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Abstract—The main focus of this paper is on the problem
of noisy source coding wherein observed signals from an
inaccessible source shall be compressed. To that end, rather
than resorting to the conventional methods from Rate-Distortion
theory, the so-called Information Bottleneck paradigm is deployed
in order to obtain a highly informative representing signal
w.r.t. the given source. An efficient, generic and highly flexible
graph-based message passing routine for clustering, known
as the Affinity Propagation is successfully applied here as a
novel treatment for that purpose. The fundamental differences
and the performance-wise comparison w.r.t. the state-of-the-art
KL-Means-IB algorithm is provided as well.

I. INTRODUCTION

Under the presumption of direct access to the source, the
lossy data compression/source coding problem is dealt with
by the celebrated Rate-Distortion (RD) theory [1]. Within
the RD framework, a distortion measure function has to
be defined a-priori, i.e., before the quantizer block design,
to characterize the precision of the outcome. Principally,
it quantifies the amount of distortion between the original
signal and its representative after compression. Alas, the RD
theory fails in answering the fundamental question of how to
systematically obtain the proper distortion function in any case
of pertinence. Hence, for a wide variety of practical cases,
regardless of the structure of the signals and solely for the
sake of simplicity, the squared Euclidean distance between
the quantizer’s input/output values is chosen.

For cases in which merely a noisy version of the source
is available for the compression, one may either resort to
the well-established conventional methods, by treating the
observed signal as a virtual source [2] or, instead, think about
applying a novel framework that directly incorporates the
actual source of interest into the design formulation. Deciding
in favor of the latter with the intention of bypassing the present
faults in the conventional theory, the Information Bottleneck
(IB) paradigm [3] can be deployed successfully.

The emergence of the IB framework is traced back to
the context of machine learning applications. Specifically, it
was proposed as a novel approach for the crucial task of
dimensionality reduction through clustering [4]. However, this
methodology can be employed in a broad range of applications
concerning data transmission systems as well, among others,
construction of polar codes [6], designing analog-to-digital

converters (ADCs) [5] and implementation of modern discrete
decoding schemes [7], [8] with reduced complexity and yet
quite satisfactory performance. Within this work, we focus on
the noisy source coding scenario in which through the IB
formulation, the complexity of the outcome is determined by
the so-called compression rate which is the mutual information
(MI) between the input and the output of the quantizer block.
Contrary to the RD theory, the precision of the outcome is
quantified via the so-called relevant information, i.e., the MI
between the actual source and the quantized representative sig-
nal. Consequently, a symmetric (in the sense of employing two
MI terms to mathematically found the underlying precision-
complexity trade-off) design setup [3] results which obviates
the demand for the a-priori distortion measure specification.
Furthermore, unlike (most of) the other approaches, IB-based
quantization wherein pure entropy calculations are involved,
is absolutely statistical and totally independent of the specific
realizations of the variable(s).

The pertinent optimization task is the focal challenge in
the IB-based quantization setup. As it will be discussed,
obtaining the globally optimal solution via practically feasible
algorithms is far from trivial and up to now it is solely
achieved for the special case of binary input alphabets [9].
Consequently, following a pragmatic approach, one may resort
to efficient heuristics which aim at solving the design problem
at least locally.

Here, we tackle this problem from a new perspective taking
advantage of a generic and highly flexible message passing
based clustering procedure known as Affinity Propagation
(AP) [10]. AP is an efficient tool designed for exemplar-
based clustering, which takes as input a matrix of pairwise
similarities among the set of articles to be clustered and
provides a high-quality grouping result.

To be able to make use of this powerful tool, the application-
specific grouping task shall be translated to an equivalent
exemplar-based clustering problem with clear determination
of the proper measure of pairwise similarities. In this paper,
we address this translation in case of the IB-based quan-
tization and show then what exactly are the corresponding
articles to be clustered and what is the proper measure of
pairwise similarities among them. To that end, we introduce
the presumed system model and the general IB framework
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for noisy source coding in the first part of Section II along
with a short discussion about the state-of-the-art KL-Means-IB
routine on its second part. In Section III first we provide
the basic understanding of the underlying mechanism for AP
that is the well-known Max-Product algorithm tailored for
a specific factor graph and then we show how to achieve
an equivalent exemplar-based clustering problem by solving
which we obtain the required quantizer for IB-based source
coding setup. Finally, we provide some performance assess-
ment results at Section IV before summarizing the most salient
points in Section V.

