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Abstract—In this paper, we focus on an extended version
of noisy source coding wherein the compressed data shall be
transmitted over an imperfect (forward) channel for further
processing. As the quantization design framework, we deploy the
Information Bottleneck principle and propose a novel treatment
by successful exploitation of a quite generic and highly flexible
graph-based clustering routine known as Affinity Propagation.
We also provide simulation results regarding a typical digital
transmission setup to compare the performance of our proposed
treatment with a state-of-the-art routine from literature.

I. INTRODUCTION
The subject of joint source-channel coding (JSCC) is con-

sidered. Explicitly, we assume the case in which the aim is
to quantize an observed signal (e.g., at an access channel’s
output) from a given source with the side-knowledge that
the compressed signal shall be transmitted over a non-ideal
forward channel to be further processed at a distant unit.
In fact, this is the underlying scenario on a broad range of
practical applications, among others, cooperative transmission
via relaying over noisy links with quantize-and-forward strat-
egy [1], distributed inference sensor networks with imperfect
links to the fusion center [2], and Centralized Radio Access
Networks (C-RANs) with non-ideal fronthaul connections [3].
On such occasions, the impacts of imperfect forwarding have
to be encompassed into the quantizer design setup. A rather
straightforward approach to address this problem is to treat
the observed signal as a virtual source. One can then adapt
the conventional techniques from Rate-Distortion (RD) theory
[4] by expanding the distortion measure function such that the
effects of imperfect forward channel(s) are taken into account
[5], [6]. Basically, in such procedures, the actual source is
not explicitly brought into the design setup and there is no
general way to systematically obtain the appropriate distortion
measure for any particular case of interest. These facts are
indeed incentives to think of an alternative framework for
quantization. As a quite interesting choice, the Information
Bottleneck (IB) method [7] can be deployed. It was primarily
proposed in the context of machine learning in which the
intended purpose was to extract a certain feature from a
typically huge dataset via smart clustering [8]. Applying this
type of dimensionality reduction is an indispensable task in
a wide variety of practical fields which exploit statistical
analysis to process data [9]. To acquire a general picture about

the IB paradigm and a number of pertinent routines, interested
readers are referred to [10]–[13].

Inspired by the original IB philosophy, instead of minimiz-
ing the average distortion w.r.t. a certain distortion measure,
one may think of maximizing the Mutual Information (MI) be-
tween the source signal and forward channel’s output. Contrary
to the conventional methods from RD theory, this brings about
a symmetric design structure in which both complexity and
precision of the resultant outcome are quantified by MI terms.
As a result, the quantization task becomes purely statistical
and irrelevant to the specific realizations of the variable to
be compressed that makes it fundamentally different from
the well-established approaches. For a given input statistics,
the obtained quantizer maximizes the end-to-end transmission
rate that is definitely desired for (almost) all communication
schemes. As will be shown later, for such quantizers attaining
the globally optimal solution through a tractable complexity is
rather demanding. Accordingly, one may pragmatically resort
to some efficient heuristics that aim at addressing the design
problem at least locally.

Here, we tackle this task from a new perspective taking
advantage of a highly flexible and generic message passing
based clustering routine called Affinity Propagation (AP) [14].
AP is an efficient tool designed for exemplar-based grouping.
It is fed by a matrix containing the pairwise similarities among
the bunch of articles to be clustered and yields a high-quality
clustering result. To be able to utilize this powerful tool,
the case-specific grouping task must be translated into an
equivalent exemplar-based clustering problem with clear spec-
ification of the appropriate measure of pairwise similarities.
In this study, we address this translation in case of IB-based
JSCC and point out what exactly are the corresponding articles
to be clustered and how to obtain the appropriate measure of
pairwise similarities among them.

