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Abstract—Lossy data compression has been studied under the
celebrated Rate-Distortion theory which provides the compres-
sion rate in order to quantize a signal without exceeding a
given distortion measure. Recently, with information bottleneck
an alternative approach has been emerged in the field of machine
learning. The fundamental idea is to include the original source
into the problem setup when quantizing an observation variable
and to use strictly information theoretic measures to design
the quantizer. This paper yields an insight to this framework,
discusses corresponding algorithms and their performance, and
provides a new algorithmic approach of low complexity.

I. INTRODUCTION

A fundamental task of any communication system is to
quantize the noisy observation of the original source signal.
The Rate-Distortion (RD) theory provides the minimal number
of bits per symbol in order to represent the received signal
without exceeding an upper-bound on a given distortion mea-
sure, e.g., the mean square error (MSE) between the quantizer
input signal and its representative at the output [1]. Specif-
ically, the Blahut-Arimoto algorithm determines the lowest
achievable compression rate for a certain maximum tolerable
distortion. The main drawbacks of this formulation are the lack
of a systematic way to choose a proper distortion measure
for any case of pertinence and the fact, that the stochastic
relation between the noisy observation and the original data
source is not considered. In [2], Tishby et al. have introduced
the Information Bottleneck (IB) method for data compression.
The central idea is to compress the observation such that
the quantizer output preserves most of the information about
the relevant variable, i.e., the original source. Furthermore,
IB avoids the a priori specification of a distortion measure
by considering the mutual information between the quantizer
output and the original data source. In this fashion, the output
of the quantizer becomes a compact representation of its input
which is highly informative about the actual source of interest.

Clustering for dimensionality reduction is an important topic
in learning theory, comprising a significant part of techniques
dealing with the problem of unsupervised learning [3]. Along
with the mentioned application which led to the introduction
of the IB concept, similar quantization/compression problems
arise in different aspects of data transmission like analog-
to-digital converter (ADC) at receiver front-ends [4], imple-
mentation of discrete decoders for Low Density Parity Check
(LDPC) codes [5] and many other potential cases.

In this paper we provide an overview of algorithmic imple-
mentations for IB-based quantization and compare their major
performance metrics. To this end, the general IB framework
is introduced in Section II and the principles of the most
important, relevant algorithms are presented in Section III for
arbitrary signal constellations. In Section IV the special case
of binary input alphabet is considered. Section V is dedicated
to the performance comparison of covered algorithms. Finally,
the paper concludes by providing a summary of this study.

II. INFORMATION BOTTLENECK METHOD

data source quantizerchannel
y ∈ Y z ∈ Zx ∈ X

p(y|x) p(z|y)p(x)

Fig. 1. General system model for the quantization of noisy observations

Fig. 1 shows the considered system model consisting of a
data source, a transmission channel and a quantizer. Without
loss of generality, we assume the random variable x with
realizations x ∈ X following the probability mass function
(pmf) p(x) as a discrete memoryless source (DMS). The
observation variable y with realizations y ∈ Y is the output
of a discrete memoryless channel (DMC) characterized by
its transition probability distribution p(y|x). Furthermore, the
random variable z with realizations z ∈ Z is the output of
the quantizer block being characterized by the conditional
distribution p(z|y). Subsequently, I(x; y) = H(x) − H(x|y)
denotes the mutual information between x and y with the
source entropy H(x) and the conditional entropy H(x|y).

Given the joint probability distribution of the source
and the channel output p(x, y) = p(x) p(y|x) and assuming
x ↔ y ↔ z to be a Markov chain, the quantizer should be
designed such that the output z is a compact representation
of the input y which is highly informative about x. Mathe-
matically, the existent trade-off between the compression rate,
I(y; z), and the relevant information, I(x; z), is established
by the introduction of a non-negative Lagrange multiplier, β,
in the design formulation. Hence, for an allowed number of
quantizer output levels, n, the corresponding design problem
follows as [2]:

p�(z|y)=argmin
p(z|y)

1

β+1

(
I(y; z)−βI(x; z)

