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Tutor: Shayan Hassanpour

SPT, Room C 3220, Tel.: 0421/218-62387
E-mail: {wuebben, hassanpour}@ant.uni-bremen.de

Universität Bremen, FB1
Institut für Telekommunikation und Hochfrequenztechnik

Arbeitsbereich Nachrichtentechnik
Prof. Dr.-Ing. A. Dekorsy

Postfach 33 04 40
D–28334 Bremen

WWW-Server: http://www.ant.uni-bremen.de

Version from April 4, 2019



1 INTRODUCTION April 4, 2019 1

1 Introduction

Solution of exercise 1.1 Design of a discrete channel

Item a)
Relative to the hard-decision, the decision thresholds shall lie in the middle of two adjacent symbols, therefore at
-2, 0 and +2. The several classes then correspond to the channel output values Yµ like in figure 3.
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Fig. 3: Hard-decision at quaternary input signal and AWGN channel

The transition probabilities Pr{Yµ|Xν} can now be calculated in the following way. For the transmitting symbol
X0 = −3 the Gaussian distribution pn(ξ) of the AWGN channel is shifted by X0. The probability of the symbol
X0 being falsely detected as X1 then results from the area under the shifted probability density function pn(ξ−X0)
between -2 and 0
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With the substitution ζ = ξ+3√
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the relation dξ =
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Pr{Y1 | X0} =
1√
π

3/
√
2σn�

1/
√
2σn

e−ζ2

dζ =
1

2

�
erf
�√

4.5
�
− erf

�√
0.5
��

=
1

2

�
erfc

�
1√
2

�
− erfc

�
3√
2

��
= 0.1573 .

α

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

1.5

2

erfc( α)

erf( α)

Fig. 4: erf(α) and erfc(α)

Hint: The Gaussian error function resp. the complementary Gaussian error function are defined according to
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eq. (1.20) as
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2√
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with erf(∞) = 1 and erfc(−∞) = 2. The general relation σ2
n �= 1, µ �= 0 is:
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The remaining transition probabilities are calculated in the same way:
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and the transition probabilities Pr{Yµ | X1} are
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The other transition probabilities can be determined in the same way, therefore the resulting values follow:

Pr{Yµ|Xν} Y0 = −3 Y1 = −1 Y2 = +1 Y3 = +3

X0 = −3 0.8413 0.1573 0.0013 2.87e-7

X1 = −1 0.1587 0.6827 0.1573 0.0013

X2 = +1 0.0013 0.1573 0.6827 0.1587

X3 = +3 2.87e-7 0.0013 0.1573 0.8413

You can see by the main diagonal that the probability for a correct decision is always the greatest where the inner
symbols X1 and X2 have a greater error probability. The reason is the possibility of being mixed up with their
left as well as their right neighbor while the outer symbols are susceptible to errors just in one side. The more two
symbols are distant the smaller is their transition probability. The recognizable symmetries are directly explained
by figure 3.
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Item b)
A simple check of the results consists in building the sum of all rows. The sum has to result in one according to

�

Yµ∈Aout

Pr{Yµ | Xν} =
�

Yµ∈Aout

Pr{Xν , Yµ}
Pr{Xν}

= 1

because for each hypothetic transmitting symbol appears any output symbol with absolute assurance.

But pay attention: This is not true for the summation of all columns!

�

Xν∈Ain

Pr{Yµ | Xν} =
�

Xν∈Ain

Pr{Xν , Yµ}
Pr{Xν}

�= 1

Item c)
You get the joint probabilities Pr{Xν , Yµ} by multiplying the transition probabilities Pr{Yµ|Xν} with the occur-
rence probabilities Pr{Xν} of the transmitting symbols. They are summarized for Pr{Xν} = 0.25 in the following
table.

Pr{Xν , Yµ} Y0 = −3 Y1 = −1 Y2 = +1 Y3 = +3

X0 = −3 0.2103 0.0393 0.0003 7.17e-8

X1 = −1 0.0397 0.1707 0.0393 0.0003

X2 = +1 0.0003 0.0393 0.1707 0.0397

X3 = +3 7.17e-8 0.0003 0.0393 0.2103

Item d)
Probabilities of the received symbols is given by

Pr{Yµ} =
�

Xν∈Ain

Pr{Xν , Yµ} .

