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Abstract—We consider the single user uplink of a Cloud Radio
Access Network where a single radio access point forwards
quantized received signals to the central unit. The focus of our
investigation is on the quantization step in the radio access point
and the decoding in the central unit. First, we investigate the
impact of different quantizer approaches on the performance
of the belief propagation decoder applied for low-density party
check codes. Second, we investigate the performance of dis-
crete message passing decoders which are optimized via the
Information Bottleneck method in order to process quantized
samples. The resulting decoder has a low bit representation for
each variable and all internal decoder functions are determined
by lookup tables. For the investigated scenario the discrete
message passing decoder performs close to the floating point
implementation of the belief propagation decoder processing real
valued log-likelihood ratios.

I. INTRODUCTION

The so-called Cloud Radio Access Networks (Cloud-RANs)
are currently investigated for the deployment in 5G [1]. This
approach promises many benefits including simplified network
management and maintenance along with a more efficient im-
plementation of cooperative processing techniques. The Cloud-
RAN uplink relies on the concept of forwarding quantized
signals over a rate limited fronthaul channel from Radio
Access Points (RAPs) to the Central Unit (CU). Different
functional split options between the RAPs and the CU are
discussed [2]. Similar to [3], we assume a functional split on
the physical layer, where the RAP is forwarding quantized
samples. In this case a performance gain due to a joint
decoding in the CU is possible. Furthermore, the focus on
the quantization step at the RAP is important, since it defines
a trade-off between the required data rate on the fronthaul and
the decoding performance in the CU. To this end, we utilize
the Information Bottleneck (IB) method [8], [11] for channel
quantizer design to minimize the information loss at the RAP.
The IB method has been successfully utilized in different areas
such as the design of channel quantizers [12], relay networks
[13] and integer based decoders for Low-Density Parity Check
(LDPC) codes [5].
The contributions of this paper are the
• investigation of the quantization step at the RAP on the

decoding performance in the CU and
• the comparison between two different decoder structures,

i.e. the discrete Message Passing (MP) decoder [4]–[7]
and the floating point Belief Propagation (BP) decoder.

The remainder of this paper is organized as follows: In Sec. II,
the system model is introduced. In Section III we investigate
the influence of the RAP quantizer on the Bit Error Rate
(BER) of the BP decoder. Therefore, we utilize the Information
Bottleneck (IB) method [8] to minimize the information loss
between the UE and the quantizer output. In Sec. IV, we utilize
the channel-optimized Information Bottleneck [9] for channel
quantizer design to minimize the end-to-end information loss
between the UE and the CU. In Sec. V, we compare the BER
performance of the discrete message passing decoder and the
floating point BP decoder. Sec. VI summarizes the paper1.

II. SYSTEM MODEL
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Fig. 1. The system model for the uplink of Cloud-RAN for a single UE

The considered system model is depicted in Fig. 1. The
UE encodes the binary information word u ∈ FK

2 of length
K to the code word c ∈ F

N
2 of length N , where F2 is

the binary Galois field and R = K
N is the rate of the code.

The modulated symbols x ∈ XM with probability mass
function (pmf) px(x) = px1,...,xM (x1, ..., xM ) are transmitted
over the access channel, where X is the discrete modulation
alphabet. Without loss of generality, we model the influence
of the access channel and the preprocessing in the RAP as a
finely quantized memoryless Additive White Gaussian Noise
(AWGN) channel with noise variance σ2

n . The probability
mass function (pmf) of the resulting Discrete Memoryless
Channel (DMC) is defined as py|x(y|x) =

∏M
j=1 py|x(yj |xj).

1Notation: Random variables are denoted by sans-serif letters, random
vectors by bold sans-serif letters, realizations by serif letters and vector valued
realizations by bold serif letters.



