
IMPLEMENTATION OF A HDL-CODER BASED TELECOMMAND RECEIVER
APPLICATION FOR MICROSATELLITE COMMUNICATION

Jan Budroweit, Ferdinand Stehle, Christopher Willuweit², Dirk Wübben²

German Aerospace Center (DLR), Institute of Space Systems, 28359 Bremen, Germany

²Department of Communications Engineering, University of Bremen, 28359 Bremen, Germany

ABSTRACT

In this paper the development and implementation of a
Telecommand (TC) receiver application for microsatellite
communication is presented. The TC receiver application is
executed and operated by a highly integrated Generic
Software-Defined Radio (GSDR) platform. This platform
architecture is designed for the reliable operation of multiple
radio frequency applications on spacecraft. For the
development and implementation process of the TC receiver
application, a new model-based development workflow by
Matlab/Simulink is used and evaluated.

Index Terms— SDR, Model-based design, VHDL,
Telecommand, Microsatellite communication

1. INTRODUCTION

The demand of scalability and flexibility has been increased
for microsatellite missions in the past decade and there are
many activities on-going to provide satellites with a tall
envelope in terms of provided power, computing resources
and communication links [1][2]. A proposed solution for a
flexible and scalable communication system is the Generic
Software-Defined Radio (GSDR) of the German Aerospace
Center, which provides the operation of multiple radio
frequency (RF) applications on a spacecraft, almost without
frequency band limitations [3]. To improve the flexibility
and reduces the development and verification time of
applications for the GSDR, model-based design workflows
are promising, which for example are offered by Mathworks
with their Matlab and Simulink tools [4]. In this paper the
Mathsworks model-based design workflow is used to
develop, implement and test a Telecommand (TC) receiver
application on the GSDR platform architecture.

In section 2, the system overview, including the application
related requirements and important design constraints are
presented. Section 3 describes the model-based design
workflow and the GSDR system architecture. The
implementation of the TC application is presented in section
4 and the associated validation and test results are discussed
in section 5. The final conclusion is given in section 6.

2. SYSTEM OVERVIEW

For satellite communication it is often mandatory to be
compliant with standards and recommendations of the
Consultative Committee for Space Data Systems (CCSDS).
Major reason is that many ground stations are following
their recommendation and thus, the communication link
related specifications. For communication subsystems on a
spacecraft it is often only required to cover and handle the
signal processing related to the physical layer of the
ISO/OSI reference model. In particular, the communication
subsystem is performing the analog to digital conversion
(and vice-versa), the modulation/demodulation and related
RF signal processing (e.g. filtering, amplifying and RF
converting). Additional signal processing, like coding and
encoding, is then performed by the on-board computing and
data handling subsystem. For the proposed TC receiver
application in this paper, part of the data link layer relevant
signal processing (decoding) is also performed. In the
following Tab. 1, the requirements and application
specifications are presented.

Tab. 1: TC receiver application related requirements and specifications

Parameter Value
Carrier frequency 2081.2MHz
Occupied bandwidth 153kHz
Doppler offset +/-65kHz
Doppler rate < 1kHz/s
Modulation BPSK
Data rate 64kBit/s
Coding Expurgated BCH (63,56)
PLOP-Mode PLOP-2

The specifications have been selected from a reference
mission of the Germany Aerospace Center, Institute of space
system, which covers almost the major mission
requirements. The selected frequency band is S-band in the
uplink (2081.2MHz carrier frequency). Due to a selected
modulation scheme of Binary Phase Shift Keying (BPSK)
and a data rate of 64kBit/s, an occupied bandwidth of
approx. 153kHz is mandatory. For error detection and
correction purposes, an expurgated Bose-Chaudhuri-
Hocquenghem (BCH) code is used. Fig. 1 shows the signal

processing flow for the TC application and illustrates
relevant signal processing parts which are required to
implement.

Fig. 1: Transmission flow. The gray highlighted bocks are part of the TC

receiver application

The data to be transmitted are organized in frames. A frame
contains information about the addressing, sequencing, user
data and error detection. Fig. 2 shows the structure of a
transmission frame.