To that end, we introduce the system model for JSCC along
with a state-of-the-art algorithm called Channel-Optimized
Information Bottleneck (Ch-Opt-IB) [15] in Section II. In
Section III we present the basic comprehension of AP and
demonstrate how to attain an equivalent exemplar-based clus-
tering problem for IB-based JSCC setup. Finally, we provide
performance results in Section IV and a wrap-up containing
the salient points in Section V.
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II. JOINT SOURCE-CHANNEL CODING SETUP

A. Presumed System Model

channel quantizer
channel
forward

data source
y ∈ Y z̃ ∈ Z̃z ∈ Zx ∈ X

p(x) p(y|x)

access
channel

p(z|y) p(z̃|z)

Fig. 1. System model for joint source-channel compression/coding

For the considered system model illustrated in Fig. 1 we
presume a discrete memoryless source x (with realizations
x∈X ) having the a-priori distribution p(x) followed by a
Discrete Memoryless Channel (DMC) that is described by
the transition probability distribution p(y|x). The observed
signal y (with realizations y ∈ Y) at the access channel’s
output shall be compressed to the signal z (with realizations
z∈Z) before being transmitted over the forward DMC that is
characterized via the conditional distribution p(z̃|z). Moreover,
we presume that x ↔ y ↔ z ↔ z̃ introduces a Markov chain
and the joint distribution p(x, y) = p(x) p(y|x) and also the
forward channel probabilities p(z̃|z) are given. To design a
quantizer p(z|y) which maximizes the overall transmission
rate in this setup, the following problem has to be addressed1:

p�(z|y) = argmax
p(z|y)

I(x; z̃) for |Z|≤M , (1)

in which M is the maximum number of quantization levels
and | · | denotes the cardinality of a given set. To acquire an
impression about the type of optimization task, we investigate
(1) in more details. It can be shown that for a given p(x),
the objective function in (1) is convex w.r.t. the conditional
distribution p(z̃|x) [4]. In addition, the relation among p(z̃|x)
and the quantizer mapping p(z|y) is established as

p(z̃|x) =
∑
y∈Y

∑
z∈Z

p(z̃|z)p(z|y)p(y|x), (2)

which is of affine type preserving convexity. Thus, it is
inferred that I(x; z̃) is also convex w.r.t. the quantizer mapping
p(z|y). For each specific receive signal y ∈ Y it applies∑

z∈Z p(z=z|y=y)=1, that defines a (|Z|−1)-dimensional
probability simplex. Consequently, the overall search space
in (1) is obtained by the Cartesian product of |Y| of such
simplices leading to a closed convex polytope in the space of
dimensionality |Y|× (|Z| − 1). Altogether, the optimization
in (1) boils down to maximizing a convex function over a
closed and convex set. In optimization theory, this task is
referred to as convex maximization or concave optimization
proven to be NP-hard in general [16]. Resorting to a well-
known proposition which asserts that a convex function attains
its global maximum over a closed convex set at its extreme
points, it is immediately deducible that the optimal solution in
(1) is obtained by deterministic mappings, i.e., p(z|y)∈{0, 1}
for all pairs (y, z) ∈ Y×Z . To see this, one shall note that
extreme points of a polytope translate into its vertices and for

1The MI between discrete random variables a and b with marginal
and joint distributions p(a), p(b) and p(a, b), respectively is defined as
I(a; b) �

∑
a

∑
b
p(a, b) log

p(a,b)
p(a)p(b)

.

the search space polytope in (1), each vertex corresponds to
the Cartesian product of vertices of its constituent simplices.

Since the naive brute-force search over all vertices of the
event space in (1) leads to an exponential complexity w.r.t.
|Y| , plainly it cannot be considered as a promising strategy
to achieve the desired mapping p(z|y) in practice. This, in fact,
is the incentive behind the emergence of heuristics aiming at
treating (locally) the design problem (1) in an efficient fashion.
In the following part, we concisely present the Ch-Opt-IB
routine as an instance of state-of-the-art techniques to address
the design problem in (1). The provided discussion there paves
the way towards perceiving the IB-based JSCC as an exemplar-
based clustering task. This, indeed, opens up the chance of
utilizing AP as a quite novel treatment (see Section III).
B. Channel-Optimized Information Bottleneck (Ch-Opt-IB)