II. INFORMATION BOTTLENECK SOURCE CODING SETUP

A. System Model and General IB Framework

data source quantizerchannel
y ∈ Y z ∈ Zx ∈ X

p(y|x) p(z|y)p(x)

Fig. 1: The assumed system model for the noisy source coding/quantization

We consider the system model illustrated in Fig. 1 for the
noisy source coding scenario. The underlying assumption is
that there is no immediate access to the discrete memoryless
source x (with realizations x∈X ={x1, · · · , x|X |})1 charac-
terized by the a-priori distribution p(x). The aim is then to
quantize the observed signal y (y ∈ Y = {y1, · · · , y|Y|}) at
the output of the discrete memoryless channel specified by
the transition probabilities p(y|x), to the random variable z
(z ∈ Z = {z1, · · · , z|Z|}). It may be noted that, in general, Z
should not necessarily be a subset of Y . Moreover, we presume
that the joint probability distribution p(x, y) = p(x) p(y|x)
is given and x↔ y↔ z constitutes a first-order Markov
chain, i.e., p(z|x, y) = p(z|y). Within the IB framework,
the compression rate, given as the quantizer’s input/output
MI2, I(y; z), quantifies the complexity of the outcome and the
relevant information, I(x; z), quantifies its resultant precision.
A non-negative Lagrange multiplier 0 6 β <∞ is utilized to
establish the existent trade-off and, thus, the design setup for
the quantizer p(z|y) is formulated as [3]

p?(z|y) = argmin
p(z|y)

1

β+1

(
I(y; z)−βI(x; z)

)
for |Z|≤M , (1)

in which M denotes the allowed number of output bins and the
factor 1

β+1 is solely considered for the sake of mathematical
clarity when investigating the extreme cases of β. It shall be
noted that the trade-off parameter β can be twiddled in order to
weaken (or strengthen) the information preservation capability
of the quantizer block. Additionally, it is noteworthy that the
resultant quantizer p(z|y) has a stochastic or soft nature in
general, i.e., 0≤ p(z|y)≤1 fulfilling

∑
z∈Zp(z=z|y=y)=1

for each y∈Y .

1| · | denotes the cardinality (the number of elements) of a given set.
2The MI between discrete random variables a and b with the marginal

and the joint distributions p(a), p(b) and p(a, b), respectively is defined as
I(a; b) ,

∑
a

∑
b
p(a, b) log

p(a,b)
p(a)p(b)

.

Evidently, the case of β→0 is not of interest since then
the relevant information term I(x; z) in (1) is dropped and the
minimum compression rate I(y; z) = 0 can be obtained by
making the quantizer’s output z being statistically independent
of y. In case of finite values of β, it can be shown that the
objective function in (1) is neither concave nor convex w.r.t.
the quantizer p(z|y) [11]. Hence, the optimization itself is
of neither type and consequently finding the globally optimal
solution becomes quite challenging. Regarding the extreme
case of β being asymptotically large, taking the limit of (1)
by letting β→∞, the design formulation boils down to

p?(z|y) = argmax
p(z|y)

I(x; z) for |Z|≤M , (2)

wherein, by omitting the minus sign, the minimization in (1) is
substituted with the maximization term. It is provable that the
present optimization task in (2) is of convex maximization3

type (being NP-hard in general [12]) and thus the optimal
solution is achieved through deterministic mappings [9]. One
may note that employing the naive brute-force search over all
deterministic quantizers results in an exponential complexity
w.r.t. |Y| which clearly makes it intractable in practice.

All things considered, it can be deduced that for non-zero
values of β, the pertinent optimization task is far from trivial
and thus heuristics shall be proposed to treat the corresponding
design problem efficiently. Henceforth, we focus on the salient
case of β being asymptotically large (2) wherein the aim is
to maximize the end-to-end transmission rate via retaining
as much relevant information as possible under the side-
constraint on the cardinality of the output representative signal.

In the following part, we present the so-called KL-Means-IB
algorithm as an instance of the state-of-the-art routines that so
far have been proposed in the literature to address the design
problem in (2). The provided discussion there will pave the
way to perceive the IB-based quantization as an exemplar-
based clustering task which opens up the chance of exploiting
AP as a novel and quite efficient treatment (see Section III).

