x↔ y↔ z↔ z̃ is a first-order
Markov chain and the joint distribution p(x, y) = p(x) p(y|x)
and the forward channel transition probabilities p(z̃|z) are
given. In order to design a quantizer p(z|y) that maximizes the
overall transmission rate in this setup, the following problem
must be addressed:

p?(z|y) = argmax
p(z|y)

I(x; z̃) for |Z|≤N , (1)

wherein N is the allowed number of quantization levels and
| · | denotes the cardinality (the number of elements) of a given
set. To get an impression about the type of the optimization
task at hand, we now investigate (1) in more details.

It is well known that for a given p(x), the objective
function1 in (1) is convex w.r.t. the conditional distribution
p(z̃|x) [6]. Moreover, the relation between p(z̃|x) and the
quantizer mapping p(z|y) is established through

p(z̃|x) =
∑
y∈Y

∑
z∈Z

p(z̃|z)p(z|y)p(y|x), (2)

that is of affine type preserving convexity. Hence, it is deduced
that I(x; z̃) is also convex w.r.t. the mapping p(z|y). For a

1The MI between discrete random variables a and b with the marginal
and the joint distributions p(a), p(b) and p(a, b), respectively is defined as
I(a; b) ,

∑
a

∑
b
p(a, b) log

p(a,b)
p(a)p(b)

.

specific y ∈ Y it applies∑
z∈Z

p(z=z|y=y)=1, (3)

which defines a (|Z| − 1)-dimensional probability simplex.
Therefore, the overall search space in (1) is achieved by the
Cartesian product of |Y| of such simplices leading to a closed
convex polytope in the space of dimensionality |Y|×(|Z|−1).

All in all, it is inferred that the optimization in (1) boils
down to maximizing a convex function over a closed convex
set which, in optimization theory, is referred to as convex max-
imization or concave optimization2 being NP-hard in general
[16]. Resorting to the well-known proposition that a convex
function obtains its global maximum over a closed convex set
at its extreme points, it is directly deducible that the optimal
solution in (1) is achieved by deterministic mappings, i.e.,
p(z|y)∈{0, 1} for all pairs (y, z)∈Y ×Z . To clearly discern
this, one may note that the extreme points of a polytope
translate into its vertices and for the respective search space
polytope in (1), each vertex is created by the Cartesian product
of the vertices of its constituent simplices.

As the naive brute-force search over all vertices of the event
space in (1) brings about the exponential complexity w.r.t.
|Y| (the search space polytope has in total |Z||Y| different
vertices), evidently it cannot be considered as a promising
strategy to obtain the desired mapping p(z|y) in practice. This,
in fact, is the motive behind the emergence of algorithms
aiming at addressing (at least locally) the design problem (1)
in an efficient manner. In the next section, we fully discuss
two particular routines from this class of heuristics.

III. CONSIDERED ROUTINES

A. Channel-Optimized Information Bottleneck (Ch-Opt-IB)

In [14], the authors have considered a similar setup as in
Fig. 1 for the problem of channel-optimized vector quan-
tization and developed an iterative algorithm which yields
a vector quantizer that maximizes I(x; z̃), in which x is a
vector of length M comprising i.i.d. elements engendered
by the source x. An interesting point about this algorithm
is the implicit optimization of the quantizer output labels,
obviating the NP-hard problem of label optimization which has
to be addressed separately in conventional vector quantization
approaches (see, e.g., [17]). Here, to present the Ch-Opt-IB we
restrict ourselves to the scalar quantizer design, i.e., M = 1.
It applies

I(x; y,z̃) = I(x; y) + I(x; z̃|y) = I(x; z̃) + I(x; y|z̃) . (4)

Since I(x; z̃|y) = 0 by the Markovian assumption, the objec-
tive function in (1) can be rewritten as

I(x; z̃) = I(x; y)− I(x; y|z̃) . (5)

2Please note that this is a totally different task compared to the convex
optimization wherein the aim is to find the minimum of a convex function.
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As the available mutual information I(x; y) is fixed (given by
the joint distribution p(x, y)), maximizing I(x; z̃) translates
into minimizing I(x; y|z̃). Exploiting the following definition3

C(y = y, z̃ = z̃) , DKL
(
p(x|y)‖p(x|z̃)