At the RAP the received samples y ∈ YM are mapped
into the sequence of quantized samples z ∈ ZM using a
scalar quantizer which is defined by the probability mass
function (pmf) pz|y(z|y) =

∏M
j=1 pz|y(zj |yj), where Z is

the set of quantizer outputs. The quantized samples z are
transmitted over the digital fronthaul channel. We model
the transmission over the fronthaul channel (which would
include additional modulation, coding, etc.) as DMC with
pmf pr|z(r|z) =

∏M
j=1 pr|z(rj |zj). The demodulator maps the

forwarded quantized samples r ∈ RM into LLRs L ∈ RN ,
where R is the set of forwarded quantized samples and R
is the set of real numbers. The forwarded quantized samples
are used by the BP decoder to obtain the estimated info bit
sequence û ∈ F

K
2 . As discussed in Sec. V, the IB-based

decoder processes discrete values and not LLRs such that the
demodulation step can be omitted.

III. QUANTIZER DESIGN FOR IDEAL FRONTHAUL
CHANNEL

A. Information Bottleneck based Quantizer Design

In this section we focus on the quantizer design at the
RAP under the assumption of an ideal fronthaul channel.
The quantizer design for the non ideal fronthaul channel is
discussed in the next section.
We assume that the modulated symbols are independent and
identically distributed (iid) according to px(x), i.e. px(x) =∏M

j=1 px(xj). We consider only scalar quantization. The RAP
forwards the quantized samples according to pz|y(z|y). The
resulting Markov chain is denoted as x ↔ y ↔ z. Within the
RAP, our goal is to obtain a quantized received sample z pre-
serving mutual information2 (MI) I(x; z) about the transmitted
symbol x. The resulting optimization problem is defined via
the IB method. The optimal quantizer mapping p?z|y(z|y) is
given by

p?z|y(z|y)=argmin
pz|y(z|y)

1

β+1

(
I(y; z)−βI(x; z)

)
s.t. |Z|≤Nz,

(1)
where β > 0 is the trade-off parameter between relevant
information I(x; z) and compression rate I(y; z) and Nz is the
upper bound on the number of quantizer representatives. The
case of β → 0 is not of interest, since no relevant information
is kept. For the case 0 < β <∞, the optimization problem is
neither convex nor concave in general [11]. Several heuristics
exist [14] to find a locally optimal solution of the optimization
problem (1). For the special case of β →∞, the optimization
problem reduces to

p?z|y(z|y)=argmax
pz|y(z|y)

I(x; z) s.t. |Z|≤Nz. (2)

In this case, the quantizer mapping maximizes the end-to-end
mutual information between UE and CU given |Z|≤Nz. This
optimization problem is a convex maximization problem. In

2The mutual information between two random variables a and b is given
by I(a; b) =

∑
a∈A

∑
b∈B

pa,b(a, b) log
pa,b(a,b)

pa(a)pb(b)
[10]

this case, one can show that the optimal solution is of deter-
ministic type [15] (i.e. pz|y(z|y) ∈ {0, 1} ∀y ∈ Y). Neverthe-
less, the optimal quantizer can have non-convex quantization
regions in general [16]. For the binary input case, an algorithm
to find the optimal solution has been developed in [15]. In the
following we always assume the asymptotic case β →∞.

Remark 1:
Under the assumed Markov property of the system model
x ↔ y ↔ z, the joint distribution between the discrete
modulation symbols and the quantized received samples at
the CU px,z(x, z) is determined by px(x), the access channel
py|x(y|x) and the quantizer mapping pz|y(z|y), i.e.

px,z(x, z) =
∑
y∈Y

px,y(x, y)pz|y(z|y), (3)

In case of a deterministic quantizer mapping, the set of
quantizer boundaries Q = {q0, ..., qNz} is identified by convex
sets Yz = (qz, qz+1], where it is assumed that q0 = −∞ and
qNz = +∞.