B. KL-Means Information Bottleneck (KL-Means-IB)

As discussed before, for asymptotically large values of β,
(2) shall be considered as the corresponding design formula-
tion. Based on the definition of MI as difference of entropies4,
in [13] authors have shown that the following holds

I(x; z) = I(x; y)−
(
H(x|z)−H(x|y)

)
(3a)

= I(x; y)− Ey,z

{
DKL

(
p(x|y)‖p(x|z)

)}
. (3b)

Therefore, the maximization of the relevant information I(x; z)
corresponds to the minimization of the expectation term in
(3b), since the available information I(x; y) is already fixed
(it is a function of the joint distribution p(x, y), assumed

3Convex maximization also known as concave optimization, is about finding
the maxima of a convex function over a closed convex set. This is totally
different compared to the convex optimization wherein the aim is to find the
minimum of a convex function.

4I(a; b) = H(a)−H(a|b) = H(b)−H(b|a) where the entropy function
is defined as H(a) , −

∑
a
p(a) log p(a).



to be given). At this point, the present connection between
the design problem at hand and the renowned K-Means
clustering routine can be perceived. The traditional K-Means
algorithm [14] is designed to cluster a set of points into K
bins such that the average squared Euclidean distance between
the points and the pertinent empirical means of the engendered
groups is minimized. This task is accomplished in an iterative
manner via two distinct steps, namely the assignment and the
update steps. Within the assignment phase, each particular
point is allocated to the very cluster with the closest mean
among all candidates. Subsequently, in the update phase,
the clusters’ representatives are recalculated as the respective
means (hence the name). This methodology can be general-
ized to encompass different types of distortion measures. For
example, in [16] a certain family of divergences including the
Kullback-Leibler (KL) divergence5 has been considered. As an
interesting interpretation (regarding its model-based derivation
[15] with the isotropic spherical Gaussian noise assumption)
from the communications point of view, one may treat the
points to be clustered as the noisy versions of K originally
transmitted points (where in communications terminology it is
referred to as the signal constellation) and target at learning
the most fitting underlying constellation.

Starting to describe it more tangibly, it shall be noted
that irrespective of the certain choice for y∈Y , it
must hold

∑
x∈X p(x = x|y = y) = 1, which introduces a

(|X | − 1)-dimensional probability simplex, referred to as the
backward channel simplex. Thus, as suggested in [13], through
the transformation of the primary quantization space (i.e., the
space wherein the y values are defined) into the backward
channel simplex by considering p(x|y = y)6 and p(x|z = z)
(the corresponding points in the transformed space) instead of
y and z, respectively, and treating the KL divergence as the
appropriate distortion measure, the design problem in (2) can
be perceived as a special K-Means clustering task. Explicitly,
the KL-Means-IB [13] is initiated by a random pick of M
distinct points p(x|y) as the primary means. Subsequently,
through the assignment phase, each point p(x|y) is grouped
into the particular bin z for which the corresponding represen-
tative p(x|z) shows the least KL divergence. Mathematically,
p(z|y) = δz,z?(y)

7 where the host bin z for each particular y
value is chosen as

z?(y) = argmin
z

DKL
(
p(x|y)‖p(x|z)

)
. (4)

Next, the representants are updated as the clusters’ centers of
mass [16]

p(x|z) =

∑
y∈Yz

p(y)p(x|y)∑
y∈Yz

p(y)
, (5)

where Yz denotes the subset of Y for which all members are

5Also known as relative entropy, among two probability distributions p(a)
and q(a) over the same event space A of the random variable a, is defined
as DKL

(
p(a)‖q(a)) ,

∑
a∈A p(a) log

p(a)
q(a)

[1].
6It is defined as p(x|y = y) , [p(x1|y = y), · · · , p(x|X||y = y)].
7Here, δ represents the Kronecker delta function.

p(x1|y = y) p(x2|y = y)

p(x3|y = y)

a) Backward channel simplex

` = 1
I(x; z) = 0.313

p(x1|y = y) p(x2|y = y)

p(x3|y = y)

b) After 1st iteration

` = 2
I(x; z) = 0.321

p(x1|y = y) p(x2|y = y)

p(x3|y = y)

c) After 2nd iteration

` = 12
I(x; z) = 0.325

p(x1|y = y) p(x2|y = y)

p(x3|y = y)

d) After final iteration

Fig. 2: Evolution of the KL-Means-IB outcome (M=8) through iterations `,
3-PSK signaling over an AWGNC (σ2

n = 1), the red dots demonstrate the
clusters’ representatives p(x|z), the acquired I(x; z) is provided as well

allocated to the bin z. The mentioned procedure is perpetuated
till either a convergence criterion or a maximum number of
iterations is met.