)
, (6)

one can write

I(x; y|z̃) = Ey

{
Ez̃{C(y, z̃)|y}

}
, (7)

wherein the conditional expectation calculates as

Ez̃{C(y, z̃)|y=y}=
∑
z∈Z

p(z|y)
∑
z̃∈Z̃

p(z̃|z)C(y=y, z̃= z̃) . (8)

Since the inner sum term in (8) is constant for a specific z ∈ Z ,
to minimize the conditional expectation (8) for each y ∈ Y ,
the quantizer mapping must be chosen as4 p(z|y) = δz,z?(y),
where

z?(y) = argmin
z

∑
z̃∈Z̃

p(z̃|z)C(y = y, z̃ = z̃) . (9)

Consequently, by doing so (7) is minimized for a given
C(y, z̃). Moreover, it is directly deducible that

p(z̃|y) =
∑
z∈Z

p(z̃|z)p(z|y) = p(z̃|z?(y)) . (10)

To achieve an iterative heuristic that maximizes I(x; z̃), one
must be able to update C(y, z̃) at the end of each iteration.
This can be done by updating p(x|z̃) (taking into account the
Markovian property) through

p(x|z̃) =

∑
y∈Yz

p(x, y)p(z̃|y)∑
y∈Yz

p(z̃|y)p(y)
, (11)

where Yz denotes the subset of Y for which all members are
allocated to the cluster z.

Explicitly, the Ch-Opt-IB is initialized by a random (valid)
choice of C(y, z̃) and iterates over the resultant mapping
from (9) (assignment step) and the recalculated version of
C(y, z̃) obtained by (11) (update step) till convergence to
a local optimum. Basically, this procedure can be regarded
as an adapted version of the so-called Iterative Information
Bottleneck algorithm proposed in [9] (hence the name).

B. Channel-Aware Double Maxima (Ch-Aware-Double-Max)

Lately, the authors in [15] have devised an iterative routine
(we refer to as Channel-Aware Double Maxima algorithm) to
address the problem of distributed joint source-channel coding.
Specifically, they have considered the scenario depicted in
Fig. 2 wherein a number of K noisy observations (measured
values) of the source x have to be quantized (locally but not in-
dependently, i.e., in a jointly manner) first and then transmitted
to the fusion center over imperfect forward channels. As the

3DKL(· ‖ · ) is the Kullback-Leibler (KL) divergence which is defined
for probability distributions p(a) and q(a) over the same event space
A of the random variable a as DKL

(
p(a)‖q(a)) ,

∑
a∈A p(a) log

p(a)
q(a)

[6]. The relation between MI and KL divergence is established through
I(a; b) = DKL

(
p(a, b)‖p(a)p(b)).

4Here, δ refers to the Kronecker delta function.
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Fig. 2. System model for distributed joint source-channel coding

design criterion, they aimed at maximizing the end-to-end rate,
which is quantified through the MI between the source and the
resultant vector comprising all variables entering the fusion
center, i.e., I(x; z̃1, z̃2, · · · , z̃K). What makes their derived
routine attractive is, as shown in [15], it results in a high-
quality set of general-purpose quantizers that can be deployed
successfully for a wide variety of different applications, e.g.,
the Chief Executive Officer (CEO) problem [18]. Explicitly,
it has been shown that performance-wise its acquired result is
quite comparable with (and in some cases even better than)
the resultant outcomes of the schemes particularly designed
for estimation [19] or detection [20] purposes.

Here again, to adhere to the presumed system model in
Fig. 1 for discussion of the Ch-Aware-Double-Max approach
we restrict ourselves to the single measurement transmission
case (K = 1). Utilizing the chain rule of MI, the objective
function in (1) can be expanded as5

I(x; z̃) = I(x, y; z̃)− I(y; z̃|x) (12a)
= H(x, y)−H(x, y|z̃)−H(y|x) +H(y|x, z̃) . (12b)

Since the entropies H(x, y) and H(y|x) in (12b) are fixed
(given by the joint distribution p(x, y)), it is deduced that (1)
boils down to

p?(z|y)=argmax
p(z|y)

[
H(y|x, z̃)−H(x, y|z̃)

]
. (13)

The objective function in (13) can be rewritten as∑
x∈X

∑
y∈Y

∑
z̃∈Z̃

p(x, y)p(z̃|y)log p(x|z̃) (14a)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

