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Abstract—Industrial radio communication systems spawn a
new set of requirements for wireless communication systems
with high reliability and low latency. These requirements were
identified in the Industry 4.0 (I4.0) initiative as well as in 5th
Generation (5G) mobile communication standardization where
polar codes are selected to meet Ultra Reliable Low Latency Com-
munication (URLLC) requirements. Accurate link abstraction
models of those systems are required for system level simulations.
However, it is uncertain how short, polar-coded packets with Bit-
Interleaved Coded Mapping (BICM) in Orthogonal Frequency
Division Multiplexing (OFDM) systems at low Frame-Error-
Rates (FERs) can be characterized via Effective SNR Mapping
(ESM). We investigate if and how short packet communication
systems with polar codes can be modeled accurately via ESM
methods. We compare new error measures for FER curve
fitting in order to find optimal ESM adjustment factors for low
FERs. We present simulation results that show how susceptible
adjustment factors are to different system parameters. Finally,
we demonstrate that accurate link abstraction is possible for the
target system even at the desired working point.

Index Terms—polar code, EESM, MIESM, link abstraction,
effective SNR mapping, multicarrier, URLLC, 5G

I. INTRODUCTION

In 5th Generation (5G) Ultra Reliable Low Latency
Communication (URLLC) new use cases for Machine-type-
Communication (MTC) systems are identified [1]. The 3rd
Generation Partnership Project (3GPP) considers polar codes
for these use cases [2] which include industrial systems
and autonomous driving. Here, high reliability requirements
paired with low latency constraints complicate satisfactory
communication system design. 5G communication systems
aim at providing the Quality-of-Service (QoS) requirements
for reliable and low latency communications for future mobile
communication scenarios [3].

Industrial communication systems may consist of tens or
hundreds of devices. Furthermore, they pose a new set of
requirements with highly reliable short packets, low latency
and resilience to burst errors. Communication engineers of-
ten use Frame-Error-Rate (FER) to compare system perfor-
mance while automation engineers use Mean Time To Fail-
ure (MTTF) as their Key Performance Indicator (KPI) [4].
In [4] the authors proposed a method to obtain a relation
between those KPIs and showed that automation systems
require extremely low FERs which may lead to high resource

consumption but do not directly address resilience to burst
errors.

We need accurate link abstraction models to find and
analyze new scheduling and resource allocation algorithms to
target these system requirements [5]. These models need to
take into account the physical constraints and shall deliver
a simple link characterization, preferably a simple FER [6].
Otherwise accurate system level simulations need to simulate
the whole PHYsical layer (PHY) instead of employing a
simple, accurate link abstraction model. In this case system
simulation complexity would be too high. However, it is
uncertain how short packet PHY system design according to
URLLC principles can be accurately abstracted with Effective
SNR Mapping (ESM) approaches. We investigate if and how
ESM approaches can be used for URLLC systems with short
packets.

Recently polar codes were adopted for 5G mobile commu-
nication systems [2]. Especially control channels and URLLC
are anticipated use cases for polar codes. Since their initial
publication, polar codes received a huge amount of attention
[7]–[10]. Also, different approaches to adapt polar codeword
lengths through puncturing and shortening are known in liter-
ature [11]–[13]. Here, we point out which methods are prefer-
able according to our findings. Previous studies on polar codes
in Rayleigh fading setups only consider frequency flat channels
[14]. We study polar codes in frequency selective block fading
channels with Orthogonal Frequency Division Multiplexing
(OFDM) modulation [15]. Thus, channel gains may vary over
different subcarriers which justifies a Bit-Interleaved Coded
Mapping (BICM) approach to take advantage of diversity [16].