In [15], the authors have considered an analogous setup to
the one depicted in Fig. 1 and developed an iterative algorithm
that yields a vector quantizer that maximizes I(x; z̃), wherein x
denotes a vector of length K comprising elements produced by
the source x. Here, we restrict ourselves to the scalar quantizer
design, i.e., K=1. Following a round of derivations [13] the
objective function in (1) can be rewritten as

I(x; z̃) = I(x; y)− I(x; y|z̃) . (3)

As I(x; y) is fixed, I(x; y|z̃) has to be minimized. Introducing2

C(y = y, z̃ = z̃) � DKL
(
p(x|y)‖p(x|z̃)

)
, one can write

I(x; y|z̃) = Ey

{
Ez̃{C(y, z̃)|y}

}
, (4)

in which the conditional expectation term is calculated by

Ez̃{C(y, z̃)|y=y}=
∑
z∈Z

p(z|y)
∑

z̃∈Z̃

p(z̃|z)C(y=y, z̃= z̃) . (5)

As the inner sum term in (5) is constant for a certain z ∈ Z ,
to minimize the conditional expectation (5) for every y ∈ Y ,
the quantizer mapping has to be chosen as p(z|y) = δz,z�(y),
wherein the optimum cluster is

z�(y) = argmin
z

∑

z̃∈Z̃

p(z̃|z)C(y = y, z̃ = z̃) . (6)

Accordingly, (4) is minimized for a given C(y, z̃). Besides, it
is inferable that p(z̃|y) =

∑
z∈Z p(z̃|z)p(z|y) = p(z̃|z�(y)).

To develop an iterative routine which maximizes I(x; z̃), one
shall update C(y, z̃) at the end of each iteration. This is done
via updating p(x|z̃) by

p(x|z̃) =

∑
y∈Yz

p(x, y)p(z̃|y)
∑

y∈Yz

p(z̃|y)p(y)
, (7)

wherein Yz denotes the subset of Y for which all elements are
allotted to the cluster z. Specifically, Ch-Opt-IB is initialized
by a random choice of C(y, z̃) and then iterates over the
resultant mapping by (6) (assignment phase) and the recal-
culated version of C(y, z̃) acquired from (7) (update phase)
till converging to a local optimum.

2DKL(· ‖ · ) is Kullback-Leibler (KL) divergence that is defined for proba-
bility distributions p(a) and q(a) over the same event space A of the random
variable a as DKL

(
p(a)‖q(a))�

∑
a∈A p(a)log

p(a)
q(a)

[4]. The relation among
MI and KL divergence is established via I(a; b)=DKL

(
p(a, b)‖p(a)p(b)).
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III. AFFINITY PROPAGATION (AP)
A. Description and Discussion

Principally, AP is a recursive message passing algorithm
devised for exemplar-based grouping [14]. An exemplar is the
representative of a certain cluster which is chosen from the
primary set of articles to be clustered, i.e., the mother-set.
AP treats all primary articles as nodes of a network being
delineated with a fully-connected graph in which there is an
edge between every pair of articles. These articles commu-
nicate with each other over the edges in a recursive fashion
(bilateral messages per edge) to gradually decide about the
most suitable exemplar-set. The responsibility r(i, k) is the
transmitted message from article i to the potential exemplar
k indicating to which extent i conceives k to be responsible for
serving it as an exemplar. Conversely, the availability a(i, k) is
the transmitted message from the potential exemplar k towards
an article i signifying to which extent k conceives itself to be
available as an exemplar for i. At initial stage, all N different
articles are presumed to be potential exemplars. Therefore,
every article i must engender a responsibility message r(i, k)
for the article k with i, k ∈ {1, 2, ..., N}. The primary round
of responsibilities are solely generated from the pairwise
similarities s(i, j) for i, j ∈ {1, 2, ..., N}, inserted as the input
of AP. A fascinating feature of AP which brings about a
great deal of flexibility is the fact that the mother-set does
not have to be embedded in a metric or continuous or even
ordinal space. Thus, the pairwise similarities do not have
to be calculated based on a metric, i.e., they do not need
to be symmetric and even they are not required to satisfy
the triangle inequality. On the next phase of AP dynamism
the availabilities a(i, k) are engendered from the received
responsibilities r(i, k). The aforementioned bilateral message
passing procedure is perpetuated until a highly satisfactory set
of exemplars and subsequently the respective clusters emerge.