We get

Y0 = −3 Y1 = −1 Y2 = +1 Y3 = +3

Pr{Yµ} 0.2503 0.2497 0.2497 0.2503

Due to the specific statistics of the channel the output symbols occur with different probabilities although the input
symbols are equally distributed.

Item e)
Important for judging the transmission quality of a channel is the error probability for a given input alphabet. An
error occurs unless the transmitted symbol is detected. The probability for this case is

Pe{Xν} =
�

Yµ∈Aout
Yµ �=Xν

Pr{Yµ | Xν} = 1− Pr{Yν | Xν} .

We get the following values.

X0 = −3 X1 = −1 X2 = +1 X3 = +3

Pe{Xν} 0.1600 0.3160 0.3160 0.1600



1 INTRODUCTION April 4, 2019 4

The error probability of the two inner symbols is about two times as big as that of the outer symbols because of
the above discussed arrangement of the symbols. As mean overall error probability we get

Pe =
3�

ν=0

Pe{Xν} · Pr{Xν} = 0.238 .

Solution of exercise 1.2 Statistics of the discrete channel

In figure 5 the remaining probabilities were added. They result from the equations
�

Xν∈Ain

Pr{Xν} = 1 Pr{Xν , Yµ} = Pr{Yµ | Xν} · Pr{Xν} Pr{Yµ} =
�

Xν∈Ain

Pr{Xν , Yµ}

according to eq. (1.2), eq. (1.3) and eq. (1.6).
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Fig. 5: Discrete channel models

Solution of exercise 1.3 Binary symmetric channel (BSC)

Item a)
The probability that exactly m errors occur at certain positions when a sequence of length n is transmitted over a
BSC is given by (according to eq. (1.27))

Pr{m bits of n incorrect} = Pm
e · (1− Pe)

n−m
.

In this case exactly m = 2 errors occur and 5 bits are correct in a sequence of length n = 7. Accordingly, the
desired probability is

Pr{2 bits of 7 incorrect} = P 2
e · (1− Pe)

7−2
= 0.012 · 0.995 = 9.5099 · 10−5 ≈ 10−4 .

Item b)
The probability of m errors occurring in a sequence of length n can be calculated by eq. (1.28):

Pf (m) = Pr{m errors in a sequence of length n} =

�
n

m

�
· Pm

e · (1− Pe)
n−m ,

where �
n

m

�
=

n!

m!(n−m)!

is the number of possibilities of choosing m elements out of n different elements without consideration of the
succession (combinations).

Item c)
Method of approach 1: The probability of more than 2 errors occurring results from the sum of error probabilities
for 3, . . . , 31 errors:

Pf (m > 2) =

31�

r=3

�
31

r

�
· P r

e · (1− Pe)
31−r ≈

�
31

3

�
· P 3

e · (1− Pe)
31−3 ≈ 0, 0034
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Method of approach 2: By a simple consideration the calculation of the probability can be simplified. Because
of the completeness property of the probabilities:

Pf (m > 2) = Pr{more than 2 errors} = 1− Pf (m = 0)− Pf (m = 1)− Pf (m = 2) .

The single error probabilities are calculated as

Pf (m = 0) =

�
31

0

�
· 0.010 · 0.9931 = 1 · 1 · 0.9931 ≈ 0.7323

Pf (m = 1) =

�
31

1

�
· 0.011 · 0.9930 = 31 · 0.011 · 0.9930 ≈ 0.2293

Pf (m = 2) =

�
31

2

�
· 0.012 · 0.9929 = 465 · 0.012 · 0.9929 ≈ 0.0347

and for the desired probability follows

Pf (m > 2) = 1− 1 · 0.9931 − 31 · 0.9930 · 0.011 − 465 · 0.9929 · 0.012 ≈ 0.0036 .