To vividly visualize what exactly happens in the backward
channel simplex during the iterations of the KL-Means-IB,
we illustrate the corresponding 2-dimensional simplex for
an example of 3-PSK signaling in Fig. 2. Specifically, each
point inside the depicted simplex corresponds to a cer-
tain p(x|y = y) = [p(x1|y = y), p(x2|y = y), p(x3|y = y)] for
a particular y value received at the output of an additive white
Gaussian noise channel (AWGNC) with the noise variance of
unity (σ2

n = 1). The aforementioned grouping procedure for
M = 8 clusters is then carried out in this space and as can
be observed, through iterations till convergence, the clustering
results are getting refined.

The complexity of the KL-Means-IB routine is dominated by
the assignment phase. Hence, as suggested by (4), per iteration,
the KL-Means-IB has the complexity of O(|X | · |Y| · |Z|),
as for every specific value y, the KL divergence to all |Z|
possible candidates has to be calculated where each of these
calculations sums up |X | terms.

III. AFFINITY PROPAGATION

A. Description and Discussion

We commence this part by providing a general explanation
of the Affinity Propagation (AP) [10]. AP is a recursive
message passing routine for exemplar-based clustering. An
exemplar is the representative of a certain group (engendered
after clustering) that is chosen from the primary set of articles,
the mother-set, to be clustered. Therefore, the exemplar-set can
be regarded as a reduced (concise) version of the mother-set



that represents it (w.r.t. a certain criterion) in a best fashion.
Describing it roughly, AP considers all primary articles as
nodes of a network being delineated by a fully-connected
graph in which there is an edge between any two articles.
These articles communicate with each other through the edges
in a recursive manner (bilateral messages per edge) in order
to gradually decide about the most suitable exemplar-set and,
consequently, the corresponding non-exemplar to exemplar
allocations. The aforementioned bilateral recursive inter-node
communication between the articles can be described as fol-
lows: based on the direction of the transmitted messages, they
can be interpreted either as responsibilities or availabilities. In
AP terminology, the responsibility is the pertinent designation
for the message being transmitted from an article to a potential
exemplar. Conversely, the availability is utilized to signify
that the message is transmitted from a potential exemplar to
an article. At the initial stage, all N different articles are
treated as potential exemplars. Hence, each specific article
i shall generate a message r(i, k) for the article k with
i, k ∈ {1, 2, ..., N}. The responsibility r(i, k) indicates to
which extent the article i conceives the potential exemplar k
to be responsible to serve it as an exemplar. The first round of
responsibilities are solely created by the pairwise similarities
s(i, j) for i, j ∈ {1, 2, ..., N}, given as the input of the AP.
A quite interesting feature of AP that secures a great deal of
flexibility is the fact that the mother-set does not have to lay in
a metric or continuous or even ordinal space and, consequently,
the pairwise similarities do not have to be calculated based on
a metric, i.e., they do not have to be symmetric and, moreover,
they do not have to satisfy the triangle inequality.

In the next phase of the AP dynamism the availability
messages are generated from the received responsibilities.
The availability a(i, k) indicates to which extent the
potential exemplar k conceives itself to be available as an
exemplar for the article i. This bilateral message passing pro-
cedure is perpetuated till a highly satisfactory set of exemplars
and the corresponding clusters emerge.

Another compelling feature of AP is about its astonishingly
simple and intuitive update equations. Explicitly, the update
rule for the responsibility calculations is given as

r(i, k) = s(i, k)−max
j 6=k

{a(i, j) + s(i, j)} , (6)

and the corresponding update rules for availabilities are

a(i, k) = min

0, r(k, k) +
∑

j 6∈{i,k}

max{0, r(j, k)}

 for i 6= k

(7)
and in case of self-availability

a(k, k) =
∑
j 6=k

max {0, r(j, k)} . (8)

The stated update rules are derived from the utilization of
the Max-Product routine [17] to approximate the marginals
of the global function pertaining to the specific factor graph
depicted in Fig. 3. The variable nodes ci and the factor nodes

c1 c2 cNci

f1(c1, ..., cN) fi(c1, ..., cN) fN(c1, ..., cN)

es(i,ci) es(N,cN)es(1,c1)

