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Abstract—In this paper, we study the distributed state esti-
mation problem where a set of nodes cooperatively estimate the
hidden state of a nonlinear dynamic system based on sequential
observations. As a common approach to solve this problem, the
extended Kalman filter (EKF) is considered from a Bayesian
perspective. After linearizing the state-space model using the
first-order Taylor series, we construct an equivalent maximum-
a-posteriori (MAP) estimation problem under linear Gaussian
assumptions coupled with a consensus constraint. The consensus-
based MAP problem is solved distributedly by the alternating di-
rection method of multiplier (ADMM). The resulting distributed
algorithm ensures robust consensus-based state estimates among
nodes and is able to converge to the central solution.

Index Terms—Nonlinear state estimation, distributed extended
Kalman filter, maximum-a-posteriori estimation, consensus opti-
mization

I. INTRODUCTION

Distributed state estimation of dynamic systems draws much
attention in different domains such as electric power grid
monitoring, environmental field estimation as well as tracking
and localization in sensor networks [1], where no central
processing unit is deployed. Distributed processing brings
many benefits compared to the centralized one, e.g., the
robustness and efficiency of the whole system are increased by
overcoming the presence of single point failure and congestion
of massive data.

For linear dynamic systems, the Kalman filter (KF) [2],
which provides an optimal state estimation, is usually derived
in the minimum-mean-square-error (MMSE) sense with the
assumption of Gaussian uncertainties. However, most systems
in real world applications are nonlinear. As a nonlinear version
of KF, the idea of the extended Kalman filter (EKF) [3] is
to use the first-order Taylor series to linearly approximate
nonlinear functions in the state-space model. An alternative
is the unscented Kalman filter (UKF), where the unscented
transform is applied to approximate the mean and covariance
of the Gaussian formed state density [4]. When it is not
sufficient to use Gaussian distribution to approximate the state
density, the sampling method-based particle filter (PF) [5] can
be applied, but the computation complexity is increased.

In this work, we assume a dynamic system which is not
highly nonlinear. Thus, the EKF is sufficient and widely
applied. Here, we investigate it in a distributed scenario where
each node in a network desires an accurate consensus-based

estimate on the entire system state variables. This consensus
property offers a flexibility to conduct further transmission or
control. Most of the state of the art (SotA) distributed EKF
approaches apply average consensus (AC) scheme [6] to deal
with different terms in the update equations of the EKF, which
are summarized and analyzed in [7]. Different from them, our
previous work [8] considers the KF in another viewpoint by
constructing an equivalent consensus optimization problem.
The designed algorithm in [8] offers an accurate consensus-
based solution with low communication overhead. Here, we
extended the idea of our previous work to the nonlinear case
by considering the EKF in a Bayesian perspective. Similar to
the EKF, we first approximate the nonlinear model at specific
working points using the first-order Taylor series. Then, by
exploiting the equivalent relation between the KF and the
maximum-a-posterior (MAP) estimation under linear Gaussian
assumptions, we construct the general consensus optimization
problem which is solved by the alternating direction method
of multiplier (ADMM) in an efficient and distributed way. The
resulting distributed algorithm is applied to the target tracking
application in sensor networks. Analytical and simulated re-
sults illustrate that the proposed algorithm is able to converge
to the central solution and offers robust consensus-based state
estimates among nodes with low communication overhead.

II. SYSTEM MODEL

We consider a discrete-time nonlinear dynamic system with
the hidden state vector xk ∈ Rm. At each time instant
k, xk is observed by J nodes in a network. This network
is described by a time-invariant geometric undirected graph
G = {J , E}, in which J := {1, · · · , J} and E denote the set
of nodes and edges, respectively. We assume that the network
is connected which means one node is able to reach any other
node by multi-hop. All these nodes are homogeneous in terms
of processing and communication capability. The inter-node
communication links are assumed to be ideal. The dynamic
process and the local observation of each node j ∈ J can be
described using the following state-space model:

xk+1 = fk(xk) + Gkwk, (1)
yj,k = hj,k(xk) + vj,k, (2)

where the state transition function fk( · ) : Rm → Rm

and observation function hj,k( · ) : Rm → Rn are both



differentiable and possibly nonlinear. Here, Gk ∈ Rm×p is a
matrix. The vectors wk ∈ Rp and vj,k ∈ Rn denote the process
and observation noise, respectively. Both noise vectors are
assumed to be zero mean Gaussian distributed with covariance
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where δcd is Kronecker delta , i.e. δcd = 1 only if c = d. The
initial state is assumed to be x0 = N (m0,P0).