Solution of exercise 1.4 Serial concatenation of two BSCs

Because the resulting channel is also symmetric, the consideration of one error case is sufficient for the determi-
nation of the error probability. The probability of the transmitting symbol X0 being mapped to the output symbol
Y1 can be calculated as:

Pr{Y1 | X0} = Pr{Y1 | Z0} · Pr{Z0 | X0}+ Pr{Y1 | Z1} · Pr{Z1 | X0}
= Pe,2 · (1− Pe,1) + (1− Pe,2) · Pe,1

= Pe,1 + Pe,2 − 2 · Pe,1 · Pe,2

For the resulting BSC we obtain Pe = Pe,1+Pe,2−2·Pe,1 ·Pe,2. At consideration of two channels with Pe,1 = 0.01
and Pe,2 = 0.02 it becomes obvious that the resulting BSC with Pe = 0.01+0.02−2 ·0.01 ·0.02 = 0.0296 ≈ 0.03
has a considerably greater error probability.
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Fig. 6: Serial concatenation of two BSCs
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2 Survey of Information Theory

Solution of exercise 2.1 Entropy

Item a)
According to eq. (2.2), the mean information content H(Xν) of signal Xν is determined by

H(Xν) = −Pr{Xν} · ld Pr{Xν} (3)

The maximum of H(Xν) results from the derivation being equal to zero:

∂H(Xν)

∂Pr{Xν}
!
= 0

With application of the relation ldx = lnx/ ln 2 and d lnx/dx = 1/x follows

∂H(Xν)

∂Pr{Xν}
= − ∂

∂Pr{Xν}
Pr{Xν} · ld Pr{Xν}

= −ld Pr{Xν}−
Pr{Xν}
ln 2

· ∂

∂Pr{Xν}
ln Pr{Xν}

= −ld Pr{Xν}−
Pr{Xν}
ln 2

· 1

Pr{Xν}

= −ld Pr{Xν}−
1

ln 2
!
= 0

For Pr{Xν} = Pmax then follows

Pr{Xν} = Pmax = 2−1/ ln 2 = 0.3679 (4)

and for the maximal entropy

H(Xν)max = −Pmax · ldPmax = −0.3679 · ld 0.3679 = 0.531 (5)

You get the same result with MATLAB by numerical calculation of the partial entropy, as shown in figure 7.

Item b)
Corresponding to the task only the following five events can occur:

X1 X2 X3

0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

1. H(X1) describes the entropy of the symbol X1 and is calculated as in eq. (2.3) to:
H(X1) = −� Pr{X1} · ld Pr{X1} = − 3

5 ld
3
5 − 2

5 ld
2
5 = 0.971

Because X1 is not equally distributed, its entropy is not maximal and therefore less than one.

2. H(X2) = −� Pr{X2} · ld Pr{X2} = − 3
5 ld

3
5 − 2

5 ld
2
5 = 0.971

3. H(X3) = −� Pr{X3} · ld Pr{X3} = − 1
5 ld

1
5 − 4

5 ld
4
5 = 0.722

4. The joint entropy H(X1, X2) describes the average information content of the (super)symbol X1X2:
H(X1, X2) = −� Pr{X1, X2} · ld Pr{X1, X2} = − 2

5 ld
2
5 − 1

5 ld
1
5 − 1

5 ld
1
5 − 1

5 ld
1
5 = 1.922
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Fig. 7: Mean information content H(Xν) in dependence on the symbol probability Pr{Xν}

5. H(X1, X2, X3) = 5 ·
�
− 1

5 ld
1
5

�
= 2.322

6. The conditional entropy H(X2|X1) describes the information content of X2, if X1 is already known:
H(X2|X1) = H(X1, X2)−H(X1) = 1.9219− 0.971 = 0.9509

7. The conditional entropy H(X2|X1 = 0) describes the information content of X2, if X1 = 0 is already
known:
H(X2|X1 = 0) = − 2

3 ld
2
3 − 1

3 ld
1
3 = 0.918

8. The conditional entropy H(X2|X1 = 1) describes the information content of X2, if X1 = 1 is already
known:
H(X2|X1 = 1) = − 1

2 ld
1
2 − 1

2 ld
1
2 = 1

H(X2|X1 = 1) = 1 means, that due to X1 = 1 there isn’t any knowledge about X2 and consequently the
symbol has the maximal entropy.