∑
z̃∈Z̃

p(x, y)p(z|y)p(z̃|z)log p(x|z̃), (14b)

where to attain (14b) the presumed Markovian property is
exploited. Defining q(y, z)=p(z|y) and f(x, z̃) as an arbitrary
function such that for each specific value z̃ ∈ Z̃ it applies∑

x∈X f(x = x, z̃) = 1, the authors in [15] have introduced a
generalized objective function, L, as

L(q, f)=
∑
x∈X

∑
y∈Y

∑
z∈Z

∑
z̃∈Z̃

p(x, y)q(y, z)p(z̃|z)logf(x, z̃). (15)

5I(a; b) = H(a)−H(a|b) = H(b)−H(b|a) where the entropy function
is defined as H(a) , −

∑
a
p(a) log p(a).
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Then, utilizing the method of Lagrange multipliers, i.e., de-
riving the augmented objective function achieved by adding
some extra terms regarding the side constraints, it has been
shown in [15] that for a given q(y, z), the optimal function
f?(x, z̃) that maximizes L is achieved by

f?(x, z̃) =

∑
y∈Y

∑
z∈Z

p(x, y)p(z|y)p(z̃|z)∑
x′∈X

∑
y∈Y

∑
z∈Z

p(x′, y)p(z|y)p(z̃|z)
. (16)

Having the assumed Markovian property in mind and noting
the respective marginalization of the joint distribution
p(x, y, z, z̃) at both the numerator and the denominator of (16)
reveals that f?(x, z̃) = p(x,z̃)

p(z̃) which is p(x|z̃) by definition.
Correspondingly, to acquire the optimal mapping q?(y, z)

that maximizes L for a given f(x, z̃), it should be satisfied
that for each y ∈ Y , p(z|y) = δz,z?(y), where

z?(y) = argmax
z

∑
x∈X

∑
z̃∈Z̃

p(x, y)p(z̃|z) log f(x, z̃) . (17)

Since the objective function in (14b) is nothing else than
the maximum of the generalized objective function L over
f(x, z̃) for a given q(y, z), the respective optimization task
can be secured by solving an enlarged maximization problem,
i.e., performing double (alternating) maximization of L over
f(x, z̃) and q(y, z) in an iterative manner (hence the name),
analogous to the proposed methodology in [21].

Specifically, the Ch-Aware-Double-Max routine is initial-
ized by a (valid) random deterministic mapping p(z|y) and
iterates over (16) (update step) and the resultant mapping by
(17) (assignment step) till convergence to a local optimum.

In the subsequent section, we conduct a comprehensive
analysis to prove the equivalence of the aforementioned al-
gorithms. This conclusion, actually, is quite interesting and
insightful since the followed mathematical methodology for
derivation of the considered algorithms are totally different.
This is directly observable, noting that the variational calculus
is applied within the derivation of the Ch-Aware-Double-Max
routine, while that is not the case for the Ch-Opt-IB approach.

IV. STEPWISE COMPARISON OF CH-OPT-IB AND
CH-AWARE-DOUBLE-MAX ALGORITHMS

Our main contribution lies in this section, where through
a detailed analysis over the parallel algorithmic steps of the
Ch-Opt-IB and the Ch-Aware-Double-Max approaches, we
lucidly evince their equivalence. To this end, basically, we
have to demonstrate that the corresponding assignment and
update steps are identical for both algorithms.

A. Analysis

We begin our analysis by considering the assignment step
in Ch-Aware-Double-Max routine. Replacing the resultant
f(x, z̃) from (16) to (17), for each y∈Y the allocated cluster
is determined by

z?(y) = argmax
z

∑
z̃∈Z̃

∑
x∈X

p(x, y)p(z̃|z) log p(x|z̃) (18a)

= argmin
z

∑
z̃∈Z̃

p(z̃|z)
∑
x∈X

p(x, y)
(
− log p(x|z̃)

)
, (18b)

wherein the maximization is substituted by the minimization
through introduction of the minus sign. The inner sum term
in (18b) can be rewritten as∑

x∈X
p(x, y)

(
log

p(x|y)
p(x|z̃)

− log p(x|y)
)

(19a)

= p(y)
(∑
x∈X

p(x|y)
(
log

p(x|y)
p(x|z̃)

− log p(x|y)
))

(19b)

= p(y)
(
DKL

(
p(x|y)‖p(x|z̃)

)
+H(x|y = y)

)
. (19c)

Since the respective minimization in (18b) is independent of
p(y), substituting the inner term in (18b) by (19c) yields

z?(y)=argmin
z

∑
z̃∈Z̃

p(z̃|z)
(
DKL

(
p(x|y)‖p(x|z̃)

)
+H(x|y=y)

)
.