Our main contribution is an investigation if and how link
abstraction via ESM techniques can be applied to polar code
systems with short packets and low FER requirements. We
evaluate error measures to find optimal adjustment factors for
ESM methods. Typically, Mean Square Error (MSE) is used as
an error measure [6] but according to our findings this neglects
small FER values which are of special interest for industrial
radio systems. Thus, we propose a relative error measure
to find optimal adjustment factors. Furthermore, we run a
simulation campaign to explore the impact of different system
parameters on optimal adjustment factors. Finally, we discuss
how adjustment factors can be used to represent systems for
a range of varying parameters.



II. THEORY

In this section we briefly describe the theoretical back-
ground of our work. The interested reader may refer to
references given in this section for a deeper discussion on
specific topics. The described system serves as a foundation
for our link abstraction investigations afterwards. In Fig. 1
the transmitter signal processing chain for the system under
consideration is shown. First, a polar code for Forward Error
Correction (FEC) is applied, then codewords are punctured,
afterwards codebits are interleaved and finally mapped to
complex symbols.

Encode Puncture Interleave Map
uI x xP b d

Fig. 1. Schematic of the transmitter chain for our ESM evaluations

A. Polar Codes

Polar Codes are first presented in [7]. Here, we want to sum-
marize prior research that is relevant to our work. We consider
symmetric binary input B = {0, 1} over a Discrete Memory-
less Channel (DMC), such as a Binary Erasure Channel (BEC),
Binary Symmetric Channel (BSC) or Additive White Gaussian
Noise (AWGN) channel [17]. First, we consider a bit vector
u ∈ B2 of size 2. u is combined into the codeword x ∈ B2

by

x = uF with F =

(
1 0
1 1

)
(1)

over GF(2) and transmitted via two channel uses. Then, we
extend this scheme to bit vectors u ∈ BN of size N = 2n.
We obtain the codeword for transmission by

x = u ·BN ·G with G = F⊗n (2)

where BN is a bit reversal matrix. Without BN the obtained
codeword is in bit-reversed order while with BN it is in natural
bit order [7], [18]. F⊗n is the nth Kronecker product which
is defined recursively as

F⊗n =

(
F⊗(n−1) 0
F⊗(n−1) F⊗(n−1)

)
with F⊗1 = F (3)

The bit vector u consists of so called frozen bits uFr ∈
0N−K and information bits uI ∈ BK . The set of frozen
bit positions AFr, with |AFr| = N − K, in a bit vector u
is determined via polar channel construction. Polar codes are
then defined as (N,K,AFr) codes.

We refer to [10] and references therein for an in-depth
discussion on possible strategies to obtain frozen bit positions
AFr. In general, the discussed encoder together with a soon-to-
be-discussed Successive Cancellation (SC) decoder are used to
obtain virtual or synthetic bit channels. The capacities of these
virtual bit channels tends to be either 0 or 1. The goal of chan-
nel construction is to calculate these N capacities depending
on a design-SNR which represents the target working point.
Then, we select the K best channels for information bits while

the others are frozen bits. We opt for the Bhattachryya Bounds
method because of its simplicity and good performance.

Originally, Arıkan proposed a SC decoder to prove that
polar codes achieve capacity. Here, we explain the decod-
ing process for N = 2. This may be recursively extended
for longer polar codes [7], [19]. A receiver calculates Log-
Likelihood Ratios (LLRs)

L(yi) = ln
p(xi = 0|yi)
p(xi = 1|yi)

(4)

for each received symbol yi where p(xi|yi) is the conditional
probability density function. Now, for L(u0) we calculate

L(u0) = L(y0) � L(y1) (5)

and perform hard decision with u0 = 0 for L(u0) > 0 and
u0 = 1 otherwise. The � operator is defined as c = a � b =

log 1+eaeb

ea+eb
≈ sgn(a) sgn(b) min(|a|, |b|). If 0 ∈ AFr then u0

is a frozen bit and we decide for its known frozen bit value,
mostly u0 = 0.

