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ABSTRACT 
 
In this paper the development and implementation of a 
Telecommand (TC) receiver application for microsatellite 
communication is presented. The TC receiver application is 
executed and operated by a highly integrated Generic 
Software-Defined Radio (GSDR) platform. This platform 
architecture is designed for the reliable operation of multiple 
radio frequency applications on spacecraft. For the 
development and implementation process of the TC receiver 
application, a new model-based development workflow by 
Matlab/Simulink is used and evaluated.  
 

Index Terms— SDR, Model-based design, VHDL, 
Telecommand, Microsatellite communication 
 

1. INTRODUCTION 
 
The demand of scalability and flexibility has been increased 
for microsatellite missions in the past decade and there are 
many activities on-going to provide satellites with a tall 
envelope in terms of provided power, computing resources 
and communication links [1][2]. A proposed solution for a 
flexible and scalable communication system is the Generic 
Software-Defined Radio (GSDR) of the German Aerospace 
Center, which provides the operation of multiple radio 
frequency (RF) applications on a spacecraft, almost without 
frequency band limitations [3]. To improve the flexibility 
and reduces the development and verification time of 
applications for the GSDR, model-based design workflows 
are promising, which for example are offered by Mathworks 
with their Matlab and Simulink tools [4]. In this paper the 
Mathsworks model-based design workflow is used to 
develop, implement and test a Telecommand (TC) receiver 
application on the GSDR platform architecture.  
 
In section 2, the system overview, including the application 
related requirements and important design constraints are 
presented. Section 3 describes the model-based design 
workflow and the GSDR system architecture. The 
implementation of the TC application is presented in section 
4 and the associated validation and test results are discussed 
in section 5. The final conclusion is given in section 6. 

2. SYSTEM OVERVIEW 
 
For satellite communication it is often mandatory to be 
compliant with standards and recommendations of the 
Consultative Committee for Space Data Systems (CCSDS). 
Major reason is that many ground stations are following 
their recommendation and thus, the communication link 
related specifications. For communication subsystems on a 
spacecraft it is often only required to cover and handle the 
signal processing related to the physical layer of the 
ISO/OSI reference model. In particular, the communication 
subsystem is performing the analog to digital conversion 
(and vice-versa), the modulation/demodulation and related 
RF signal processing (e.g. filtering, amplifying and RF 
converting). Additional signal processing, like coding and 
encoding, is then performed by the on-board computing and 
data handling subsystem. For the proposed TC receiver 
application in this paper, part of the data link layer relevant 
signal processing (decoding) is also performed. In the 
following Tab. 1, the requirements and application 
specifications are presented. 

Tab. 1: TC receiver application related requirements and specifications 

Parameter Value 
Carrier frequency 2081.2MHz 
Occupied bandwidth 153kHz 
Doppler offset +/-65kHz 
Doppler rate < 1kHz/s 
Modulation BPSK 
Data rate 64kBit/s 
Coding Expurgated BCH (63,56) 
PLOP-Mode PLOP-2 
 
The specifications have been selected from a reference 
mission of the Germany Aerospace Center, Institute of space 
system, which covers almost the major mission 
requirements. The selected frequency band is S-band in the 
uplink (2081.2MHz carrier frequency). Due to a selected 
modulation scheme of Binary Phase Shift Keying (BPSK) 
and a data rate of 64kBit/s, an occupied bandwidth of 
approx. 153kHz is mandatory. For error detection and 
correction purposes, an expurgated Bose-Chaudhuri-
Hocquenghem (BCH) code is used. Fig. 1 shows the signal 



processing flow for the TC application and illustrates 
relevant signal processing parts which are required to 
implement.   

 
Fig. 1: Transmission flow. The gray highlighted bocks are part of the TC 

receiver application 

The data to be transmitted are organized in frames. A frame 
contains information about the addressing, sequencing, user 
data and error detection. Fig. 2 shows the structure of a 
transmission frame. 
 