(20)
Expanding the objective function in (20), it applies∑

z̃∈Z̃

p(z̃|z)
(
DKL

(
p(x|y)‖p(x|z̃)

)
+H(x|y=y)

)
(21a)

=
∑
z̃∈Z̃

p(z̃|z)DKL
(
p(x|y)‖p(x|z̃)

)
+
∑
z̃∈Z̃

p(z̃|z)H(x|y=y)

(21b)

=
∑
z̃∈Z̃

p(z̃|z)DKL
(
p(x|y)‖p(x|z̃)

)
+H(x|y=y), (21c)

where the second term in (21c) is derived noting the fact that
the conditional entropy H(x|y = y) is fixed (given by the
joint distribution p(x, y)) and

∑
z̃∈Z̃ p(z̃|z) = 1. Substituting

(21c) in (20), it can be realized that the ultimate cluster alloca-
tion’s rule for Ch-Aware-Double-Max algorithm is determined
through

z?(y) = argmin
z

∑
z̃∈Z̃

p(z̃|z)DKL
(
p(x|y)‖p(x|z̃)

)
, (22)

since the required minimization is independent of the fixed
entropy term in (21c). Considering (22) and (9) together,
the equality of the assignment steps for Ch-Opt-IB and
Ch-Aware-Double-Max routines is immediately inferable.

Now, we consider the corresponding update steps. In par-
ticular, regarding (16) and (11) it can be readily observed that
both routines update the same distribution p(x|z̃). Neverthe-
less, to plainly discern that (16) is indeed identical to (11), it
shall be noted that the mapping p(z|y) in (16) is deterministic,
i.e., it is equal to 1 iff y∈Yz . Moreover, due to the assumed
Markovian property, it applies p(z̃|y) =

∑
z∈Z p(z̃|z)p(z|y)

and therefore∑
y∈Y

∑
z∈Z

p(x, y)p(z|y)p(z̃|z)=
∑
y∈Yz

p(x, y)
∑
z∈Z

p(z|y)p(z̃|z) (23a)

=
∑
y∈Yz

p(x, y)p(z̃|y) . (23b)

Hence, it becomes clear that the respective numerators in (16)
and (11) are the same. In addition, the present summation
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over all x′ ∈ X at the denominator of (16) results in the
marginal probability p(y) from the joint distribution p(x′, y)
and therefore ∑

x′∈X

∑
y∈Y

∑
z∈Z

p(x′, y)p(z|y)p(z̃|z) (24a)

=
∑
y∈Yz

∑
x′∈X

p(x′, y)
∑
z∈Z

p(z̃|z) (24b)

=
∑
y∈Yz

∑
z∈Z

p(y)p(z̃|z) . (24c)

Thus, one deduces that both denominators are identical as well.
Altogether, via the developed analysis, we clearly proved

the algorithmic equivalence of the considered approaches. This
yields the profound insight that although these heuristics aim
at solving the design problem in (1) following totally differ-
ent strategies, surprisingly, they eventually provide identical
solution procedures.

Please note that since both heuristics converge to a local op-
timum, their respective outcome heavily depends on the choice
of initialization. Hence, it can be asserted that, assuming a suf-
ficiently large number of runs (to achieve independence from
initialization), both routines generate the same result p(z|y).

B. Simulation Results

In this part, we set about investigating the performance
of discussed approaches over a typical digital transmission
scenario. Explicitly, we consider the equiprobable bipolar
4-ASK signaling (X ={±1,±3}) at the input with the cor-
responding variance of σ2

x = 5. To attain the transition prob-
ability distribution p(y|x), we firstly clip the corresponding
conditional probability density functions (pdf) of an Additive
White Gaussian Noise (AWGN) channel with three different
noise variances (σ2

n = 1, 2, 3) to the part with the absolute
value not higher than 6, 7.2 and 8.1, respectively (to set the
border guard intervals of 3σn to assure 99.7% coverage) and
then uniformly discretize them into |Y| = 128 parts. For
the forward channel we consider an N -ary symmetric model
being purely characterized by the reliability parameter e in a
sense that for each symbol, the correct reception occurs with
probability 1 − e and the erroneous reception to every other
symbol occurs with probability e