In order to decode u1, we calculate

L(u1) = L(y0) + (−1)u0L(y1) (6)

and again we make a hard decision afterwards. This SC
decoder may be optimized to the Fast Simplified Successive
Cancellation (Fast-SSC) decoder in order to improve through-
put and reduce latency [19]. For the remainder of this work,
we restrict ourselves to SC decoders in order to obtain a good
baseline.

Non-systematic polar codes were modified to systematic
polar codes [20], [21]. Systematic Polar Codes exhibit the
same complexity as non-systematic Polar Codes. Though,
the structure of the code vector x differs slightly such that
uI = xAI while there are parity bits xAFr at the other indices.

B. Puncturing

Polar code codeword sizes are inherently restricted to a
power of 2. We circumvent this obstacle by puncturing or
shortening strategies [13], though we need to carefully choose
a puncturing pattern otherwise code performance may be
degraded dramatically [12]. First, we find a mother codeword
length N = 2dlog2NPe to a desired punctured codeword length
NP. Then, we puncture the codeword x at the P = N − NP
most suitable indices in order to obtain the punctured code-
word xP ∈ BNP .

The authors in [11] proposed Quasi Uniform Puncturing
(QUP) for non-systematic polar codes. The QUP puncturing
positions are obtained by bit-reversing the first P vector
indices. Systematic polar codes do not require bit-reversal. In
[12] it was recognized that only frozen bit positions, or their
bit-reversed positions, are eligible puncturing positions. Thus,
instead of the first P vector indices, we use Frozen-QUP, i.e.
we use the first P frozen bit indices as puncturing positions.
The authors in [12] proposed to choose P puncturing posi-
tions which correspond to virtual bit channels with minimum
reliability. Alternatively, we can randomly draw puncturing
positions among the frozen bit positions.
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Fig. 2. FERs for different puncturing schemes for (768, 256) polar codes.

FERs over AWGN for the different puncturing schemes for
systematic polar codes are shown in Fig. 2. Here, we conclude
that Frozen-QUP yields the lowest FER and thus we restrict
ourselves to this puncturing scheme. The random puncturing
scheme shows slightly erratic behavior because we obtained a
new set of puncturing positions for each simulation point.

C. Bit-Interleaved Coded Mapping

We combine polar codes with BICM in order to leverage
diversity [16]. We employ a standard random interleaver in
order to obtain an interleaved bit vector b ∈ BNP from a
punctured codeword xP.

Then, groups of constellation order size M from b are
uniquely mapped to complex symbols according to the desired
alphabet. Here, Gray labeling is assumed in order to optimize
the distance between symbols. In our work, we use Binary
Phase Shift Keying (BPSK), Quadrature Phase Shift Keying
(QPSK), 8-Phase Shift Keying (PSK) and 16-Quadrature Am-
plitude Modulation (QAM) alphabets A, |A| = 2M . For the
sake of simplicity we assume the mean signal energy to be
σ2
d = E{|d|2} = 1. Thus, we obtain the transmit vector

d ∈ CNs with Ns = NP/M elements. We can now define
the effective rate

Reff =
M ·K
NP

(7)

as the mean amount of information conveyed by each trans-
mitted symbol in d.

III. MODULATION AND CHANNEL MODEL

In this section we present our OFDM channel model
[15]. A frame d is OFDM modulated, transmitted over a
frequency selective Rayleigh block fading channel and affected
by AWGN. At the receiver, after demodulation and channel
equalization, we obtain the received frame d̂ for further receive
processing. The equivalent frequency domain channel model
can be written as

d̂ = G (Hd + n) (8)

where ni ∈ CN (0, σ2
n) are the complex Gaussian distributed

noise elements of the noise vector n. Thus, we denote Signal-
to-Noise-Ratio (SNR) as E{|d|2}/E{|n|2} = Es/N0 =
σ2
d/σ

2
n. The channel matrix H ∈ CNs×Ns is a diagonal matrix,

i.e. all off-diagonal elements are zero. This implies that each
received symbol is transmitted over a frequency flat subcarrier
channel plus noise. The distribution of the complex diagonal
elements hi is assumed to be CN (0, 1). G is an equalizer
matrix and will be discussed in Sec. III-A.