To make full use of all information in the network, we
define a collection of the observations of the entire network
as yk = [yT1,k, · · · , yTJ,k]T ∈ RnJ . Thus, the global nonlinear
observation function w.r.t. the state xk is defined by hk(xk) =
[h1,k(xk)T, · · · ,hJ,k(xk)T]T ∈ RnJ . Similarly, the global ob-
servation noise is vk = [vT1,k, · · · , vTJ,k]T ∈ RnJ with the block
diagonal covariance matrix Rk = blkdiag[R1,k, · · · ,RJ,k] ∈
RnJ×nJ . Thus, the global observation model is

yk = hk(xk) + vk (3)

by stacking the J nonlinear equations in (2).
The key objective is to infer the hidden state xk at each

time k based on a set of available observations y1:k :=
{y1, · · · , yk}. From a Bayesian viewpoint, at time k we want
to recursively estimate the predictive distribution (density)
p(xk|y1:k−1) given observations up to k − 1 and the filtering
distribution (density) p(xk|y1:k) given observation up to k, as
a description of general Bayesian filtering (BF) [9].

III. EKF AND EQUIVALENT PROBLEM FORMULATION

A. Overview of EKF

With the global system model (1) and (3), in the EKF the
filtering densities are assumed to be approximated by Gaussian
distributions [10], i.e., p(xk|y1:k) ≈ N (xk|x̂k|k,Pk|k) with
filtered mean x̂k|k and covariance matrix Pk|k. This evolution
of Gaussian approximations is formed by linearizing the
nonlinear function using the first-order Taylor series at current
best state estimate, i.e., x̂k|k−1 = E{xk|y1:k−1} and x̂k|k =
E{xk|y1:k} in prediction and filtering step, respectively. Here,
we use x̂k|k−1 and Pk|k−1 to express the mean and covariance
matrix of Gaussian approximated predictive distribution, i.e.,
p(xk|y1:k−1) ≈ N (xk|x̂k|k−1,Pk|k−1). Thus, the linearized
state-space model at time k is

xk+1 ≈ Fkxk + Gkwk + uk, (4)
ȳk ≈ Hkxk + vk (5)

with Jacobian matrices Fk ∈ Rm×m and Hk ∈ RnJ×m:

Fk =
∂fk
∂xk

∣∣∣∣
xk=x̂k|k

, Hk =
∂hk

∂xk

∣∣∣∣
xk=x̂k|k−1

(6)

as well as the deterministic input uk and the reformulated
observation vector ȳk defined by:

uk = fk(x̂k|k)− Fkx̂k|k, (7)
ȳk = yk − hk(x̂k|k−1) + Hkx̂k|k−1. (8)

Based on the linearized model (4) and (5), the KF is derived
correspondingly [3]. With a proper initialization, the update
equations of the EKF at each time k are as follows [7]:

x̂k|k−1 = Fk−1x̂k−1|k−1 + uk−1 = fk−1(x̂k−1|k−1), (9)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Gk−1Qk−1GT

k−1, (10)

Pk|k =
(

P−1k|k−1 + HT
k R−1k Hk

)−1
, (11)

x̂k|k = x̂k|k−1 + Pk|kHT
k R−1k (ȳk −Hkx̂k|k−1) (12)

with the Jacobian matrices (6) and modified observation (8).
Note that (9)-(12) indicate the updates of the centralized EKF
(CEKF) using complete observation data set of the network.