Fig. 3: The factor graph on which AP is developed, the variable nodes ci and
the factor nodes fi with represent the chosen exemplar and the coherency
check for the article i, respectively

fi with i ∈ {1, ..., N} represent the chosen exemplar and the
coherency check for the article i, respectively. By coherency
check fi, it is meant that if any other article j 6= i decides in
favor of the article i as its exemplar, then the article i should
be the exemplar of itself as well. Considering the singleton
factor nodes in Fig. 3, it is rather straightforward to observe
that the aim of the computation over such a specific factor
graph is to find out the certain coherent configuration of the
variables which maximizes the sum of the overall similarities
between all the articles and their corresponding exemplars. The
immediate application of the Max-Product routine requires the
messages to be vector-valued. Nonetheless, performing some
intelligent mathematical tricks as stated in [18], the update
rules are shrunk to the scalar-valued versions (6)-(8) which
brings about the complexity of O(N2) per iteration.

At the starting point of AP, to treat all the articles equally,
i.e., providing the same chance to be chosen as an exemplar,
all the availabilities a(i, j) in (6) are set to zero. Nevertheless,
after a while if an article gets assigned to another one, its
availability becomes negative, which directly influences the
pertinent effective similarity in (6), bringing it out of the on-
going exemplarship competition. Focusing on the availability
update (7) for the article k, it is basically calculated as
the sum of its self-responsibility r(k, k) and all the positive
feedbacks from the other articles. The negative feedbacks
(responsibilities) are ignored while those are related to the
articles for which the article k is not an appropriate exemplar
and for a decent exemplar, it suffices to represent some and
not all of the articles well.

Another intriguing aspect of AP is about its so-called
automatic model selection capability [18]. One may note that
the cardinality of the exemplar-set is not given a-priori but it
rather comes out naturally (at the end of the recursive process)
for each specific choice of the common self-similarity, which
in AP terminology is referred to as the common preference.
In general, the preference values do not have to be the same
for all the articles and the larger the value of the preference
s(i, i), the higher the chance of the article i to be chosen
as an exemplar at the end. Consequently, in case of having



a common preference, it is principally the very parameter
which can be twiddled in order to have an influence on the
cardinality of the resultant exemplar-set. The rationale behind
is the fact that the sum of the preferences can be regarded
as the penalty term (w.r.t. the complexity) being present at
the objective function of the AP factor graph to avoid, e.g.,
the case in which each point is treated as an exemplar (for
and only for itself). As a general observation, performing the
belief propagation over loopy graphs may lead to an instable
behavior. Hence, as an important implementation detail, the
messages which shall be transmitted over the fully-connected
AP graph of Fig. 3 have to be dampened. Thus, irrespective
of being either availability or responsibility, the messages are
calculated as the weighted combination of their previous and
current values. Finally, it has to be mentioned that the cluster
allocation for the article i at the end of each round of message
exchange can be estimated as

ĉi = argmax
k

{a(i, k) + r(i, k)} . (9)

B. IB-Based Quantization Utilizing AP

In this part, we establish the connection between the
IB-based noisy source coding problem (2) and the generic
exemplar-based clustering task behind AP. Consequently, as
an upshot, we propose the AP usage as a novel and efficient
treatment of the quantization task at hand.

Commencing with (3b), it is directly deducible that to
maximize the end-to-end transmission rate, I(x; z), one shall
maximize the average term

Ey,z

{
−DKL

(
p(x|y)‖p(x|z)

)}
=
∑
y∈Y

p(y)
∑
z∈Z
− p(z|y) ·DKL

(
p(x|y)‖p(x|z)

)
. (10)

As already discussed, the deterministic mapping is an optimal
choice of the quantizer for the present convex maximization
problem. Therefore, assuming hard quantization and denoting
the chosen z for each specific y as z?(y), i.e., p(z|y) = 1 for
z = z?(y) and zero otherwise, (10) can be rewritten as∑

y∈Y
− p(y) ·DKL

(
p(x|y)‖p(x|z?(y))

)
. (11)

The structure of (11) is reminiscent of the equivalent global
AP objective function

∑
i s(i, ci), which is the overall sum

of the similarities between the individual articles i and their
corresponding exemplars ci. Principally, by considering the
realizations y(i) and y(j) of the observed (channel output)
random variable y in Fig. 1 as the articles i and j, respectively,
and by defining the pairwise similarities as

s(i, j) = −p(i) ·DKL
(
p(x|i)‖p(x|j)