)
for |Z|≤n . (1)
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Note that the factor 1
β+1 has been introduced here for the

sake of mathematical clarity in the subsequent investigation
of asymptotically small/large β without affecting the optimum
mapping p(z|y). To figure out the entity of this optimization
task, two important questions must be answered at this point:

1) What is the event space of the mapping p(z|y)?
2) Is the objective function in (1) convex or concave over

the corresponding event space?
To answer the first question, one notes that for each

specific value y of the random variable y, the resultant
p(z|y=y) is a (|Z|−1)-dimensional probability simplex, since∑

z∈Z p(z=z|y=y)=1 holds. Hence, the overall event space
of p(z|y) is the product set of |Y| of such simplices, leading to
a closed convex polytope in the |Y|×(|Z|−1) Euclidean space
[6]. To answer the second question, we consider subsequently
three different cases which cover the entire interval of allowed
values of β, specifically two extreme cases of β → 0 and
β → ∞ and the third case of non-zero finite values.

For β → 0 the objective function in (1) reduces to the
compression rate I(y; z). As I(y; z) is a convex function of
p(z|y) for fixed p(y) [1], the optimization problem is convex.
Any valid stochastic allocation of y to |Z| clusters that is
repeated for all y ∈ Y is a solution, since in that fashion y
and z become statistically independent and therefore the com-
pression rate takes its global minimum value of I(y; z) = 0.
Obviously, β → 0 is not a case of interest, as no relevant
information is kept.

For β → ∞, corresponding to the highest interest in keeping
relevant information, the design problem (1) reduces to

p�(z|y)=argmax
p(z|y)

I(x; z) for |Z|≤n . (2)

For the present Markov chain x ↔ y ↔ z the conditional
probability distributions p(z|x) and p(z|y) are connected by
the affine relation p(z|x) = ∑

y∈Y p(z|y)p(y|x). Furthermore,
it is known that any affine relationship preserves convexity.
Therefore, as I(x; z) is convex w.r.t. p(z|x) for fixed p(x), it
is also a convex function of p(z|y). Thus, the maximization
in (2) is a concave optimization problem1 [7]. Resorting to
a well-known proposition in concave optimization theory [8]
which asserts that a convex function f : S → R attains its
global maximum over S at an extreme point of S , one can
deduce that there exists an optimal deterministic solution, i.e.,
p(z|y) ∈ {0, 1}, since extreme points of a convex polytope
are its vertices. Each vertex of the event space of p(z|y)
corresponds to the product set of the vertices of its constituent
probability simplices, leading to a deterministic mapping for
each pair (y, z) ∈ Y × Z . This is the principle behind most
heuristics aiming to solve the problem (at least locally) in this
case, as the naive exhaustive search over all |Z||Y| vertices of
the event space of the mapping p(z|y) is obviously intractable
for the relatively large cardinality of elements to be clustered.

1One must note that concave optimization is about finding the maxima of
a convex function (∪) over a feasible region and, thus, is essentially different
from convex optimization which searches for the minima of a convex function.

For non-zero finite values of β, the objective function in (1)
is the sum of a convex ( 1

β+1I(y; z)) and a concave ( −β
β+1I(x; z))

function of p(z|y) which is neither in general. Hence, also the
present optimization is neither of convex nor concave type.

It is noteworthy that the present constraint on the cardinality
of representatives |Z| ≤ n in the problem statement always
restricts the compression rate. So, even for β → ∞, the
compression rate is upper-bounded by I(y; z)≤ log2(n) bits.