This channel model relies on several assumptions. The chan-
nel is constant over the transmit duration of one frame. The
Cyclic Prefix (CP) duration τCP is assumed to be larger than
the maximum channel delay τmax. Furthermore, we assume
perfect system synchronization, i.e. we assume zero time and
frequency offsets. If a frame d has more than NFFT elements,
it is transmitted over multiple OFDM symbols. With the block
fading assumption, symbols transmitted in the same frame on
the ith subcarrier are affected by the same channel tap hi.

A. Equalization strategies

At the receiver we need to mitigate channel distortions. With
the discussed channel assumptions, we can narrow down the
choice of equalizers to a simple one-tap Matched-Filter (MF)
or Minimum Mean Square Error (MMSE) equalizer for each
subcarrier [15]. In other words, the equalizer matrix G is a
diagonal matrix with gi as its diagonal elements.

For symbol alphabets A which solely use phase to carry
information we use MF gMF,i = h∗i where ∗ denotes complex
conjugation. The MF approach is ideal in the sense that it
maximizes SNR. Though, for alphabets which use amplitude
to carry information the MF approach adds additional distor-
tion.

With the MMSE approach, we try to find an equilibrium
between SNR maximization and amplitude distortion. This
leads to gMMSE,i = (h∗i hi + σ2

n)−1h∗i for equalization. This
approach allows to equalize alphabets such as 16-QAM.

B. In-depth channel assumptions

Ongoing measurement campaigns within project HiFlecs
and other industrial radio projects show that all time-domain
channel taps h̃i, regardless if they are Line-Of-Sight (LOS) or
Non-Line-Of-Sight (NLOS), are Rayleigh distributed. Also,
the Power Delay Profile (PDP) p of the channel follows
an exponential distribution with a delay spread σRMS in the
range 40 ns to 100 ns. Typically the maximum channel delay
τmax varies around 200 ns. We obtain the ith channel tap by
h̃i = pi · h̃R,i, h̃R,i ∈ CN (0, 1). Finally, frequency-domain
channel taps are obtained as h = FN h̃.

We focus on short packets, thus we assume a block fading
channel, i.e. the channel is constant over the duration of a
frame. The channel covariance ρ for consecutive frames can
be approximated as

ρ = exp

{
−23 ·

(
∆tvfc
c0

)2
}

(9)

depending on time difference ∆t, carrier frequency fc and
relative velocity v between transmitter and receiver [22].
Channel covariance ρ quantifies how statistically dependent
consecutive channel realizations are, i.e. ρ = 1 indicates that
the channel did not change at all.



IV. LINK ABSTRACTION

Usually, link abstraction is facilitated by transforming per-
subcarrier Carrier-to-Noise-Ratios (CNRs)

CNRi =
|hi|2σ2

d

σ2
n

(10)

for all occupied subcarriers into an effective Signal-to-Noise-
Ratio SNReff equivalent to the AWGN simulation results as
shown in Fig. 3. We can obtain the final FER from AWGN
FER curves, as shown in Fig. 6, with the calculated effective
SNR. The methodology is to run extensive simulations for
all desired Modulation and Coding Scheme (MCS) with the
described channel model and then find a suitable translation
into effective SNR and further into a FER [23].

Channel state
(CSI, SNR, ...)

System level
simulation

Link abstraction

C
N

R
s

FE
R

Fig. 3. Link abstraction concept

A. Effective SNR Mapping

The process of converting Channel State Information (CSI)
into an effective SNR is called Effective SNR Mapping
(ESM). We evaluate two different methods for ESM, namely
Mutual Information Effective SNR Mapping (MIESM) and
Exponential Effective SNR Mapping (EESM) [23]. The chosen
approach is described in [6].