B. Equivalent Optimization Problem

To infer the state based on the observation data set, besides
the MMSE criterion, the maximum-a-posteriori estimation

x̂MAP
k|k = arg max

xk
p(xk|y1:k) (13)

can be conducted to obtain an filtering estimate in an optimal
sense. Based on the Bayes rule, the maximization problem in
(13) can be rewritten into

max
xk

p(yk|xk)p(xk|y1:k−1) (14)

with the likelihood p(yk|xk) and the prior p(xk|y1:k−1) [9].
Thanks to the linearization and Gaussian approximations in
the EKF, both densities in (14) are approximated by Gaus-
sian distributions and the determination of their means and
covariances is straightforward with linearized system model.
Thus, (14) is further derived in Gaussian form resulting in a
centralized minimization problem as

min
xk

(
‖ȳk −Hkxk‖2R−1

k

+ ‖xk − x̂k|k−1‖2P−1
k|k−1

)
, (15)

where the two norms are defined by ‖a‖B =
√

aTBa. By
minimizing the convex objective function in (15) w.r.t. xk, the
MAP estimate is obtained as

x̂MAP
k|k = Pk|k

(
HT

k R−1k ȳk + P−1k|k−1x̂k|k−1

)
. (16)

Under the linear Gaussian assumptions, the MMSE and the
MAP estimation are identical and share the same form of
solution [11]. Hence, (16) is identical to the state estimate
(12) of CEKF with the same covariance matrix (11) [9].

IV. DISTRIBUTED CONSENSUS-BASED EXTENDED
KALMAN FILTER (DCEKF)

Firstly, we consider the prediction step of DCEKF. At each
node j ∈ J , the nonlinear model is linearized locally w.r.t. the
node specific state estimate at each time k. Thus, the predicted
mean and covariance matrix of the state at node j are

x̂j,k|k−1 = fk−1(x̂j,k−1|k−1), (17)

Pj,k|k−1 =Fj,k−1Pj,k−1|k−1FT
j,k−1 + Gk−1Qk−1GT

k−1 (18)

with Jacobian matrix Fj,k−1 at x̂j,k−1|k−1. By initializing
x̂j,0|0 = m0, Pj,0|0 = P0 for all j ∈ J , first predictions
are identical over the network.



Next for the filtering step, the centralized problem (15)
can be decomposed into the summation of local parallel
minimization problems by introducing a consensus constraint
to guarantee an agreement on state estimate at time k as

min
{xj,k|j∈J}

J∑
j=1

gj(xj,k)

s.t. xj,k = xi,k, ∀j ∈ J , i ∈ Nj

(19)

with gj(xj,k) = ‖ȳj,k − Hj,kxj,k‖2R−1
j,k

+ 1
J
‖xj,k − x̂j,k|k−1‖2P−1

j,k|k−1

.

TheNj denotes a set of neighboring nodes (neighbors) of node
j. Note that, this decomposition is under the condition that
x̂j,k|k−1 and Pj,k|k−1 for all nodes j ∈ J are identical to the
central ones, i.e., x̂j,k|k−1 = x̂k|k−1 and Pj,k|k−1 = Pk|k−1.
Later we will explain when this condition is fulfilled.

The constrained optimization problem (19) can be solved in
a distributed fashion using the ADMM algorithm [12]. Here,
we refer to the distributed consensus-based estimation (DiCE)
algorithm [13] due to its good performance with a convergence
guarantee towards a central solution [14]. In (19), xj,k and xi,k
in the consensus constraint are directly coupled and cannot
be updated in parallel. To enable a distributed processing,
an auxiliary variable zj,k at node j is introduced. Then the
constraint pairs xj,k = zj,k, xj,k = zi,k are constructed and
further merged into xj,k = zi,k, i ∈ N+

j with N+
j := Nj∪{j}.

To associate this modified constraint with the objective func-
tion in (19), the augmented Lagrangian (AL) method [15] is
applied and the centralized AL cost function can be further
decomposed into a summation of local convex cost functions:

L(x, z,λ) =

J∑
j=1

[
1

2
gj(xj,k)−

∑
i∈N+

j

λT
ji(xj,k − zi,k)

+
1

2µ

∑
i∈N+

j

‖xj,k − zi,k‖2
]

=

J∑
j=1

Lj(xj,k, z,λ).