III. ALGORITHMIC APPROACHES

In this section, we offer a review of IB-based algorithms for
the scalar quantizer design in case of discrete random variable
y. For continuous random variable y, interested readers are
referred to [9]. In what follows, cluster, bin and class refer to
the same concept and hence are used interchangeably.
A. Iterative Information Bottleneck (It-IB)

In order to solve (1), Tishby et al. derived the optimal
quantizer by means of variational calculus [2]. Precisely, for
a fixed value of β the quantizer p(z|y) is a stationary point of
the objective function in (1), if and only if

p(z|y) = p(z)

ψ(y, β)
e−βDKL

(
p(x|y)‖p(x|z)

)
(3)

is fulfilled for all pairs (y, z) ∈ Y × Z . The normalization
function ψ(y, β) ensures a valid distribution p(z|y) for each
y ∈ Y and DKL(· ‖ · ) is the Kullback-Leibler (KL) diver-
gence2. The provided solution (3) has an implicit form, since
the cluster probability p(z) and the cluster representatives
(in a conventional sense) p(x|z) appearing on the right side
of (3), depend on the quantizer p(z|y) by

p(z) =
∑
y∈Y

p(y)p(z|y) (4)

and
p(x|z) = 1

p(z)

∑
y∈Y

p(x, y)p(z|y) . (5)

The Iterative IB (It-IB) algorithm is initialized with a valid
random mapping p(z|y) and iterates over (4), (5) and (3), till
a specific convergence criterion is met. It is noteworthy that
for finite values of β, the resultant quantizer is of stochastic
nature, i.e., each y is mapped to all clusters z with a certain
probability p(z|y). As the algorithm converges to a locally
optimal solution, the iterative procedure is usually repeated
for different initializations.

B. Agglomerative Information Bottleneck (Agg-IB)

The basic idea of the Agglomerative IB (Agg-IB) algorithm
is to initialize z by the exact copy of y and then iteratively
decrement the cardinality of representatives |Z| by merging
two clusters in a greedy fashion till the allowed number of
bins, n, is met [10]. Denoting the cluster created by merging

2The KL divergence is also known as relative entropy between two proba-
bility distributions p(x) and q(x) over the same event space X of the random
variable x and is defined as DKL

(
p(x)‖q(x)) =

∑
x∈X p(x) log

p(x)
q(x)

[1]. The mutual information of x and y is equal to the KL divergence
I(x; y) = DKL

(
p(x, y)‖p(x)p(y)).

SCC 2017  ·  February 6 – 9, 2017 in Hamburg, Germany

ISBN  978-3-8007-4362-9 2 © 2017 VDE VERLAG GMBH  Berlin  Offenbach



zi and zj by z̄, the membership probability of the new class
equals the sum of the corresponding probabilities [3]

p(z̄) = p(zi) + p(zj) (6)

with p(x|z̄) = πi p(x|zi) + πj p(x|zj) and Π = {πi, πj} ={
p(zi)
p(z̄) ,

p(zj)
p(z̄)

}
. It is rather apparent that minimizing the objec-

tive function in (1) is equivalent to maximizing the functional
F = I(x; z)− β−1I(y; z), since for constant β, it is only
multiplied by a negative value −(β+1)

β . The merger cost, ΔF ,
defined as the difference between values of F before and after
merging, is given by [3]

ΔF(zi, zj) = p(z̄) · d̄(zi, zj) (7)

where

d̄(zi,zj)=DΠ
JS

(
p(x|zi)‖p(x|zj)

)−1

β
DΠ

JS

(
p(y|zi)‖p(y|zj)

)
(8)

with the Jensen-Shannon (JS) divergence3 DΠ
JS(· ‖ · ). It can be

shown that the second divergence term in (8) simplifies to the
binary entropy of Π in case of hard clustering. The greediness
of the algorithm results from the fact that at each iteration,
among all possible mergers, the one with the minimum cost
is chosen. In this manner, it finds a quantizer mapping p(z|y)
which tries to directly maximize the functional F .

C. Sequential Information Bottleneck (Seq-IB)

In [11] Slonim et al. presented a sequential algorithm for (1).
Explicitly, this algorithm starts with a random deterministic
classification, p(z|y), with allowed number of bins, n, and
then rearranges this mapping in an iterative fashion such that
the functional F is maximized. Precisely, at each step, an
element is drawn from its encompassing bin and considered
as a singleton cluster. Then the merger cost of combining this
cluster with all present classes is calculated using (7) and the
one with minimum cost will be the new host for the dragged
element. This procedure is repeated till a certain convergence
criterion is met. Similar to the It-IB, to avoid getting stuck in
bad local optima, the Sequential IB (Seq-IB) algorithm can be
repeated for different initializations.