Another intriguing feature of AP is about its astonishingly
intuitive and simple update rules. Specifically, the update
equation for responsibility calculations is given as

r(i, k) = s(i, k)−max
j �=k

{a(i, j) + s(i, j)} , (8)

and the respective update rules for availabilities are

a(i, k)=min
{
0, r(k, k)+

∑
j �∈{i,k}

max{0, r(j, k)}
}

for i �= k (9)

and in case of self-availability

a(k, k) =
∑
j �=k

max {0, r(j, k)} . (10)

The presented update equations are derived by exploitation of
Max-Product algorithm [17] for approximating the marginals
of the global function pertinent to the specific factor graph
illustrated in Fig. 2. The factor nodes fi and the variable nodes
ci with i ∈ {1, ..., N} represent the coherency check and the
chosen exemplar for the article i, respectively. By coherency
check fi, it is stipulated that if any other article j �= i decides
in favor of the article i as its exemplar, then the article i
must be the chosen exemplar for itself as well. Regarding the
singleton factor nodes in Fig. 2, it is rather straightforward to

fi(c1, ..., cN) fN(c1, ..., cN)

c1 c2

es(1,c1) es(i,ci) es(N,cN)

cNci

f1(c1, ..., cN)

Fig. 2. The factor graph on which AP is developed, the factor nodes fi and
the variable nodes ci with i ∈ {1, ..., N} represent the coherency check and
the chosen exemplar for the article i, respectively

perceive that the purpose of computation over such a factor
graph is to figure out the particular coherent configuration
of variables that maximizes the sum of overall similarities
among all the articles and their respective exemplars. The
immediate use of Max-Product algorithm requires vector-
valued messages. Nevertheless, applying some clever math-
ematical tricks as stated in [18], the update equations are
shrunk to the scalar-valued versions (8)-(10) which leads to
the complexity of O(N2) per iteration. At initial stage of
AP, to treat all the articles equitably, i.e., providing equal
chance of being chosen as an exemplar, all the availabilities
a(i, j) in (8) are set to zero. Nonetheless, after a while if
an article gets allotted to another one, its availability becomes
negative, which immediately influences the pertaining effective
similarity (the second term) in (8), pushing it out of the
ongoing exemplarship rivalry. Concentrating on the availability
update (9) for the article k, it is principally calculated as the
sum of all the positive responsibilities from the other articles
and its self-responsibility r(k, k). The negative responsibilities
are disregarded as those belong to the articles for which the
article k is not a proper exemplar and for a decent exemplar, it
suffices to represent some and not all of the articles effectively.

Another compelling characteristic of AP is about its
so-called automatic model selection capability [18]. One shall
note that the cardinality of the exemplar-set is not fixed
a-priori but it rather emerges naturally for every certain choice
of the common self-similarity, which in AP terminology is
designated as the Common Preference (CP). Generally, the
preference values are not required to be identical for all the
articles and the larger the preference s(i, i), the higher the
chance of article i to be selected as an exemplar. Accordingly,
when a CP is present, it is essentially the very parameter that
can be tuned to affect the resultant exemplar-set cardinality.
The underlying reason is the fact that the sum of preferences
can be reckoned a penalty term (w.r.t. the complexity) being
existent at the objective function of AP factor graph to avoid,
e.g., the case wherein every article is treated as an exemplar.