(20)
Here λji ∈ Rm is a Lagrange multiplier at node j and
µ is a scalar penalty parameter. To obtain a state estimate
x̂j,k|k at each time k, an inner-consensus iteration denoted
by l is proceed with initialization z0j,k = x̂j,k|k−1,λ0

ji =
0,∀j ∈ J . At each node j, in the l-th inner iteration,
xlj,k is obtained by solving ∂Lj(xj,k, zl−1i,k ,λ

l−1
ji )/∂xj,k =

0. Similarly, to update zlj,k, the cost function (20) can be
rewritten w.r.t. zj,k by reorganizing indices j and i [13]
and then ∂L′j(zj,k, xli,k,λ

l−1
ij )/∂zj,k = 0 is solved. Further,

to calculate λl
ji, the gradient method is used to deal with

Lj(λji, xl
j,k, zli,k,λ

l−1
ji ) on λji [12]. In this way, the updates

of these variables in the l-th iteration become

xlj,k =
(

HT
j,kR−1j,kHj,k +

1

J
P−1j,k|k−1 +

|Nj + 1|
µ

I
)−1

×
[

HT
j,kR−1j,k ȳj,k +

1

J
P−1j,k|k−1x̂j,k|k−1

+
∑

i∈N+
j

(zl−1i,k

µ
+ λl−1

ji

)]
, (21)

zlj,k =
µ

|Nj + 1|
∑

i∈N+
j

( 1

µ
xli,k − λl−1

ij

)
, (22)

λl
ji = λl−1

ji −
1

µ

(
xl
j,k − zli,k

)
∀j ∈ J , i ∈ N+

j . (23)

During each inner-consensus update, each node transmits the
estimate xj,k and the auxiliary variable zj,k to its neighbors.
Then, all Lagrange multipliers can be calculated locally. When
l → ∞, the filtered state estimate x̂j,k|k ← x∞j,k|k for each
node j ∈ J converges to the centralized MAP estimate which
is identical to the CEKF solution, i.e., x̂j,k|k = x̂MAP

k|k =
x̂k|k, ∀j ∈ J is fulfilled.

In the following, we calculate the covariance matrix in the
filtering step at node j ∈ J using

Pj,k|k =
( J∑

j=1

HT
j,kR−1j,kHj,k + P−1j,k|k−1

)−1
(24)

with Jacobian matrix Hj,k at x̂j,k|k−1. When Pj,k|k−1 =
Pk|k−1, (24) is identical to (11). We observe that (24) requires
the global information on HT

j,kR−1j,kHj,k of all j ∈ J . In a
general case, this global information can be achieved by using
an additional consensus step on HT

j,kR−1j,kHj,k during the inner-
consensus update [8]. However, for some specific applications
such as target tracking discussed later, a reasonable assumption
is that networked nodes are homogeneous with global infor-
mation on observation model and level of observation noise.
Thus, when x̂j,k|k−1 is identical to the global one, Hj,k is the
same for all j ∈ J . Therefore, information exchange is not
necessary for the local update of Pj,k|k.

According to the analysis above, the filtered state estimate
(mean) x̂j,k|k and covariance matrix Pj,k|k of the state for
all j ∈ J are the same and identical to the central ones,
when l → ∞. Thus, at the next time instant, the predicted
mean and covariance matrix at each node are identical to
the central ones based on (17) and (18). This completes the
condition x̂j,k+1|k = x̂k+1|k, Pj,k+1|k = Pk+1|k mentioned
before. Definitely, l → ∞ is not feasible in practice. Hence,
we only process limited L inner-consensus iterations and the
filtered state estimate is approximated by x̂j,k|k ← xLj,k. Note
that in practice L is determined by a proper stopping criterion
during the inner-consensus iteration, but here for the analysis
we consider L as a parameter. Thus, the result of DCEKF
is an approximation of the CEKF solution. The accuracy of
this approximation depends on L. Along with increasing L,
DCEKF has the ability to converge to the CEKF solution. The
whole procedure of DCEKF is summarized in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, the proposed DCEKF algorithm is tested
in a scenario of distributed target tracking. We perform nu-
merical simulations to evaluate the performance of DCEKF.
As a comparison, we also evaluate the AC-based information-
weighted consensus filter [16] under nonlinear setting analyzed
in [7] and name it as E-ICF, which outperforms some other
SotA algorithms. The good performance of E-ICF makes our