D. Deterministic Information Bottleneck (Det-IB)

Recently, the generalized objective function

Lα = H(z)− αH(z|y)− β I(x; z) (9)

with parameter α ∈ [0, 1] was introduced in [12] in order to
find the optimal deterministic quantizer for the special case
of α → 0. Note that, the stochastic nature of the solution
provided by the It-IB algorithm stems from the presence of
the term H(z|y) in the functional (1) in which α = 1. With
α → 0 the origin of stochasticity is suppressed leading to
a deterministic solution p(z|y) even for finite values of β.

3For two probability distributions p(x) and q(x) over the same event
space X of the random variable x, the JS divergence is defined as
DΠ

JS

(
p(x)‖q(x)) = π1DKL

(
p(x)‖r(x)) + π2DKL

(
q(x)‖r(x)) where

Π={π1, π2}, 0<π1, π2<1, π1 +π2=1 and r(x)=π1p(x)+π2q(x) [3].

Again, for a fixed value of α the optimal quantizer is found
by variational calculus

p(z|y) = 1

ψ(y, α, β)
e

1
α

(
log p(z)−βDKL

(
p(x|y)‖p(x|z)

))
(10)

where the normalization function ψ(y, α, β) ensures a valid
distribution p(z|y) for each y ∈ Y . Obviously, decreasing the
value of α translates into the asymptotically large growth of
the power of the exponential function in (10). Hence, in the
limit of α → 0, for each y ∈ Y , the mapping p(z|y) degener-
ates to a delta function, leading to a deterministic quantizer.
Mathematically, the quantizer is given by p(z|y) = δz,z�(y)

where δ denotes the Kronecker function and the optimum
cluster z�(y) is obtained as

z�(y) = argmax
z

(
log p(z)− βDKL

(
p(x|y)‖p(x|z))

)
. (11)

Like the It-IB (3), the derived solution (10) has an implicit
form. Thus, to get the required quantizer p(z|y), the Deter-
ministic IB (Det-IB) algorithm is initialized by a valid random
deterministic mapping p(z|y) and iterates over equations (4),
(5), and the provided mapping by (11), till a specific conver-
gence criterion is met. Usually, the provided mapping does
not use the entire allowed number of clusters, i.e., |Z| < n,
since the term log p(z) in (11) encourages the assignment of
an element to already used bins.

E. KL-means Information Bottleneck (KL-means-IB)
As already discussed, for β → ∞ the general IB problem

(1) reduces to finding the quantizer p(z|y) that maximizes the
relevant information I(x; z). Using the definition of mutual
information and the Lemma for the difference of conditioned
entropies provided in [13] we can write

I(x; z) = I(x; y)− (
H(x|z)−H(x|y)) (12a)

= I(x; y)− Ey,z

{
DKL

(
p(x|y)‖p(x|z))} . (12b)

As I(x; y) is fixed, the maximization of the relevant informa-
tion I(x; z) corresponds to the minimization of the average
KL divergence Ey,z

{
DKL

(
p(x|y)‖p(x|z))}. Similar to the

Lloyd-Max algorithm [14], the KL-means-IB algorithm finds
a locally optimal quantizer by alternating minimization in
the mapping p(z|y) (assignment step) and in the conditional
probability distribution p(x|z) (update step). The main dif-
ference here is, that the squared Euclidean norm used within
the Lloyd-Max algorithm is substituted by the KL divergence
being the proper distance measure for the IB setup. For
initialization, the KL-means-IB algorithm selects randomly n
points4 p(x|y = y) corresponding to n different values of
y as means of clusters. In the assignment step the points
with smallest KL divergence to each mean are clustered in
the same bin. Subsequently, in the update step the respective
mean per cluster is recalculated as its center of mass [15].
This assignment and update procedure is repeated till a cer-
tain convergence criterion is met or a maximum number of
iterations is reached.