It is a common observation that applying belief propagation
over loopy graphs may cause an unstable behavior. Thus, as a
crucial implementation detail, the messages which are going
to be transmitted over the fully-connected AP graph of Fig. 2
must be dampened. Therefore, irrespective of being either
responsibility or availability, the messages are calculated as
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the weighted combination of their current and previous values.
Eventually, it must be mentioned that the allotted cluster for
article i at the end of each round of message exchange is
estimated as ĉi = argmaxk

{
a(i, k) + r(i, k)

}
.

B. IB-Based JSCC Utilizing AP
In this section, we establish the connection among the

IB-based JSCC problem in (1) and the generic exemplar-based
grouping task behind AP. Accordingly, we propose exploiting
AP as a novel treatment regarding the quantization design
problem at hand. Commencing with (3) and having (4) and
(5) in mind, it is immediately inferred that maximization
of the end-to-end transmission rate, I(x; z̃), is equivalent to
maximization of the average term

Ey

{
Ez̃{−C(y, z̃)|y}

}
(11)

=
∑
y∈Y

− p(y)
∑
z∈Z

p(z|y)
∑

z̃∈Z̃

p(z̃|z) ·DKL
(
p(x|y)‖p(x|z̃)

)
.

As already discussed, the hard mapping is favorable for the
present convex maximization problem. Hence, presuming a
deterministic quantization and denoting the selected z for each
specific y as z�(y), (11) can be rewritten as

∑
y∈Y

− p(y)
∑

z̃∈Z̃

p
(
z̃|z�(y)

)
·DKL

(
p(x|y)‖p(x|z̃)

)
. (12)

The structure of (12) is reminiscent of the global objec-
tive function of AP,

∑
i s(i, ci), that is the overall sum of

similarities among individual articles i and their respective
exemplars ci. In principle, by regarding the realizations y(i)

and y(j) of the observed random variable y in Fig. 1 as articles
i and j, respectively, and by defining the pairwise similarities

s(i, j) = −p(i) ·
∑

z̃∈Z̃

p(z̃|j)DKL
(
p(x|i)‖p(x|z̃)

)
, (13)

the global objective function of AP coincides with (12).
Since the goal of AP is to find out the coherent configu-
ration which maximizes its objective function, it is totally
in line with the IB-based JSCC design criterion that boils
down to maximizing the expectation term in (11). As already
mentioned, at initial stage of AP all articles are treated as
potential exemplars. This means, primarily, it is assumed that
Z = Y . Therefore, to be able to compute all the pairwise
similarities as suggested in (13), the transition probabilities of
the forward channel must be available for all realizations of
the observed variable y. This requirement yields a fundamental
difference between the proposed AP-based treatment and the
other state-of-the-art approaches. Contrary to other methods,
the AP-based solution starts with an augmented forward
channel matrix and after quantization shrinks that matrix to
the one solely containing the forward transition probabilities
of the chosen exemplars. This, indeed, can be interpreted as
an automatic forward channel selection. To obtain the condi-
tional probability p(x|z̃) which is required for computation
of pairwise similarities in (13), applying Bayes’ rule, one can
write

p(x|z̃) = p(x)p(z̃|x)∑
x′∈X

p(x′)p(z̃|x′)
. (14)
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Fig. 3. Overall transmission rate I(x; z̃) vs. number of clusters M , 16-QAM
signaling: a) fixed forward channel with reliability e = 0.001, AWGN access
channel with σ2

n = 1, 2, 3 and b) fixed AWGN access channel with σ2
n = 2,

forward channel with reliabilities e = 0.1, 0.05, 0.001

Since p(x) is known, only the conditional probability p(z̃|x)
must be calculated. Employing the Markovian property

p(z̃|x) =
∑
y∈Y

∑
z∈Z

p(z̃|z)p(z|y)p(y|x) . (15)

Primarily, Z=Y , and therefore one can rewrite (15) as

p(z̃|x)=
∑
y∈Y

∑
y′∈Y

p(z̃|y′)p(y′|y)p(y|x)=
∑
y∈Y

p(z̃|y)p(y|x) (16)

by exploiting the fact that p(y′|y)= 1 only for y′= y and
zero otherwise. Eventually, it can be seen that by knowing the
access and forward channel transition probabilities, one can
calculate the pairwise similarities and let AP decide in favor
of the coherent configuration which maximizes the end-to-end
transmission rate I(x; z̃) for a given input statistics p(x).