Algorithm 1 Distributed consensus-based EKF (DCEKF)
1: Initialization: for all j ∈ J , x̂j,0|0 = m0, Pj,0|0 = P0,
2: for k = 1, · · ·K, node j do
3: calculate the Jacobian matrix Fj,k−1 at x̂j,k−1|k−1
4: predict the mean x̂j,k|k−1 and the covariance matrix

Pj,k|k−1 by calculating (17) and (18)
5: calculate the Jacobian matrix Hj,k and the modified

observation ȳj,k at x̂k|k−1
6: set initial values: z0j,k = x̂j,k|k−1, λ0

ji = 0 and transmit
z0j,k to neighbors i ∈ Nj

7: for l = 1, · · · , L do
8: update (21) and transmit xl

j,k to neighbors i ∈ Nj

9: update (22) and transmit zlj,k to neighbors i ∈ Nj

10: update (23)
11: end for
12: obtain the filtered state estimate (mean) x̂j,k|k ← xL

j,k

and calculate the covariance matrix Pj,k|k using (24)
13: end for

comparison more challenging. Note that, we choose a relative
large step size for AC in E-ICF to make it converge fast, which
requires pre-knowledge on graph G. However, DCEKF does
not need to know G beforehand as one advantage.

A. Simulation Setup

We consider a distributed target tracking scenario where
one object moves in a two dimensional plane. The state of
a target contains 2D coordinate x and velocity ẋ, i.e., xk =
[x1,k, x2,k, ẋ1,k, ẋ2,k]T. The dynamic model of state is

xk+1 = Fkxk + Gkwk

=

[
I2 TsI2
02 I2

]
xk +

[
0.5T 2

s I2
TsI2

]
wk, (25)

where I2 and 02 are 2 × 2 identical and zero matrix, respec-
tively. This model is a Gaussian random walk commonly used
for target tracking [5]. In this work, we set Ts = 1 denoting
that the sampling interval is 1 second. Assume that the object
is moving in a range of 50m × 50m. The positions of J = 25
sensor nodes are deployed semi-randomly1 in this specific
area with coordinates (x1j , x2j) for all j ∈ J . These sensor
positions are assumed to be global known and time-invariant.
A simple nonlinear observation model is assumed at sensor
j ∈ J w.r.t. the Euclidean distance to the target as

yj,k =
√

(x1j − x1,k)2 + (x2j − x2,k)2 + vj,k. (26)

In this paper, we simulate a case with two moving targets
for comparisons of different algorithms. Thus, the process
model (25) is extended with 8 dimensional state vector. We
set the initial states of two objects to be [20; 20; 0.1; 0.1] and
[30; 30;−0.1; 0.1]. The process noise is zero mean Gaussian
with covariance matrix Qk = 0.01I4. Accordingly, the obser-
vation in (26) is extended to an 2 dimensional vector and the

1We first generate a regular 2D grid positions and add a random jitter to
each sensor position.
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Fig. 1. (a) RMSE over J = 25 nodes as a function of time instant k for
L = 20; (b) Steady-state RMSE of different nodes for L = 20; (c) Steady-
state RMSE over J = 25 w.r.t. the number of inner-consensus iteration L;
(d) An example of two objects tracking over a sensor network for L = 20;
Triangles are the initial positions in DCEKF.

local noise covariance matrix is set to be Rj,k = 0.1I2. We
randomly generate a network topology by setting the sensor
communication radius rc = 15m and fix this topology during
the simulation. Note that, under this setting, the generated sen-
sor network is relative sparse with connected ratio2 0.1367. As
an example, we set the penalty parameter µ = 1 for DCEKF.
The step size of AC in E-ICF is set to be 0.9

Dmax
= 0.1286 in

which Dmax is the maximum degree of graph G.
For performance analysis, we perform M = 500 Monte

Carlo runs with different realizations of wk, vj,k and J sensor
positions. Next we define the root mean square error (RMSE)
at each time instant k as a key performance indicator:

RMSE =

√∑M
m=1

∑J
j=1 e

2
j,k,m

MJ
, (27)

where the position error ej,k,m is the Euclidean distance
between the true and estimated position of the target at node
j, at time instant k in Monte Carlo run m.