)
, (12)

the global AP objective function coincides with (11). As the
aim of AP is to find the coherent configuration that maximizes
its objective function, it is exactly in line with the IB-based
quantization design criterion which boils down to maximizing
the average term in (10). Noting the bijective correspondence
between each y and the pertinent point p(x|y) in the backward

channel simplex, one can better comprehend the AP clustering
methodology. Focusing on the provided example in the previ-
ous section, unlike the KL-Means-IB, AP treats all the present
points in the simplex of Fig. 2 a) as potential exemplars at
first. By exchanging responsibilities and availabilities between
these points in a recursive manner, the final exemplar-set
(set of all red dots) gradually appears. It is also noteworthy
that by utilizing AP, contrary to the KL-Means-IB approach,
the cluster’s representatives, i.e., the red dots are chosen from
the primary set of points in the depicted backward channel
simplex rather than being calculated as the corresponding
center of mass per cluster.

IV. SIMULATION RESULTS

In this part, we set about investigating the performance
behavior of the proposed AP-based quantization approach. To
that end, we consider a typical digital transmission scenario in
which 1000 equiprobable symbols from a 16-QAM constella-
tion (σ2

x = 10) are transmitted over an AWGN channel with
three different noise variances (σ2

n = 1, 2, 3). The received
points are then clustered into a varying number of groups
(2 to 40). As the performance indicator, we calculate the
resultant overall transmission rate, I(x; z). Furthermore, we
perform the similar investigation for the KL-Means-IB with
U = 100 runs (retaining the best outcome) and depict the
obtained curve as well to be able to compare both approaches.

Fig. 4 illustrates the pertinent results. It shall be mentioned
that, as the cardinality of the output clusters depends on the
specific choice of the common preference, to generate the
respective curve of the AP-based approach, we exploited the
well-known bisection method [18]. It is clearly observable that
irrespective of the specific choices of the model parameters,
i.e., the noise variance σ2

n and the number of output clusters
M , both routines engender almost identical results. However,
there are fundamental differences between the two approaches
which must be taken into account. First of all, it should
be noted that the outcome of one run of the KL-Means-IB
heavily depends on its choice of initialization and, therefore,
to ameliorate the final result, it must be repeated a number of
times, e.g., U=100. Secondly, unlike the KL-Means-IB, the
AP-based method does not follow any random initialization
and, consequently, does not need to be repeated to deliver a
better outcome. Nonetheless, to produce any specific number
M of output clusters, the proposed algorithm must be repeated
a number of times to determine the relevant value of the
common preference (utilizing bisection method) yielding that
certain output cardinality.

To obviate the utilization of the bisection method and
therefore substantially reducing the required computational
effort of the proposed AP-based treatment, we calculated
the approximate common preference (ACP) pertaining to any
number of output cardinality. Fig. 5 depicts the corresponding
values. To obtain these curves, for each specific noise variance,
we repeated the aforementioned transmission scenario for 100
times and saved the corresponding CPs. The resultant ACP for
each value of M is then calculated as the arithmetic mean of
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the lowest and the highest values among 100 trials. To check
the usability of such a preference guideline (which can be
done once offline), we repeated the previous transmission
setup 50 times more and for each of the new trials, we
inserted the calculated values for six choices of M (taken
from Fig. 5) as the chosen CP and executed the AP-based
routine only once. The corresponding results are illustrated
in Fig. 6. The immediate observation verifies the fact that
the provided preference guideline works satisfactorily well.
As a result, in cases for which the strict upholding of a
certain output cardinality is not a must and a relatively small
variation range can be tolerated, only one run of the proposed
algorithm provides a quite promising result. This, generally,
brings about a noticeable gain in computational effort w.r.t.
the KL-Means-IB usage. To perceive this, one shall consider
the overall complexity of both approaches to yield compa-
rable results. While in case of KL-Means-IB, it amounts to

O(|X | · |Y| · |Z| · `1 ·U) with `1 denoting the average number
of iterations per run, for the proposed method, it will be
O(|Y|2 · `2) with `2 being the counterpart of `1, and, usually,
it applies that |X | · |Z| · `1 ·U � |Y| · `2.

V. SUMMARY
We considered noisy source coding and rather than methods

of Rate-Distortion theory, we deployed Information Bottleneck
framework and provided the respective mathematical insights.
As the major contribution, we then proposed a novel treatment
utilizing Affinity Propagation which is an efficient graph-
based message passing approach for clustering. Finally, we
investigated the performance of our proposed treatment w.r.t.
the state-of-the-art KL-Means-IB routine and showed that the
novel ACP-approach (with only one run) can be taken as a
quite efficient and competitive alternative.
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