9. The conditional entropy H(X3|X1, X2) describes the information content of X3, if X1 and X2 are already
known:
H(X3|X1, X2) = H(X1, X2, X3)−H(X1, X2) = 2.3219− 1.9219 = 0.4

Solution of exercise 2.2 Channel capacity of a discrete memoryless channel

The channel capacity follows with the help of eq. (2.20)

C =
�

ν

�

µ

Pr{Yµ|Xν} · Pr{Xν} · ld
Pr{Yµ|Xν}

Pr{Yµ}
(6)

As the input alphabet with Pr{Xν} = 1/3 is equally distributed and it is a symmetric channel, also the output
alphabet is equally distributed with Pr{Yµ} = 1/3. For the channel capacity then follows:

C =
1

3

�

ν

�

µ

Pr{Yµ|Xν} · ld (3 · Pr{Yµ|Xν})

=
1

3

�
3
1

2
ld

3

2
+ 3

1

3
ld

3

3
+ 3

1

6
ld

3

6

�

=
1

3

�
3

2
ld

3

2
+ ld 1 +

1

2
ld

1

2

�
= 0.126
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Solution of exercise 2.3 Channel capacity of the BSC

Item a)
As the channel is symmetric and the input symbols are equally distributed, the output symbols are also equally
distributed (Pr{Y0} = Pr{Y1} = 0.5).

The channel capacity is calculated according to eq. (2.21) as

C =
�

ν

�

µ

Pr{Yµ|Xν} · Pr{Xν} · ld
Pr{Yµ|Xν}

Pr{Yµ}
.

The transition probabilities Pr{Yµ|Xν} for the BSC are:

Pr{Yµ|Xν} =

�
1− Pe y = x

Pe y �= x

So the channel capacity of the BSC is:

CBSC =
�

ν

�

µ

Pr{Yµ|Xν} · Pr{Xν} · ld
Pr{Yµ|Xν}

Pr{Yµ}

= Pr{Y0|X0} · Pr{X0} · ld
Pr{Y0|X0}

Pr{Y0}
+ Pr{Y1|X0} · Pr{X0} · ld

Pr{Y1|X0}
Pr{Y1}

+Pr{Y0|X1} · Pr{X1} · ld
Pr{Y0|X1}

Pr{Y0}
+ Pr{Y1|X1} · Pr{X1} · ld

Pr{Y1|X1}
Pr{Y1}

= (1− Pe) · 0.5 · ld
1− Pe

0.5
+ Pe · 0.5 · ld

Pe

0.5
+ Pe · 0.5 · ld

Pe

0.5
+ (1− Pe) · 0.5 · ld

1− Pe

0.5

= ld
1− Pe

0.5
· (0.5− 0.5 · Pe + 0.5− 0.5 · Pe) + ld

Pe

0.5
· (0.5 · Pe + 0.5 · Pe)

= ld [2 (1− Pe)] · (1− Pe) + ld (2Pe) · Pe

= [ld 2 + ld (1− Pe)] · (1− Pe) + [ld 2 + ldPe] · Pe

= [1 + ld (1− Pe)] · (1− Pe) + [1 + ldPe] · Pe

= 1− Pe + (1− Pe) ld (1− Pe) + Pe + Pe ldPe

= 1 + (1− Pe) · ld (1− Pe) + Pe · ldPe

You get the same result with the help of eq. (2.14):

CBSC = H(X) +H(Y )−H(X,Y )

= −
1�

ν=0

Pr{Xν} · ld Pr{Xν}−
1�

µ=0

Pr{Yµ} · ld Pr{Yµ}+
1�

ν=0

1�

µ=0

Pr{Xν , Yµ} · ld Pr{Xν , Yµ}

= 1 + (1− Pe) · ld (1− Pe) + Pe · ldPe . (7)

For the extreme cases of Pe = 0 and Pe = 1 the channel capacity achieves the value of 1 bit/s/Hz, consequently
an error-free transmission is possible without any channel coding. On the other hand, C = 0 for Pe = 0.5, i.e., no
reliable transmission is possible as the output symbols occur quite randomly.