4One may note that every conditional probability distribution p(x|y = y)
can be regarded as a point in the space of dimension |X |.
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F. Channel-Optimized Information Bottleneck (Ch-Opt-IB)

channel quantizer
channel
forwarddata source

y ∈ Y z̃ ∈ Z̃z ∈ Zx ∈ X

p(x) p(y|x) p(z|y) p(z̃|z)

Fig. 2. The extended system model featuring forward channel

In [9], the quantizer design problem was extended by
the transmission of the quantizer output signals z over a
forward channel as depicted in Fig. 2. Denoting the output
of the forward channel by z̃ with realizations z̃ ∈ Z̃ and
characterizing the transmission over the extra DMC by the
transition probability distribution p(z̃|z), the IB problem for
β → ∞ in (2) can be reformulated as

p�(z|y) = argmax
p(z|y)

I(x; z̃) for |Z|≤n . (13)

This is again a concave optimization task for the Markov
chain x ↔ y ↔ z ↔ z̃, since I(x; z̃) is a convex function
of p(z̃|x) for fixed p(x) and, with a given forward channel
p(z̃|z), p(z̃|x) and p(z|y) are connected by an affine relation
preserving convexity. Clearly, under the assumption of an
error-free forward channel, the problem (13) equals (2). With

I(x; z̃) = I(x; y)− I(x; y|z̃) (14)

and fixed I(x; y), the maximization of I(x; z̃) in (13)
equals the minimization of I(x; y|z̃). Using the definition
C(y = y, z̃ = z̃) = DKL

(
p(x|y)‖p(x|z̃)) the relation

I(x; y|z̃) = Ey

{
Ez̃{C(y, z̃)|y}} (15)

has been derived in [9], where the conditional expectation
calculates as

Ez̃{C(y, z̃)|y}=
∑
z∈Z

p(z|y)
∑

z̃∈Z̃
p(z̃|z)C(y=y, z̃= z̃) . (16)

To minimize (16) for each y ∈ Y , the quantizer mapping is
chosen as p(z|y) = δz,z�(y) where the optimum cluster z�(y)
is obtained by

z�(y) = argmin
z

∑

z̃∈Z̃
p(z̃|z)C(y = y, z̃ = z̃) . (17)

Hence, the conditional distribution p(z̃|y) of the combination
of the quantizer and the forward channel calculates as

p(z̃|y) =
∑
z∈Z

p(z̃|z)p(z|y) = p(z̃|z�(y)) . (18)

Apparently, in this fashion, the conditional mutual information
(15) is minimized for a given C(y, z̃). The basic idea of the
Ch-Opt-IB algorithm is to adapt the iterative IB discussed in
Section III-A to the current problem. Explicitly, it initializes to
a random C(y = y, z̃ = z̃) for all (y, z̃) ∈ Y × Z̃ and iterates
over the modified versions of (4), (5) and (18) (substituting z
by z̃), till a specific convergence criterion is met. Clearly, after
each iteration C(y, z̃) is updated accordingly. It is noteworthy,
that the degenerated version of this algorithm assuming an
ideal forward channel has already been proposed in [4].

IV. ALGORITHMIC APPROACHES FOR BINARY ALPHABETS

In this section, we focus on the special case of binary
input alphabets, i.e., |X | = 2, for which there exists an ef-
ficient algorithm that finds a globally optimum solution of the
underlying concave optimization. Moreover, we discuss two
other algorithmic approaches that are derived by modifying the
Agg-IB and the Seq-IB from Section III leading to suboptimal
solutions with reduced complexity.

A. Optimal Binary Algorithm (Opt-Binary)

In [7], Kurkoski and Yagi presented an algorithm which
finds the optimal mapping p(z|y) for β → ∞. Based on the
fundamental result on the existence of an optimal quantizer
with all clusters being convex sets [16], their focal idea is
to transform the quantization space suitably. For the binary
input alphabet this transformation is achieved by mapping
each received signal y ∈ Y to its corresponding conditional
probability p(x|y) for a specific value of x. Hence, after
relabeling y values such that p(x = x|y) be in an ordered
fashion, the algorithm finds an optimal mapping p(z|y) for
which clusters contain contiguous elements of y.