B. Demodulation

In the CU the quantized samples z are mapped to a-
posteriori LLRs for BP decoding. We assume that the statistic
is known at the CU, i.e.

pc|z(c|z) =
∑
y∈Y

pc|y(x|y)py|z(y|z) (4)

and the corresponding LLRs are determined by

L(c|z) = log

(
pc|z(0|z)
pc|z(1|z)

)
. (5)

C. Performance Results

In this section we investigate the influence on the BER of
a regular LDPC code for 3-bit MMSE, uniform and IB-based
quantization. The demodulator calculates the LLRs based on
(5), which only considers statistics of the access channel
and the quantizer. We used a regular rate R = 1

3 LDPC
code from [17] with row weight dc = 6 and column weight
dv = 4 of length N = 816. The number of iterations of
the floating point BP decoder is limited by imax = 50. We
assume BPSK modulated symbols, i.e. X = {−1, 1}. For
the IB-based quantizer design the continuous AWGN channel
is uniformly quantized into 256 clusters. To achieve 99.7 %
coverage, the first boundary q1 and last boundary qNz−1 were
set to ∓(1 + 3σn), respectively. We use the algorithm for
binary input DMC [15] to obtain the optimal solution for the
Information Bottleneck problem in (2). The quantizer labels
are predefined as Z ⊆ {0, ..., 7}, since the relevant information
in (2) is independent of the set of quantizer labels Z .
A bijective function f : Z → F

B
2 with B = dlog2(Nz)e

maps each integer to a binary coded bit vector of length
B. We model the digital fronthaul as a Binary Symmet-
ric Channel (BSC) with bit-flip probability Pe. Hence, the
pmf of the corresponding DMC is given by pr|z(r̄|z̄) =

P
dH(z̄,r̄)
e (1−Pe)

B−dH(z̄,r̄), where dH(z̄, r̄) is the Hamming
distance between a transmitted bit vector z̄ and a received bit



vector r̄, respectively.
We used the Lloyd-Max algorithm [18]–[20] to find the
quantizer mapping minimizing the Mean Square Error (MSE)
between the received sample y and the quantized output z.
Since the Lloyd-Max algorithm converges to a local optimal
solution, the algorithm is executed 105 times with different
initial points and the best result is kept.
The influence of the quantizer design on the BER performance
of the floating point BP decoder is shown in Fig. 2. For
Pe = 0, the difference in the BP decoding performance
between uniform, Lloyd-Max and IB-based quantization is
within 0.4 dB for a BER of 10−3. Nevertheless, the IB-based
quantization performs the best.
In case of a non-ideal fronthaul channel with Pe = 0.01,
the difference between IB- and Lloyd-Max quantization is
approximately 1 dB. IB-based quantization outperforms uni-
form quantization. In case of Pe = 0.1 the BP decoding does
not converge for the uniform and the Lloyd-Max quantization
methods. In contrast, the gain in BER performance increases
for IB-based quantization and the BP decoding converges for
Pe = 0.1. This observation motivates IB-based quantization
for imperfect fronthaul channels. In the next section, the
demodulator and quantizer is optimized for an imperfect
fronthaul channel.
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Fig. 2. BER simulations for the (4,6)-regular LDPC code using different 3-bit
channel quantizers.

IV. IB-BASED QUANTIZER DESIGN FOR NON-IDEAL
FRONTHAUL CHANNEL

A. Channel-Optimized Information Bottleneck (Ch-Opt-IB)

py|x(y|x) pz|y(z|y) pr|z(r|z)

access channel quantizer fronthaul channel

x ∈ X y ∈ Y z ∈ Z r ∈ R

I(x; r)

Fig. 3. Channel-optimized IB setup

In [21] the authors extended the IB framework with an
additional fronthaul channel. The corresponding Channel-
Optimized IB (Ch-Opt-IB) setup is shown in Fig. 3. The

variational problem for β →∞ is given by

p?z|y(z|y) = argmax
pz|y(z|y)