For EESM and MIESM per-subcarrier CNRs are used to
calculate

SNReff = βI−1

(
1

NFFT

NFFT−1∑
i=0

I

(
CNRi
β

))
(11)

where the function I(. . . ) is chosen according to the desired
method for EESM or MIESM and β is an adjustment factor,
discussed in Sec. IV-B [6]. We assume that NFFT subcarriers
are occupied. For EESM we effectively calculate

SNReff = −β ln

(
1

NFFT

NFFT−1∑
i=0

exp

(
−CNRi

β

))
(12)

with the LogSumExp (LSE) algorithm for numerical stability.
The function I(. . . ) for MIESM depends on the chosen

modulation alphabet A. The mutual information IBICM calcu-
lation for BICM is split into M different bit layers [24]. For
each bit layer, we compute

IBICM,i = 1− Eb,y

log2

∑
d2∈A

py|d(y|d2)∑
d3∈Ab

i

py|d(y|d3)

 (13)

and then calculate IBICM =
∑M−1
i=0 IBICM,i for the desired

SNR. IBICM,i can be rewritten into

IBICM,i = 1− 1

2Mπ

·
1∑
b=0

∑
d1∈A

∫
C

e−|ζ−d1/σn|2 log2

∑
d2∈A

e−|ζ−d2/σn|2∑
d3∈Ab

i

e−|ζ−d3/σn|2
dζ (14)

which is then calculated after further rearrangements via
multivariate Gauss-Hermite-Quadrature with NGHQ evaluation
points per dimension [25]. The set Abi is comprised of all
elements in A with bitmap value b at position i. Results
for different modulations are shown in Fig. 4 together with
Gaussian capacity. Computing these values is potentially a
resource intensive task, thus we will use cached values in
conjunction with linear interpolation.
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Fig. 4. Mutual Information over SNR with NGHQ = 128

B. Adjustment Factor Calibration

It is crucial to find a fitting adjustment factor β for each
MCS which matches the calculated ESM values FERMCS

ESM(β)
to the AWGN values FERMCS

AWGN [6]. Each FERMCS
AWGN denotes

a FER over SNR curve with Ne evaluation points over an
AWGN channel. In order to obtain FERMCS

ESM(β) for a given β
it is necessary to recalculate SNReff for all simulated frames.
Then, we sort the results into bins in order to obtain the desired
FER over SNReff curves as FERMCS

ESM(β). We chose the bin
width for this sorting to be 0.1 dB.

First, we obtain FER values FERMCS
AWGN for all desired

MCS over AWGN channels. Second, we run simulations for
Rayleigh fading channels with ≈ 5 · 106 frames per MCS.
Finally, we search for

βMCS
opt = argmin

β
ε(β) (15)

which minimizes the error measure ε. The error measure
denotes the deviation of the ESM FER curve from its AWGN
counterpart for a given β.

Other works use MSE as an error measure. Our observation
is that MSE neglects low FER values and thus we consider
several alternatives. In Fig. 5 the resulting FER over effective
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Fig. 5. FER curve results for different error measures ε.

SNR curves are shown and were obtained as described in
Sec. V.

First, we consider a relative error measure

εrel(β) =

Ne−1∑
i=0

∣∣FERMCS
ESM,i(β)− FERMCS

AWGN,i

∣∣
FERMCS

AWGN,i
(16)

where we assume that SNR = SNReff for each evaluation
point i. Thus εrel(β) quantifies the deviation from the AWGN
reference FER curve. Second, we consider MSE as the error
measure

εMSE(β) =

Ne−1∑
i=0

∣∣FERMCS
ESM,i(β)− FERMCS

AWGN,i

∣∣2 (17)

[6]. Third, we try to minimize the error measure for a target
FER rate. Here, we calculate

εt(β) =
∣∣FERMCS

ESM,t(β)− FERMCS
AWGN,t

∣∣ (18)

with t being an indicator for our target FER which we chose
to be 10−3. Thus, only one evaluation point is used in this
case.