 
Fig. 2: Structure of the transmission frame 

One frame includes a header with a length of five byte, up to 
249 byte of user data, as well as a CRC-Checksum with a 
length of two byte. One or multiple frames are transmitted 
inside of The Communication Link Transmission Unit 
(CLTU). Beginning with the acquisition and IDLE sequence 
(a series of 0x55 byte), the starting sequence (0xEB90) flags 
the start of CLTU. Afterwards, the segmented block codes 
and error corrected frames are following. The maximum 
length of the CLTU is specified by each mission.  
The channel coding adds redundancy in terms of control bits 
to the user data. Thus, errors in the transmission could be 
detected and corrected. The selected expurgated BCH code 
is derived from a (63,56) hamming code and could detect 2 
bits and is able to correct 1 bit per code block [5].  
The Physical Layer Operation Procedure (PLOP) specifies 
the order of states during a CLTU transmission. While at a 
PLOP-1 configuration the transmitter is sending only the 
carrier between a CLTU transmission sequences, the PLOP-
2 mode specifies a transmission of IDLE frames between 
CLTU transmissions. Due to the IDLE frame transmission 
sequence, modulated data are available and the transmission 
channel can be established. Major advantage of the PLOP-2 

mode is that the receiver does not need to re-synchronize 
every time a CLTU is transmitted and received. On the other 
hand, the receiver needs to track and recover the carrier 
frequency (e.g. due to Doppler Effect) and timing of the 
received signal.  
The BPSK is one of the simplest digital modulation schemes 
and modulates the information into the phase of the carrier 
signal. In case of a BPSK, only two phase conditions are 
defined, which are called symbols. Each symbol contains 
one bit.  A series of modulated symbols with a given period 
is passed through pulse shaping filter to generate a 
continuous waveform. This shaping filter reduces the 
required bandwidth and improves the noise sensitivity.  

 
3. DEVELOPMENT ENVIRONMENT AND 

HARDWARE ARCHITECTURE 
 
In this section the selected model-based design workflow of 
Mathsworks is briefly described. Additionally, the GSDR 
system architecture is presented on which the TC receiver 
application through the model-based design needs to be 
implemented.  
 
3.1. Mode-based design workflow 
Model-based design is a development tool that is based on a 
model of the target environment. The model represents the 
environment and the target system and is also the 
specification, test bed and the fundamental of the prototype. 
This approach should combine much information, prevent 
duplications, generated replicable results through automatic 
processes and allows a detailed focus of the design towards 
the problem statement [6]. In the beginning, the model is 
initially designed with the goal of optimizing the desired 
behavior. In the further process, the model is refined, 
adapted in terms of implementation ability and constantly 
tested by simulation. Prototypes based on hardware-in-the-
loop simulations lead the model closer to the real 
applicability. The final goal is a model out of which, through 
code generation, a real, real-time capable system with 
equivalent behavior can generate. 
 
3.2. GSDR system architecture 
The GSDR system basically consists of two major 
components, which are relevant for the model-based design 
implementation workflow.  
The signal processing unit is based on a fully programmable 
Xilinx ZYNQ System on Chip (SoC) which combines an 
ARM Cortex A9 processor and a Field Programmable Gate 
Array (FPGA) fabric. Thus, soft-cores representing CPUs 
inside of an FPGA can be prevent and improve the overall 
performance. The FPGA is directly connected to the 
processor and allows seamless dynamic hardware extension 
from the software perspective of view. The second important 
system part is the Radio Frequency Integrated Circuit 



(RFIC) Transceiver, AD9361, of Analog Devices (ref. 
Fig.3). 

 
Fig. 3: Schematic if the AD9361 RFIC 

The RFIC itself consist of two independent transmitter and 
receiver chains, sharing a common clock source. The 
integrated analog digital converter (ADC) and the digital 
analog converter (DAC) sample rate and the local oscillator 
control to mix the baseband signal into RF band (70MHz to 
6GHz) are provided by this reference clock. For each chain, 
a stack of amplifiers and filters allows a narrow band 
selection and RF signal processing. The RFIC can be 
operated in time division duplex and frequency division 
duplex mode. Each receiver and transmitter chain consists of 
selectable (by multiplexing) RF input and RF outputs. 
Both devices, the AD9361 and the Zynq SoC are supported 
by the selected model-based design workflow of Mathworks. 
 

4. IMPLEMENTATION 
 
In this section the receiver components and their 
implementation are presented. The received signal is passing 
multiple processing stages for error correction in frequency, 
phase and timing. The sample rate of the AD9361 is set to 
16 times the required symbol rate of 64kBit/s. With the 
receivers shaping filter and the timing recovery, the sample 
rate will be reduced to the symbol rate. 
 