I(x; r) s.t. |Z|≤Nz, (6)

which is again a convex maximization problem [21] and
the optimal solution is of deterministic type. The authors of
[21] developed an iterative algorithm to find a local optimal
deterministic solution. To utilize the algorithm, the access
channel must be discretized into a corresponding DMC model.
Like in the previous section, we assume a preceding uniform
channel quantizer with a sufficient fine grid. We abbreviate
this quantizer design approach as Ch-Opt-IB (iterative).
In [3] the authors developed an algorithm to solve (6) on
the continuous access channel output under the assumption
that the set of output symbols Yz are convex. The algo-
rithm requires with the probability density function (pdf) of
the AWGN channel, since it utilizes the downhill simplex
method [22] using the set of differences between the quantizer
boundaries ∆Q = {∆q0, ...,∆qNz−1} with ∆qi = qi+1 − qi
as the difference between two successive boundaries. The
corresponding optimization problem can be stated as

∆Q? = argmax
∆Q

I(x; r) s.t. ∆qi > 0. (7)

This quantizer design approach is abbreviated as Ch-Opt-IB
(simplex) in the following.

B. Improved Demodulation

The BP decoding with improved LLR calculation requires
the a-posteriori probability which includes the imperfect fron-
thaul channel, i.e.

pc|r(c|r) =
∑
y∈Y

pc|y(c|y)
∑
z∈Z

py|z(y|z)pz|r(z|r). (8)

The corresponding a-posteriori LLRs under the assumption of
a imperfect fronthaul channel are determined by

L(c|r) = log

(
pc|r(0|r)
pc|r(1|r)

)
. (9)

C. Performance Results

Since the channel-optimized algorithms converge to locally
optimal mappings, we initialize the algorithms randomly 105

times and keep the best result. Compared to Sec. III-C, the
LLR values are calculated by using the a-posteriori distribution
of the output of the fronthaul channel Eq. (9).

The BER performance is shown in Fig. 4. The channel-
optimized quantization algorithms reveal a performance gain
of approximately 1 dB for Pe = 0.1 compared to the IB algo-
rithm. Furthermore, we observed that for large values of Pe,
the optimal channel quantizer mapping has a reduced alphabet
size with increased Hamming distance between neighboring
representatives. As also observed in [3], this corresponds to
an inherent channel coding of rate log2(|Z|)

log2(Nz)
. For Pe = 0.01,

the performance gain by considering the fronthaul channel in
the LLR calculation is ≈ 1.5 dB for the uniform quantizer
and ≈ 0.5 dB for the Lloyd-Max quantizer. The Ch-Opt-IB
(iterative) slightly outperforms the Ch-Opt-IB (simplex). In
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Fig. 4. BER Simulations for the (4,6)-regular LDPC code using different
3-bit channel quantizers with improved demodulation.

the next section we compare the performance between the BP
decoder and the discrete message passing decoder.

V. DISCRETE DECODER DESIGN

A. Discrete Message Passing for LDPC Codes

In message passing decoding of LDPC codes [23], extrinsic
information (messages) between the variable and the check
nodes is exchanged [24]. In [4], Kurkoski et al. presented a
Density Evolution (DE) algorithm for regular LDPC codes
which aims to find discrete decoder functions that maximize
the mutual information between the code bit and its message.
In [5], the DE algorithm is extended by the quantization
algorithm for binary input which finds the optimal message
mappings [15]. The resulting discrete LDPC decoder processes
only unsigned integers by using simple lookup tables and
the BER performance of a 4-bit implementation is close
BP decoding. As already discussed in [6], the underlying
optimization task is closely related to the IB method. In the
next subsection we describe this DE algorithm [4], [5] to
obtain discrete decoder functions for the channel-optimized
IB setup discussed in Sec. IV-A.