From Fig. 5 we observe that the MSE measure yields FER
values which are too low compared to AWGN curve. While
the target FER approach yields results which tend to be too
high. The relative error measure comes out in between the
other two approaches and tends to yield results very close to
the AWGN error curve. Thus, we conclude that the relative
error measure should be preferred to find suitable β values.

V. NUMERICAL EVALUATION

All AWGN reference simulation points are obtained by
simulating at least 8192 frames and then continue to simulate
frames until 1024 erroneous frames are detected for each SNR
data point. For Rayleigh channel simulations we simulated
219 = 524288 frames for each data point, though again we
use an early stop criterion with 8192 erroneous frames.

For all simulations we use the transmitter chain depicted
in Fig. 1 with the channel as described in Sec. III. At the
receiver, we assume perfect CSI and SNR knowledge. Our
reference system is an OFDM system with NFFT = 128, a
polar code with (512, 256) and a design-SNR with 0 dB. We

use this setup for numerical evaluations and investigate how
suitable the previously presented approaches are for ESM.

We want to find βopt such that the FER over SNReff curves
match their FER over AWGN references shown in Fig. 6 as
closely as possible. The results in Fig. 6 lead to the conclusion
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Fig. 6. FER over SNR/SNReff with K = 256.

that a βopt that matches these curves can be found for the
system under consideration.

In Fig. 6 we compare selected AWGN reference curves
with their respective matched EESM and MIESM FER curves.
Crosses indicate FER over SNR curves for AWGN channels.
Diamonds and dots indicate FER over effective SNR curves
for MIESM and EESM respectively. These curves are obtained
with βopt to calculate the effective SNR. Lower constellation
orders and lower coderates result in a better match of these
ESM to AWGN curves. It is possible to accurately match
AWGN reference curves via the investigated link abstraction
methods.

Next, we want to analyze how changing different system pa-
rameters impacts the adjustment factor βopt. We are especially
interested in how the number of subcarriers NFFT, the coderate
for constant block length and the code rate for constant
information vector length affect the optimal β. Furthermore,
we investigate the impact of the modulation order.

As expected, the number of subcarriers does not change
the resulting βopt. Thus, separate evaluations for systems with
different numbers of subcarriers are not required. During our
evaluations we assumed that it is sufficient to only use NFFT
evaluation points for ESM. This holds as long as Nd is a
multiple of NFFT otherwise special precautions need to be
taken into account.

In Fig. 7 a comparison of EESM and MIESM adjustment
factors β for different modulation orders is shown. We observe
that MIESM β is robust against different constellation orders
M while EESM β is susceptible to such a change. Since
MIESM does explicitly account for the modulation order, this
is to be expected. Finding βopt is a complex and tedious task.
Thus, we conclude it is advantageous to use MIESM because
we can reduce the number of simulations. This leads to faster
overall link abstraction because we can select a representative
βopt for multiple configurations.

In Fig. 8 we compare ε over β for different coderates for
MIESM. The results for EESM are similar and thus we omit
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them here. We observe that lower coderates result in lower
βopt. Though, the exact results vary slightly depending on
the codeword length N . We recognize a tendency for lower
βopt for growing N . The results indicate that ESM adjustment
factors mainly depend on coderate and only slightly on the
exact codeword length. We conclude that it is sufficient to
conduct simulations for each coderate with one codeword size
N and one constellation order M to find a suitable βopt.

VI. CONCLUSION

In our work we showed that it is possible to use MIESM
and EESM algorithms for link abstraction in short packet
communication systems with polar codes and low FER. We
conclude that a relative error measure is advantageous for low
FER systems because it yields a better curve match for low
FER compared to other measures. Furthermore, we discussed
the influence of system parameters on optimal adjustment
factors. With MIESM, we can identify representative optimal
adjustment factors for several varying system parameters in-
stead of one for each configuration. Thus, we conclude we can
obtain faster link abstraction with MIESM.
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