Fig. 2: Structure of the transmission frame

One frame includes a header with a length of five byte, up to
249 byte of user data, as well as a CRC-Checksum with a
length of two byte. One or multiple frames are transmitted
inside of The Communication Link Transmission Unit
(CLTU). Beginning with the acquisition and IDLE sequence
(a series of 0x55 byte), the starting sequence (0xEB90) flags
the start of CLTU. Afterwards, the segmented block codes
and error corrected frames are following. The maximum
length of the CLTU is specified by each mission.
The channel coding adds redundancy in terms of control bits
to the user data. Thus, errors in the transmission could be
detected and corrected. The selected expurgated BCH code
is derived from a (63,56) hamming code and could detect 2
bits and is able to correct 1 bit per code block [5].
The Physical Layer Operation Procedure (PLOP) specifies
the order of states during a CLTU transmission. While at a
PLOP-1 configuration the transmitter is sending only the
carrier between a CLTU transmission sequences, the PLOP-
2 mode specifies a transmission of IDLE frames between
CLTU transmissions. Due to the IDLE frame transmission
sequence, modulated data are available and the transmission
channel can be established. Major advantage of the PLOP-2

mode is that the receiver does not need to re-synchronize
every time a CLTU is transmitted and received. On the other
hand, the receiver needs to track and recover the carrier
frequency (e.g. due to Doppler Effect) and timing of the
received signal.
The BPSK is one of the simplest digital modulation schemes
and modulates the information into the phase of the carrier
signal. In case of a BPSK, only two phase conditions are
defined, which are called symbols. Each symbol contains
one bit. A series of modulated symbols with a given period
is passed through pulse shaping filter to generate a
continuous waveform. This shaping filter reduces the
required bandwidth and improves the noise sensitivity.

3. DEVELOPMENT ENVIRONMENT AND

HARDWARE ARCHITECTURE

In this section the selected model-based design workflow of
Mathsworks is briefly described. Additionally, the GSDR
system architecture is presented on which the TC receiver
application through the model-based design needs to be
implemented.

3.1. Mode-based design workflow
Model-based design is a development tool that is based on a
model of the target environment. The model represents the
environment and the target system and is also the
specification, test bed and the fundamental of the prototype.
This approach should combine much information, prevent
duplications, generated replicable results through automatic
processes and allows a detailed focus of the design towards
the problem statement [6]. In the beginning, the model is
initially designed with the goal of optimizing the desired
behavior. In the further process, the model is refined,
adapted in terms of implementation ability and constantly
tested by simulation. Prototypes based on hardware-in-the-
loop simulations lead the model closer to the real
applicability. The final goal is a model out of which, through
code generation, a real, real-time capable system with
equivalent behavior can generate.

3.2. GSDR system architecture
The GSDR system basically consists of two major
components, which are relevant for the model-based design
implementation workflow.
The signal processing unit is based on a fully programmable
Xilinx ZYNQ System on Chip (SoC) which combines an
ARM Cortex A9 processor and a Field Programmable Gate
Array (FPGA) fabric. Thus, soft-cores representing CPUs
inside of an FPGA can be prevent and improve the overall
performance. The FPGA is directly connected to the
processor and allows seamless dynamic hardware extension
from the software perspective of view. The second important
system part is the Radio Frequency Integrated Circuit

(RFIC) Transceiver, AD9361, of Analog Devices (ref.
Fig.3).

Fig. 3: Schematic if the AD9361 RFIC

The RFIC itself consist of two independent transmitter and
receiver chains, sharing a common clock source. The
integrated analog digital converter (ADC) and the digital
analog converter (DAC) sample rate and the local oscillator
control to mix the baseband signal into RF band (70MHz to
6GHz) are provided by this reference clock. For each chain,
a stack of amplifiers and filters allows a narrow band
selection and RF signal processing. The RFIC can be
operated in time division duplex and frequency division
duplex mode. Each receiver and transmitter chain consists of
selectable (by multiplexing) RF input and RF outputs.
Both devices, the AD9361 and the Zynq SoC are supported
by the selected model-based design workflow of Mathworks.

4. IMPLEMENTATION

In this section the receiver components and their
implementation are presented. The received signal is passing
multiple processing stages for error correction in frequency,
phase and timing. The sample rate of the AD9361 is set to
16 times the required symbol rate of 64kBit/s. With the
receivers shaping filter and the timing recovery, the sample
rate will be reduced to the symbol rate.

4.1. Frequency and phase correction
Since the center frequency of the received signal generally
mismatches to the down converted frequency of the receiver,
frequency shift compensation is required. Due to the
Doppler Effect a frequency offset of +/-65kHz is
additionally expected. The offset correction is performed
after digitization of the input signal. For coarse frequency
offset compensation a Fast Fourier Transformation (FFT)
based approach is promising since a phased locked loop is
not required (estimation of frequency offset out of calculated
spectrum). In a first step, the incoming signal is multiplied
by itself to double the frequency. In case of a BPSK-

modulated signal, this has a superposition of the two
possible phase angles, and thus, a single strong signal at
twice the center frequency result. Through the FFT, this
signal can be estimated to the power spectral density. With
the frequency index at the maximum power level, the offset
can be calculated and corrected. The HDL compatible block
design for the frequency correction is presented in Fig. 4.