4.1. Frequency and phase correction 
Since the center frequency of the received signal generally 
mismatches to the down converted frequency of the receiver, 
frequency shift compensation is required. Due to the 
Doppler Effect a frequency offset of +/-65kHz is 
additionally expected. The offset correction is performed 
after digitization of the input signal. For coarse frequency 
offset compensation a Fast Fourier Transformation (FFT) 
based approach is promising since a phased locked loop is 
not required (estimation of frequency offset out of calculated 
spectrum). In a first step, the incoming signal is multiplied 
by itself to double the frequency. In case of a BPSK-

modulated signal, this has a superposition of the two 
possible phase angles, and thus, a single strong signal at 
twice the center frequency result. Through the FFT, this 
signal can be estimated to the power spectral density. With 
the frequency index at the maximum power level, the offset 
can be calculated and corrected. The HDL compatible block 
design for the frequency correction is presented in Fig. 4.  
 

 
Fig. 4: HDL compatible frequency offset compensation block design 

By the transmission of the signal a phase error has to be 
assumed which causes a constant rotation of the symbols in 
the constellation diagram. The implemented phase 
correction is based on a discrete Phased Locked Loop (PLL) 
[7], in which the deviation is detected by a phase error 
detector und passes through a loop filter. A controller finally 
ensures a proportional rotation of the phase.  
 
4.2. Timing recovery 
In the timing recovery, the optimum timing for sampling is 
determined. Since the symbol clock of the transmitter on the 
receiver side is not explicitly available, it needs to be 
reconstructed out of the signal. In the constellation diagram, 
a timing error causes a spread of values by the optimal 
symbol positions. The timing recovery is designed 
comparable to a PLL. The timing error detector generates an 
error value, which is forwarded to a control block after 
grading with a loop filter. 
 
4.3. Demodulation, decoding and bit error correction 
The BPSK demodulator receives the corrected IQ symbols 
from the timing recovery and determines the corresponding 
data bits. The demodulator makes a hard decision on the 
corresponding bit per input value.  
The CLTU detection is required to detect the start and stop 
of a frame in a continuous bitstream and to determine the 
including code blocks. This is done by parallelizing the 
incoming bits to a shift register and performing continuous 
comparing with the start sequence (0xEB90).  
With the implemented BCH code, single bits can be detected 
and corrected. The implementation of the BCH decoder is 
realized with shift registers, as presented in Fig. 5 on the 
following page [5].  



 

Fig. 5: Implementation on a HDL compatible BCH decoder [5] 

 
5. VALIDATION AND TEST 

 
To test the receiver, a reference transmitter is used, which is 
part of the Electronical Ground Support Equipment (EGSE) 
of a DLR satellite mission. The used part of the EGSE 
represents the ground station for such mission (same 
specification) and generates the required data and frames for 
the receiver’s evaluation.  
Firstly, the receiver is tested without any interference in a 
hardware-in-the-loop setup, in which IQ-data are captured 
and then used as input for the HDL-optimized simulation 
model (Simulink). In a series of simulations, those IQ data 
are passing through a simulated AWGN channel with 
different noise energies. The results for uncorrectable, 
correctable and loss of blocks over Eb/N0 are presented in 
Fig. 6. 

 
Fig. 6: Block errors with captured IQ data in a HDL-optimized simulation 
model 

The block losses are given relatively to the total number of 
code blocks being sent. As expected, the errors increase with 
decreasing signal-to-noise ratio. Below 11dB, the block 
losses rise very sharply. For the values 13dB and at 14dB, 
the simulation is performed with twice the number of code 
blocks being sent in order to be able to resolve the low error 
rate.  
In the next step, the receiver is implemented in hardware and 
interfaces the EGSE via RF cabling. Through the EGSE, 
interferences like noise and attenuation are then added to the 
signal. Additionally, the receivers performance has been 
evaluated with respect to Doppler shift in (sweep from 
+/125kHz with 1kHz/s) on different level of signal input 
power. Results therefore are given in Fig. 7 

 
Fig. 7: Measured block errors with implemented hardware connected to 

EGSE. 

The results are showing the different kind of block errors vs 
Eb/N0. Compared to the simulation results with captured IQ 
data, a lightly higher Eb/N0 is noted, which is explained by 
the noise figure of the receiver hardware in the RF input.  
 

6. CONCLUSION 
 
In this paper we presented the development, implementation 
and verification of a CCSDS compatible receiver application 
using the model-based design workflow of Mathworks. In 
principle, the workflow is a very powerful tool that allows 
rapid development of embedded applications. In practice, it 
has been shown that this tool requires a lot an additional 
work, since many functions (for this application) are not 
provided by Mathworks and needed to be designed and 
implemented separately. Nevertheless, the mix of auto-code 
generated and manually written functions to VHDL, out of 
one system model, was successfully implemented and tested 
through this workflow and the results are showing good 
performances. 
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