IV. SIMULATION RESULTS

In this section, we investigate the performance of a typical
digital transmission setup for equiprobable 16-QAM signals
with σ2

x =10. To simulate the access channel, we generate
N = 200 samples from an AWGN channel with different
noise variances (σ2

n = 1, 2, 3). As the forward channel, in
case of AP-based approach we consider an N -ary symmetric
model being characterized by the reliability parameter e (for
each symbol the correct reception occurs with probability
1− e and the erroneous reception to every other symbol
occurs with probability e

N−1 ). For a fair comparison, in case
of Ch-Opt-IB we assume an M×N model with the same
reliability. As performance indicator, we calculate the resultant
end-to-end MI, I(x; z̃), over the varying maximum number of
output bins for two distinct scenarios to investigate the effects
of both DMCs in our presumed system model. Firstly, we
keep the forward channel constant (with reliability parameter
e = 0.001) and vary the noise variance of the access channel.
Secondly, we fix the access channel (with the noise variance
σ2
n=2) and vary the reliability parameter e of the forward

channel. The pertinent plots are depicted in Figs. 3. To obtain
these curves, the bisection method [18] is exploited for the AP-
based treatment to determine the required CP corresponding to
each specific number of output bins. Moreover, to avoid getting
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Fig. 4. ACP vs. number of clusters M , 16-QAM signaling, AWGN access
channel with σ2

n=1, 2, 3, forward channel with e=0.1, 0.05, 0.001

stuck into bad local optima, Ch-Opt-IB was rerun 100 times
with the best outcome taken. Regarding both figures, it is seen
that irrespective of the specific choice of model parameters,
our proposed treatment outperforms the result achieved by
Ch-Opt-IB for a wide range of output bins. Besides, the
observed behavior of acquired end-to-end transmission rate,
I(x; z̃), w.r.t. different choices of σ2

n and e is justified following
the line of argumentation provided in [13]. Principally, as
I(x; z̃) is upper-bounded by the minimum capacity among both
DMCs at the system model in Fig. 1, its observed increment
either by decreasing σ2

n or e is quite natural.
Next, to obviate the exploitation of bisection method which

results in a substantial reduction on the required computational
load of our proposed AP-based treatment, we calculated the
Approximate Common Preference (ACP) for any number of
output cardinality as illustrated in Fig. 4. To obtain these
curves, for each certain σ2

n and e, we repeated the aforemen-
tioned transmission 100 times and stored the respective CPs
(using bisection). The acquired ACP for every value of M
is the arithmetic mean of the lowest and the highest values.
To test the usability of such a preference guideline (that can
be calculated once offline), we repeated the transmission 250
times more and for every new trial, we inserted the ACP values
(taken from Fig. 4) for six choices of M as the chosen CP and
executed the AP-based routine only once. The attained results
are depicted in Fig. 5. Irrespective of the specific choice of M
and σ2

n, we observed that the one-shot result had the output
cardinality in the range of M±2 for at least 85% of the trials.
This means that, in cases for which the strict upholding of a
specific output cardinality is not a must and a rather small
variation range can be tolerated, only one run of our proposed
AP-based approach (applying the precalculated ACPs) yields
a quite promising result.

V. SUMMARY

In this paper, we focused on the joint source-channel coding
setup. Instead of conventional techniques from Rate-Distortion
theory, we deployed the Information Bottleneck paradigm.
As the key contribution, we proposed a novel treatment to
address the design problem exploiting the Affinity Propagation
that is an efficient message passing approach for clustering.
Eventually, we investigated the performance of our proposed
treatment w.r.t. the SotA Ch-Opt-IB and showed that the novel
approach can be taken as a quite competitive alternative.
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