B. Simulation Results

The performance of DCEKF is evaluated compared to
CEKF and E-ICF. The sensor sensing range is firstly assumed
to be a fully coverage over the moving plane. The RMSE as
a function of k for L = 20 is shown in Fig.1 (a). We observe
that compared to E-ICF, the RMSE performance of DCEKF
is better and almost reach the CEKF result. Then we focus

2The connected ratio of the network is calculated by 2|E|
J×(J−1)

.



TABLE I
STEADY-STATE PERFORMANCE WITH LSR (L = 20, rs = 30) AND

COMMUNICATION OVERHEAD

Algorithms CEKF E-ICF DCEKF DCEKF1
steay-state RMSE (dB) -6.14 -5.77 -5.61 -6.14
comm. overhead per l (m2 + m)J 2mJ (m2 + 2m)J

on the steady-state RMSE by averaging the position errors
ej,k,m over time instant 80 to 100 and simulation runs M .
The node specific steady-state RMSE is depicted in Fig.1 (b).
It reflects that DCEKF achieves relative consensus-based so-
lutions among nodes. However, the curve of E-ICF is still
fluctuating, which means consensus is not yet achieve among
nodes. Fig.1 (c) illustrates the steady-state RMSE over the
network w.r.t. the number of inner-consensus iteration L. It is
obvious that along with the increase of L, both DCEKF and E-
ICF approach to the central result. After about L = 6, DCEKF
begins to outperform E-ICF with smaller steady-state RMSE.
Around L = 20, DCEKF almost converges to CEKF, but E-
ICF does not. This also indicates that DCEKF needs smaller
L to reach the same level of RMSE performance consuming
less communication effort compared to E-ICF. In Fig.1 (d), one
example with a sensor network, true trajectories and average
estimates of DCEKF are demonstrated for L = 20. With
randomly chosen initial state, DCEKF works well to track
the true positions of multi-objects for this randomly generated
sparse network. As discussed in [17], to solve the distributed
consensus problem, the ADMM converges faster than the AC
for sparse graphs. It provides an evidence to intuitively explain
why the ADMM-based DCEKF converges faster compared to
the AC-based E-ICF under the setup of sparse graph.

Next, we assume that each sensor has a limited sensing
range (LSR), e.g., rs = 30m. Thus, at some time k some
sensors and even its neighbors may not get observations. In
this case, we set both local yj,k and Hj,k to be 0. Without
exchanging information on current Jacobian matrix Hj,k, the
global optimization problem (19) of DCEKF is an approxi-
mation of the central one. Along with the increase of rs, this
approximation is better. To make (19) identical to the central
one, an additional consensus step on matrix HT

j,kR−1j,kHj,k [8]
is needed for DCEKF and we name it as DCEKF1. The steady-
state RMSE considering LSR for L = 20 is shown in Table I.
We find that DCEKF obtains comparable performance. With
exchanging information on current Hj,k, the performance of
DCEKF1 is closer to CEKF among all.

For the communication overhead, we assume that each node
broadcasts the local information to its neighbors and we count
the transmitted scalar per inner iteration l of each algorithm.
The results are also shown in Table I. Note that here we do not
discuss the communication overhead of CEKF which depends
on specific routing protocol. Combined with the result in Fig.1,
when the sensing range of sensors covers the entire field,
DCEKF outperforms E-ICF with better RMSE performance
and lower communication overhead. However, when sensors
have LSR, our suggestion is to consider rs and the trade-off
between performance and communication overhead. When rs

is relative large, DCEKF can well approximate the central
optimization problem and achieves a comparable solution with
low communication overhead.

VI. CONCLUSION

In this paper, we propose a distributed algorithm to solve
the consensus-based state estimation problem for nonlinear dy-
namic systems. By considering the EKF from a Bayesian view-
point, we construct an equivalent consensus MAP estimation
problem under linear Gaussian assumptions. Analytical and
simulated results illustrate that the proposed DCEKF algorithm
converges to the central solution with robust consensus-based
state estimates among nodes. Especially for sparse networks,
DCEKF distinguishes itself in terms of fast convergence rate
and low communication overhead without pre-knowledge on
network graph. Even when the LSR of sensors is considered,
DCEKF has the potential to achieve comparable performance
meanwhile keeping low communication effort.
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