Fig. 4: HDL compatible frequency offset compensation block design

By the transmission of the signal a phase error has to be
assumed which causes a constant rotation of the symbols in
the constellation diagram. The implemented phase
correction is based on a discrete Phased Locked Loop (PLL)
[7], in which the deviation is detected by a phase error
detector und passes through a loop filter. A controller finally
ensures a proportional rotation of the phase.

4.2. Timing recovery
In the timing recovery, the optimum timing for sampling is
determined. Since the symbol clock of the transmitter on the
receiver side is not explicitly available, it needs to be
reconstructed out of the signal. In the constellation diagram,
a timing error causes a spread of values by the optimal
symbol positions. The timing recovery is designed
comparable to a PLL. The timing error detector generates an
error value, which is forwarded to a control block after
grading with a loop filter.

4.3. Demodulation, decoding and bit error correction
The BPSK demodulator receives the corrected IQ symbols
from the timing recovery and determines the corresponding
data bits. The demodulator makes a hard decision on the
corresponding bit per input value.
The CLTU detection is required to detect the start and stop
of a frame in a continuous bitstream and to determine the
including code blocks. This is done by parallelizing the
incoming bits to a shift register and performing continuous
comparing with the start sequence (0xEB90).
With the implemented BCH code, single bits can be detected
and corrected. The implementation of the BCH decoder is
realized with shift registers, as presented in Fig. 5 on the
following page [5].

Fig. 5: Implementation on a HDL compatible BCH decoder [5]

5. VALIDATION AND TEST

To test the receiver, a reference transmitter is used, which is
part of the Electronical Ground Support Equipment (EGSE)
of a DLR satellite mission. The used part of the EGSE
represents the ground station for such mission (same
specification) and generates the required data and frames for
the receiver’s evaluation.
Firstly, the receiver is tested without any interference in a
hardware-in-the-loop setup, in which IQ-data are captured
and then used as input for the HDL-optimized simulation
model (Simulink). In a series of simulations, those IQ data
are passing through a simulated AWGN channel with
different noise energies. The results for uncorrectable,
correctable and loss of blocks over Eb/N0 are presented in
Fig. 6.

Fig. 6: Block errors with captured IQ data in a HDL-optimized simulation
model

The block losses are given relatively to the total number of
code blocks being sent. As expected, the errors increase with
decreasing signal-to-noise ratio. Below 11dB, the block
losses rise very sharply. For the values 13dB and at 14dB,
the simulation is performed with twice the number of code
blocks being sent in order to be able to resolve the low error
rate.
In the next step, the receiver is implemented in hardware and
interfaces the EGSE via RF cabling. Through the EGSE,
interferences like noise and attenuation are then added to the
signal. Additionally, the receivers performance has been
evaluated with respect to Doppler shift in (sweep from
+/125kHz with 1kHz/s) on different level of signal input
power. Results therefore are given in Fig. 7

Fig. 7: Measured block errors with implemented hardware connected to

EGSE.

The results are showing the different kind of block errors vs
Eb/N0. Compared to the simulation results with captured IQ
data, a lightly higher Eb/N0 is noted, which is explained by
the noise figure of the receiver hardware in the RF input.

6. CONCLUSION

In this paper we presented the development, implementation
and verification of a CCSDS compatible receiver application
using the model-based design workflow of Mathworks. In
principle, the workflow is a very powerful tool that allows
rapid development of embedded applications. In practice, it
has been shown that this tool requires a lot an additional
work, since many functions (for this application) are not
provided by Mathworks and needed to be designed and
implemented separately. Nevertheless, the mix of auto-code
generated and manually written functions to VHDL, out of
one system model, was successfully implemented and tested
through this workflow and the results are showing good
performances.

REFERENCES

[1] F. Dannemann, M. Jetzschmann, “Technology-driven design of
a scalable small satellite platform,” 4S Symposium 2016
proceedings, ESA, Malta, May 2016.

[2] F. Dannemann, M. Jetzschmann, “Scalability and modularity as
dimension of flexibility of a microsatellite platform,” 68th
International Astronautically Congress 2017, Symposium on small
satellite missions (B4), IAC, Australia, September 2017.

[3] J. Budroweit, “Design of a Highly Integrated and Reliable SDR
Platform for Multiple RF Applications on Spacecraft,”
GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, Singapore, 2017, pp. 1-6. doi:
10.1109/GLOCOM.2017.8255087

[4] D. Pu, A. Cozma and T. Hill, “Four Quick Steps to Production:
Using Model-Based Design for Software-Defined Radio (Part 1),”
Analog Dialogue 49-09, USA, September 2015.

[5] CCSDS, “TC Synchronization and Channel Coding—Summary
of Concept and Rationale,” CCSDS, 2012.

[6] R. Aarenstrup, “Managing Model-Based Design,” The
MathWorks Inc., 2015.

[7] M. Rice, “Digital Communications: A Discrete Time
Approach,” Pearson, 2011.