It is shown in [17] that the computational complexity load
of the corresponding algorithm can be drastically reduced
through careful definition of absolutely monotone matrices
along with the application of the SMAWK algorithm [18]
to find the maximum entry within each row. Moreover, [19]
proposes an alternative problem formulation by finding the
shortest path in a directed acyclic graph with a limited number
of hops leading to a modified Bellman-Ford algorithm.

B. Modified Agglomerative IB (Mod-Agg-IB)

The central point in the Opt-Binary algorithm is that for
relabeled y values with p(x = x|y) be in an ordered fashion,
there exists an optimal quantizer for which clusters contain
contiguous elements of y. We suggest to apply this proposition
as a priori knowledge in order to decrease the complexity
of the Agg-IB presented in Section III-B. Explicitly, in the
novel Modified Agglomerative IB (Mod-Agg-IB) algorithm for
each cluster the merger cost is calculated only w.r.t. adjacent
bins, leading to a significant reduction in the computational
complexity as demonstrated in Section V-A.

C. Modified Sequential IB (Mod-Seq-IB)

Similarly, a modified version of the Seq-IB discussed in
Section III-C has been proposed in [5]. Specifically, the
Mod-Seq-IB algorithm is initialized with a random mapping
p(z|y) with contiguous elements of y in each cluster. Subse-
quently, this natural ordering is kept by only inspecting the
elements adjacent to the classification borders. The mentioned
inspection is formalized through the introduction of two loops
being responsible for right-to-left and left-to-right movements.
A minor modification to the proposed algorithm which saves
redundant calculations, is to enter the second loop only in case
of no changes happening in the first one, since only in this
instance, checking for left-to-right movement makes sense.
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V. PERFORMANCE EVALUATIONS

Subsequently, we investigate the performance and the com-
plexity of discussed algorithms. First, the case of binary input
alphabet is studied for which the Opt-Binary algorithm is
compared with two suboptimal, low-complexity algorithms
Mod-Agg-IB and Mod-Seq-IB. Afterwards, a non-binary input
alphabet is assumed to assess the algorithms presented in
Section III. We apply equiprobable BPSK (x ∈ {±1}) and
4-ASK (x ∈ {±1,±3}) as input and assume AWGN channels
with noise variance σ2

n = 1. Furthermore, to acquire the
channel transition distribution p(y|x), the continuous channel
output is clipped at an amplitude of 3σn above the maximum
input signal (i.e., 4 for BPSK and 6 for 4-ASK) and uniformly
discretized to |Y|=128 values. In particular, we investigate the
accuracy by the mutual information loss ΔI=I(x; y)−I(x; z)
and the complexity-precision trade-off by the corresponding
compression rate I(y; z) for different values of β over varying
allowed number of clusters n. Finally, to get an impression
about the complexity of the considered algorithms their aver-
age runtime per execution in MATLAB® is also provided.

A. Binary Input Alphabet
Fig. 3 a) visualizes the mutual information loss ΔI of

the Mod-Agg-IB and the Mod-Seq-IB for varying β which
controls the level of the appearing performance floor for these
suboptimal algorithms. Please note, as the resultant mapping
of the Mod-Seq-IB algorithm depends on the initialization, to
achieve the corresponding curve, it has been run 105 times
for each specific allowed number of bins n, with the best
taken. It can be seen, that in case of β → ∞ the loss in ac-
curacy compared to the rather complex, Opt-Binary algorithm
almost vanishes for both suboptimal approaches. Furthermore,
the similar study with the conventional algorithms revealed,
that the Agg-IB had the same performance as its modified
counterpart, while the conventional Seq-IB performed worse
compared to its modified version. The reason behind, can be
attributed to the more suitable choice of initialization for the
Mod-Seq-IB.
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Fig. 3. a) Information loss ΔI and b) compression rate I(y; z) for varying
allowed number of bins n and binary input alphabet

For the same parameters the compression rates I(y; z) are
provided in Fig. 3 b). Considering both subfigures we can
draw the conclusion, that the higher the accuracy, the higher
is also the corresponding compression rate.
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Fig. 4. Average runtime per execution for varying allowed number of bins n
and binary input alphabet