Item b)
It applies:

I(X;Y ) =
�

ν

�

µ

Pr{Yµ|Xν} · Pr{Xν} · ld
Pr{Yµ|Xν}

Pr{Yµ}

Because it is an asymmetric channel the occurrence probability of the receiving symbols has to be determined.
With

Pr{Yµ} =

1�

ν=0

Pr{Xν , Yµ} =

1�

ν=0

Pr{Yµ|Xν} · Pr{Xν}
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Fig. 8: Channel capacity of the BSC for equiprobable input symbols in dependence on the error probability Pe

Pr{Y0} and Pr{Y1} are given by:

Pr{Y0} = Pr{Y0|X0} · Pr{X0}+ Pr{Y0|X1} · Pr{X1} = (1− Pe,0) · Pr{X0}+ Pe,1 · Pr{X1}
Pr{Y1} = Pr{Y1|X0} · Pr{X0}+ Pr{Y1|X1} · Pr{X1} = Pe,0 · Pr{X0}+ (1− Pe,1) · Pr{X1} .

Accordingly, we can write in matrix notation:
�

Pr{Y0}
Pr{Y1}

�
=

�
Pr{Y0|X0} Pr{Y0|X1}
Pr{Y1|X0} Pr{Y1|X1}

�
·
�

Pr{X0}
Pr{X1}

�

=

�
1− Pe,0 Pe,1

Pe,0 1− Pe,1

�
·
�

Pr{X0}
Pr{X1}

�

Figure 9 shows the (input-output)mutual information of a symmetric channel Pe,0 = Pe,1 for several error prob-
abilities in dependence on the occurrence probability Pr{X0}. The mutual information decreases with increasing
error probability Pe.
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Fig. 9: Mutual information of the binary symmetric channel (Pe,0 = Pe,1 = Pe) for several Pe in dependence on the
occurrence probability Pr{X0}

Figure 10a shows the (input-output)mutual information of a binary channel for a varying error probability Pe,0 and
a fixed error probability Pe,1 = 0.1 in dependence on the occurrence probability Pr{X0}. The mutual information
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again decreases with increasing error probability Pe but now is not symmetric anymore w.r.t. Pr{X0}. This effect
becomes more clear in figure 10b with Pe,1 = 0.3.
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Fig. 10: Mutual information of the binary channel for several Pe,0 in dependence on the occurrence probability Pr{X0} for a)
Pe,1 = 0.1 and b) Pe,1 = 0.3

Item c)
Figure 11 shows the (input-output)mutual information of the binary symmetric channel for several input statistics
Pr{X0} in dependence on the error probability Pe (cmp. fig. 2.3).
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Fig. 11: Mutual information of the binary symmetric channel for several occurrence probabilities Pr{X0} in dependence on
the error probability Pe



2 SURVEY OF INFORMATION THEORY April 4, 2019 11

Solution of exercise 2.4 Channel capacity of the AWGNC

According to eq. (2.26)
C = sup

px(ξ)

[H(Y )−H(Y |X)]

the channel capacity is determined as the difference of the differential entropies. By using the output distribution

py(ϑ) =
1�
2πσ2

y

· e−
ϑ2

2σ2
y

the differential entropy H(Y ) becomes

H(Y ) = −
� ∞

−∞
py(ϑ) · ldpy(ϑ) dϑ

= −
� ∞

−∞

1�
2πσ2

y

· e−
ϑ2

2σ2
y · ld


 1�

2πσ2
y

· e−
ϑ2

2σ2
y


 dϑ . (8)

With application of the relation ld(x) = ld(e) · ln(x) the term ld(·) in (8) can be simplified:

ld


 1�

2πσ2
y

· e−
ϑ2

2σ2
y


 = ld


 1�

2πσ2
y


+ ld

�
e
− ϑ2

2σ2
y

�

= ld


 1�

2πσ2
y


+ lde · ln

�
e
− ϑ2

2σ2
y

�

= ld


 1�

2πσ2
y


+ lde ·

�
− ϑ2

2σ2
y

�

and for the differential entropy follows:

H(Y ) = −
� ∞

−∞

1�
2πσ2

y

· e−
ϑ2

2σ2
y ·


ld


 1�

2πσ2
y


+ lde ·

�
− ϑ2

2σ2
y

�
 dϑ

= −ld


 1�

2πσ2
y


 ·
� ∞

−∞

1�
2πσ2

y

· e−
ϑ2

2σ2
y dϑ

� �� �� ∞
−∞ py(ϑ) dϑ=1

−lde ·
�
− 1

2σ2
y

�
·
� ∞

−∞

ϑ2

�
2πσ2

y

· e−
ϑ2

2σ2
y dϑ

� �� �� ∞
−∞ ϑ2·py(ϑ) dϑ=σ2

y

= −ld


 1�

2πσ2
y


+ lde · 1

2σ2
y

· σ2
y =

1

2
ld
�
2πσ2

y

�
+

1

2
lde

=
1

2
ld
�
2πeσ2

y

�
.

For the irrelevance H(Y |X) follows analogously:

H(Y |X) = H(N) =
1

2
ld
�
2πeσ2

n

�
,
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such that the channel capacity results as the difference of the output entropy and the irrelevance to

C = H(Y )−H(Y |X) =
1

2
ld
�
2πeσ2

y

�
− 1

2
ld
�
2πeσ2

n

�

=
1

2
ld

�
σ2
y

σ2
n

�
=

1

2
ld

�
Es +N0/2

N0/2

�

=
1

2
ld

�
1 + 2

Es

N0

�
.
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3 Linear Block Codes

3.1 Finite Field Algebra

Solution of exercise 3.1 Polynomials in the GF(2)

Item a)
The communications system toolbox from MATLAB offers for this exercise the function gfprimck(a) with its
output carrying the possible values:

gfprimck(a) =





+1 p(D) is a primitive polynomial
0 p(D) is irreducible, but not primitive
−1 p(D) is neither irreducible nor primitive

In our example it yields the value −1, therefore p(D) is neither primitive nor irreducible.

Item b)
As p(D) is not irreducible, there must be polynomials pi(D) of degree less than m = 6, that divide p(D) without
rest in the GF(2). As neither ’0’ nor ’1’ are zeros, we check p(D) with the polynomial p1(D) = 1+D+D2. We
get the following result:

(D6 +D5 +D4 +D3 + 1) : (D2 +D + 1) = D4 +D + 1

Item c)
The primitive polynomials of a Galois field GF(p) can be determined in MATLAB with the command gfprimfd.
(gfprimdf only yields the default primitive polynomials). We get the polynomials

1 +D +D6 1 +D5 +D6

1 +D +D3 +D4 +D6 1 +D +D2 +D5 +D6

1 +D2 +D3 +D5 +D6 1 +D +D4 +D5 +D6

Item d)
The irreducible but not primitive polynomials can be found by the inquiry gfprimck = 0.

1 +D3 +D6

1 +D +D2 +D4 +D6

1 +D2 +D4 +D5 +D6

Solution of exercise 3.2 Fields

Item a)
Following, the connection tables for q = 2, 3, 4, 5, 6 are given.

q = 2 :
+ | 0 1

0 | 0 1

1 | 1 0

· | 0 1

0 | 0 0

1 | 0 1

q = 3 :
+ | 0 1 2

0 | 0 1 2

1 | 1 2 0

2 | 2 0 1

· | 0 1 2

0 | 0 0 0

1 | 0 1 2

2 | 0 2 1
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q = 4 :
+ | 0 1 2 3

0 | 0 1 2 3

1 | 1 2 3 0

2 | 2 3 0 1

3 | 3 0 1 2

· | 0 1 2 3

0 | 0 0 0 0

1 | 0 1 2 3

2 | 0 2 0 2

3 | 0 3 2 1

q = 5 :

+ | 0 1 2 3 4

0 | 0 1 2 3 4

1 | 1 2 3 4 0

2 | 2 3 4 0 1

3 | 3 4 0 1 2

4 | 4 0 1 2 3

· | 0 1 2 3 4

0 | 0 0 0 0 0

1 | 0 1 2 3 4

2 | 0 2 4 1 3

3 | 0 3 1 4 2

4 | 0 4 3 2 1

q = 6 :