B. Density Evolution for the Ch-Opt-IB Setup

For a regular LDPC code, the distribution of check to
variable (and vice versa) node messages is the same for all
variable and check node and will only change during iterations.
Furthermore, it is assumed that the statistical dependencies
between the messages can be neglected, which implies a
cycle-free graph. The code bit distribution is assumed to be
equiprobable in the following. The initial distribution of all
variable to check node messages is given by

p
(0)
m|c := p?r|c, (10)

where the conditional pmf between the transmitted code bit
and the received sample at the CU is defined by

p?r|c(r|c) =
∑
z∈Z

pr|z(r|z)
∑
y∈Y

p?z|y(z|y)
∑
x∈X

py|x(y|x)px|c(x|c).

...

m1 mdc−1
m̄?

f
(i)
c (m)

(a)

...

m̄0

m̄1 m̄dv−1 m?

f
(i)
v (m̄)

(b)

Fig. 5. (a) Check to variable node mapping f (i)c (m). (b) Variable to check
node mapping f

(i)
v (m̄). The quantizer mappings are designed for each

decoder iteration i to maximize the (extrinsic) information about the code
bits.

The distribution p?z|y(z|y) is determined by the Ch-Opt-IB
(iterative) algorithm with Z ⊆ {0, ..., Nz−1} for a specific Pe

and a sufficient large σn. The conditional distributions of the
variable to check node mappings p(i)

m|c and check to variable

node mappings p(i)
m̄|c for iteration i = 1, ..., imax are determined

by the DE algorithm.
The distribution of the dc−1 incoming messages of a check

node conditioned on the transmitted bit of the target variable
node is given by [5], [4]

p
(i)
m|c(m|c) =

(
1

2

)(dc−2) ∑
b:
⊕

b=c

dc−1∏
j=1

p
(i−1)
m|c (mj |bj), (11)

where b = (b1, ..., bdc−1) is an auxiliary vector representing
the state of the transmitted bits of the incoming variable node
messages m = (m1, ...,mdc−1) and

⊕
b denotes the modulo

2 sum over the elements of the vector b. This distribution is
used to obtain an IB-based check to variable node mapping

p
(i)
m̄|m =argmax

pm̄|m

I(i)(m̄; c) s.t. |M̄(i)|≤Nz, (12)

where M̄(i) ⊆ {0, ..., Nz − 1} is the check node message
alphabet. This mapping determines the optimized distribution
of the check to variable node messages conditioned on the
transmitted bit p(i)

m̄|c, which is used to obtain an optimized
variable to check node mapping of the next iteration. The
distribution of the variable to check node messages is given
by

p
(i)
m̄|c(m̄|c) = p

(0)
m|c(m̄0|c)

dv−1∏
j=1

p
(i−1)
m̄|c (m̄j |c), (13)



where m̄ = (m̄0, ..., m̄dv−1) are the incoming check node
messages and m̄0 represents the received value r. This distri-
bution is used to obtain an IB-based variable to check node
mapping

p
(i)
m|m̄ =argmax

pm|m̄

I(i)(m; c) s.t. |M(i)|≤Nz, (14)

where M(i) ⊆ {0, ..., Nz − 1} is the variable node message
alphabet. The mapping p(i)

m|m̄ determines the distribution of the
variable to check node messages conditioned on the transmit-
ted bits p(i)

m|c of the next iteration. The overall DE algorithm
starts with the initialization of the variable to check node
messages in (10) and iterates over (12), (13) and (14) until
the mutual information of the variable to check node messages
and the codebits in (14) converges one for a maximum number
of iterations imax. If convergence is not possible, the standard
deviation of the access channel σn is slightly reduced and the
complete DE algorithm is started again until convergence is
obtained. The corresponding convergent initial distribution p?r|c
is identified by the noise threshold σ?