N−1 .
To compare the performances of discussed algorithms, we

calculated the resultant overall MI, I(x; z̃), over the varying
maximum number of output levels for two different scenarios
to cover the effects of both DMCs in our presumed system
model. As the first case, we kept the forward channel constant
(by choosing a specific value for the reliability parameter
e = 0.01) and varied the noise variance of the first DMC in
Fig. 1 (which henceforth we refer to as the access channel).
As the second case, we fixed the access channel (by choosing
a specific noise variance σ2

n = 1) and varied the reliability
parameter e of the forward channel in Fig. 1. The corre-
sponding plots are illustrated in Figs. 3 and 4, respectively.
Please note that to obtain (quasi-)independence from choice
of initialization each algorithm was run 105 times with the
best outcome taken.
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Regarding both plots, the main observation is that irre-
spective of the specific choices of the parameters of the
assumed model, i.e., N , σ2

n and e, the Ch-Opt-IB and the
Ch-Aware-Double-Max engender (almost) identical results.

Focusing on Fig. 3, it can be seen that by increasing
the noise variance σ2

n the end-to-end attainable transmission
rate I(x; z̃) decreases. The reason behind is due to the fact
that the overall MI is upper-bounded by the capacity of the
access channel. This is directly deduced by applying data
processing inequality for the presumed Markov chain. It is
well known that the capacity of the discrete input AWGN
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channel is reversely related to its noise variance (assuming
fixed input variance) [22]. Hence, the lower the noise variance,
the higher the capacity of the access channel and consequently
the chance of achieving higher values of the end-to-end MI.
Concerning Fig. 4, the effect of the forward channel on
the overall obtainable transmission rate shows itself in the
choice of the reliability parameter e. Explicitly, it can be
seen that by decreasing e the end-to-end MI increases. This
can be justified analogously, noting the fact that the overall
MI is upper-bounded by the capacity of the forward channel
CFC as well. To clearly discern this, one may note that
x↔ y↔ z↔ z̃ implies z̃↔ z↔ y↔ x. It is rather straight-
forward to show that for a given N , the forward channel
capacity CFC which is calculated as [23]

CFC(N, e) = logN + (1− e) log(1− e) + e log
e

N − 1
(25)

increases by decreasing e, giving chance to the overall trans-
mission rate to reach higher values.

From the discussion above, it is deducible that the end-to-
end MI is upper-bounded by the minimum capacity among the
present DMCs in Fig. 1. To vividly see that, as an example one
may consider Fig. 4 for the case of N = 10. There, although
the capacity of the forward channel CFC is calculated as 2.54,
3.21 and 3.31 bits (per channel use) for different values of
the reliability parameter e (in descending order), the overall
transmission rate is limited by the capacity (more accurately
the input-output MI under equiprobable input signaling) of the
access channel which amounts to 1.22 bits.

A closer look at Figs. 3 and 4 for relatively large values of
N reveals a minor performance mismatch between Ch-Opt-IB
and Ch-Aware-Double-Max. This can be attributed to the fact
that 105 runs does not bring about perfect independence from
the choice of initialization. Nevertheless, to rigorously depict
the equivalence of both routines, we generated Fig. 5 in which
instead of initializing the Ch-Aware-Double-Max randomly,
we fed it by the resultant mapping at the end of the first
iteration of the Ch-Opt-IB that was initialized randomly with
the specific choices of N = 8 and e = 0.001. To obtain this
plot, we calculated the overall transmission rate I(x; z̃) and the
corresponding compression rate I(y; z) achieved by the resul-
tant mapping at the end of each iteration for both algorithms.
The demonstrated evolution of the outcomes through iterations
plainly confirms the conclusion of our conducted analysis.

V. SUMMARY

In this article, we considered the quantizer design problem
for the joint source-channel coding with mutual informa-
tion as the fidelity criterion. Specifically, after providing the
mathematical insights into the respective optimization task,
we discussed two candidate solution procedures, namely, the
Ch-Opt-IB and the Ch-Aware-Double-Max, both quite recently
appeared in the literature. Subsequently, by conducting a
thorough analysis over the parallel algorithmic steps, we
plainly proved their algorithmic equivalence. Finally, per-
forming Monte Carlo simulations for a practical transmission
scenario, we also corroborated our presented argument.
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