Next, the average runtime per execution over varying
allowed number of bins n is demonstrated in Fig. 4. To
achieve so, for each algorithm, the corresponding arithmetic
mean is calculated for 103 runs. It is readily observed, that
both Mod-Agg-IB and Mod-Seq-IB end up to a significantly
lower runtime compared to their conventional counterparts.
Moreover, it can be deduced, that for β → ∞ both suboptimal
algorithms are a suitable substitute (having low-complexity
and high-performance) for the Opt-Binary algorithm with
high computational complexity. The time complexity of the
Mod-Seq-IB algorithm increases with the allowed number of
clusters n and is rather dependent on the parameter β. In
contrast, the speed of convergence of the Mod-Agg-IB is
nearly independent of β and the allowed number of classes.

Summarizing, in case of β → ∞ the proposed Mod-Agg-IB
algorithm shows a very good performance-complexity trade-
off as it achieves high accuracy quantization with the least
time complexity being independent of the number of bins n.

B. Non-Binary Input Alphabet
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Fig. 5. Information loss ΔI for varying allowed number of bins n and 4-ASK
input alphabet with a) β = 100 and b) β = 400

Fig. 5 shows the information loss ΔI of the algorithms
presented in Section III. One may note, as the resultant
mapping of all algorithms (except for the Agg-IB) depends
on the initialization, to achieve the corresponding curves,
they have been run 105 times, with the best taken. Except
for the KL-means-IB and the Ch-Opt-IB (both only consider
β → ∞) one can observe, that the accuracy of all algorithms
is improved by increasing β from 100 to 400. For a fair
comparison with the KL-means-IB and the Ch-Opt-IB we
concentrate subsequently on Fig. 5 b) with a relatively high
value of β.
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First of all, the non-smooth behavior of the Det-IB is due
to the fact that its provided mapping does not necessarily use
the entire allowed number of clusters, i.e., |Z| < n. As an
example, for n = 12 the used number of bins is smaller than
the case of n = 10, leading to a coarser result. Furthermore,
it can be seen that the It-IB and the KL-means-IB exhibit
nearly the same performance over the entire range of allowed
number of bins n. In addition, one notes that the Ch-Opt-IB
also sweeps the corresponding curve of the It-IB for n≤ 10.
The reason behind these observations is fully discussed in
[20] where the asymptotic algorithmic equivalence of these
algorithms is proven.
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Fig. 6. Compression rate I(y; z) for varying allowed number of bins n and
4-ASK input alphabet with a) β = 100 and b) β = 400

Fig. 6 displays the corresponding compression rates I(y; z).
Similar to the binary case we can observe, that in general,
the lower the information loss introduced by quantization, the
higher the corresponding compression rate.
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Fig. 7. Average runtime per execution for varying allowed number of bins n
and 4-ASK input alphabet with a) β = 100 and b) β = 400

Finally, Fig. 7 visualizes the average runtime per execution
of the algorithms indicating that the time complexity of the
considered algorithms is nearly independent of β. Unlike the
others, the complexity of the Agg-IB algorithm is further
independent of the number of clusters. Moreover, it can be
observed, that the Ch-Opt-IB algorithm exhibits the least time
complexity. Furthermore, as suggested in Fig. 7 b), in general,
the KL-means-IB exhibits lower time complexity compared to
the It-IB. As a result, to avoid the present numerical instability,
one may use the KL-means-IB algorithm as a good substitute
of the It-IB algorithm for β → ∞.

VI. SUMMARY
In this study we discussed the general IB setup and provided

an insight about the mathematical structure of the correspond-
ing quantizer design problem. Then, we provided a succinct
presentation of principles behind a group of algorithmic ap-
proaches to solve this task. For the covered algorithms we
compared the accuracy, the compression rate, and the average
runtime. It was demonstrated, that the proposed Modified
Agglomerative IB algorithm provides a promising complexity-
precision trade-off for binary input alphabets.
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