n , since Pe is assumed to
be fixed.
For the final decision on ĉ, an optimized deterministic mapping

p
(i)
ĉ|m̄,m̄dv

=argmax
pĉ|m̄,m̄dv

I(i)(ĉ; c) s.t. Ĉ = {0, 1} (15)

is generated by using all incoming check to variable node
messages (m̄, m̄dv ) in (13). As discussed in Sec. III, for the
maximization problems in (12), (14) and (15) the optimal
solution is a deterministic mapping, which can be found by
the quantization algorithm for binary input DMC [15]. The
optimal variable to check node message m? is determined by
the variable node function f (i)

v : M̄dv−1
(i) ×Z →M(i) with

m? = f (i)
v (m̄) = argmax

m
p

(i)
m|m̄(m|m̄), (16)

for all variable nodes. Likewise, the optimal variable to
check node message m̄? is given by the check node function
f

(i)
c :Mdc−1

(i−1) → M̄(i) with

m̄? = f (i)
c (m) = argmax

m̄
p

(i)
m̄|m(m̄|m), (17)

for all check nodes, respectively. Both mappings are visualized
in Fig. 5. For the codebit estimation, an additional function
f (i) : M̄dv

(i) ×Z → {0, 1} is generated by using all incoming
messages, i.e.

ĉ = f (i)(m̄, m̄dv ) = argmax
c̄

p
(i)
ĉ|m̄,m̄dv

(c̄|m̄, m̄dv ), (18)

for all variable nodes. To reduce the memory requirements of
the node mappings, we use the node decomposition method as
described in [4]. The basic idea of the decomposition of nodes
is to split each node into a sequence of nodes of degree 2 and
solve the corresponding optimization problem in (12), (14) and
(15) for this smaller nodes. Compared to the implementation
without node decomposition, which requires (in the worst
case) N (d−1)

z memory locations, the required memory size of
the decomposed node is (d− 2)N2

z , where d is the degree of

the corresponding check or variable node.
An extension of DE algorithm to irregular codes is given in
[25] by taking the different node degrees into account. For
complex modulation alphabets, the idea of message alignment
has been proposed [26] in order to utilize the DE algorithm
with a codebit-dependent statistic for real and imaginary part.

C. Performance Results

The BER performance of the IB-decoder for both ideal
and non-ideal fronthaul channels are shown in Fig. 6. The
determined noise thresholds of the access channel are given
in Table I. The discrete decoder mappings are optimized for
the noise threshold and therefore fixed for all σn. For the
IB-decoder the quantizer at the RAP quantizer is also fixed,
which is beneficial since the RAP quantizer and the decoder
mappings are optimized once and can be used for all σn during
transmission. Furthermore, as the iteration number increases
some quantizer labels are not used and the cardinality of the
message alphabet is reduced. This motivates to reduce the
upper bound on the cardinality of message mappings Nz as
the iteration number increases [27], which is not considered
here. As shown in Fig. 6, the performance loss of using a fixed
channel quantizer and a discrete decoder with 3-bit message
mappings is small (≈ 0.3 dB for a BER of 10−3) compared
to the floating point BP decoder with quantized input.
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Fig. 6. BER performance for the (4,6)-regular LDPC code using the 3-bit
IB-based- vs. BP decoder with 3-bit channel quantizer.

TABLE I
NOISE THRESHOLDS FOR dc = 6, dv = 4, Nz = 8 AND iMAX = 50

Pe Noise threshold σ?
n

Eb
N0

in dB
0 0.95451 2.1653
0.01 0.93059 2.3857
0.1 0.76915 4.0407

VI. SUMMARY

We compared the influence on the BER performance of
the BP decoding algorithm using uniform, MMSE, IB and



channel-optimized IB quantization for the single user uplink
model of a Cloud-RAN. The channel-optimized IB quantiza-
tion performs best since it maximizes the mutual information
between the UE and the CU. Furthermore, we utilized channel-
optimized IB quantization in the density evolution algorithm
for regular LDPC codes to obtain a discrete decoder for the
uplink model. The resulting discrete decoder processes only
unsigned integers as messages via simple lookup tables. The
BER performance of a 3-bit discrete decoder is close to the
floating point BP decoder processing real-valued LLRs.
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