+ | 0 1 2 3 4 5

0 | 0 1 2 3 4 5

1 | 1 2 3 4 5 0

2 | 2 3 4 5 0 1

3 | 3 4 5 0 1 2

4 | 4 5 0 1 2 3

5 | 5 0 1 2 3 4

· | 0 1 2 3 4 5

0 | 0 0 0 0 0 0

1 | 0 1 2 3 4 5

2 | 0 2 4 0 2 4

3 | 0 3 0 3 0 3

4 | 0 4 2 0 4 2

5 | 0 5 4 3 2 1

Item b)
For q = 4 and q = 6, the multiplicative inverse does not always exist. As explained in ch. 3.2.1, the Galois
fields GF(q) only exist for q = pm, where p is a prime number and m is a natural number. As q = 6 cannot
be represented as the power of a prime number, a Galois field to the basis q = 6 does not exist. For the basis
q = 4 = 22 does exist a Galois field, but it is not a prime field. In ch. 3.2.2, the definition of the Galois fields was
therefore completed to the so-called extension fields.

Item c)
For q = 3, the primitive element is 2. As for q = 5, both 2 and 3 are primitive elements:

20 1

21 2

22 4

23 3

24 1

30 1

31 3

32 4

33 2

34 1

The element 4 is not primitive because 40 = 1, 41 = 4, 42 = 1 mod 5.

Solution of exercise 3.3 Extension of a non-binary field, GF(32)

p(D) = D2 +D + 2

p(α) = 0

α2 = 2α+ 1
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α−∞ 0

α0 1

α1 α

α2 2α+ 1

α3 2α2 + α = 4α+ 2 + α = 2α+ 2

α4 2α2 + 2α = 4α+ 2 + 2α = 2

α5 2α

α6 2α2 = 4α+ 2 = α+ 2

α7 α2 + 2α = 2α+ 1 + 2α = α+ 1

α8 α2 + α = 2α+ 1 + α = 1

Solution of exercise 3.4 Extension of a binary field, GF(24)

p(D) = D4 +D + 1

p(α) = 0 → α4 = α+ 1

α−∞ 0

α0 1

α1 α

α2 α2

α3 α3

α4 α+ 1

α5 α2 + α

α6 α3 + α2

α7 α4 + α3 = α3 + α+ 1

α8 α4 + α2 + α = α+ 1 + α2 + α = α2 + 1

α9 α3 + α

α10 α4 + α2 = α+ 1 + α2 = α2 + α+ 1

α11 α3 + α2 + α

α12 α4 + α3 + α2 = α3 + α2 + α+ 1

α13 α4 + α3 + α2 + α = α+ 1 + α3 + α2 + α = α3 + α2 + 1

α14 α4 + α3 + α = α+ 1 + α3 + α = α3 + 1

α15 α4 + α = α+ 1 + α = 1

Item a)

p1(D) = (D − α)(D − α2)(D − α4)(D − α8)

= (D2 − α5D + α3)(D2 − α5D + α12) because α5 = α+ α2, α4 + α8 = α5

= D4 − α5D3 + α12D2

− α5D3 + α10D2 − α2D

+ α3D2 − α8D + α15

= D4 − (α5 + α5)� �� �
0

D3 + (α12 + α10 + α3)� �� �
0

D2 − (α2 + α8)� �� �
1

D + α15
����

1

= D4 −D + 1 = D4 +D + 1
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Item b)

p2(D) = (D − α)(D − α2)(D − α3)(D − α4)

= (D2 − α5D + α3)(D2 − α7D + α7) because α5 = α+ α2, α3 + α4 = α7

= D4 − α7D3 + α7D2

− α5D3 + α12D2 − α12D

+ α3D2 − α10D + α10

= D4 − (α7 + α5)D3 + (α12 + α7 + α3)D2 − (α12 + α10)D + α10

= D4 − α13D3 + α6D2 − α3D + α10 = D4 + α13D3 + α6D2 + α3D + α10

Item c)

p1(D) has its coefficients in GF(2) and not in GF(24).

Solution of exercise 3.5 2-out-of-5-code

Item a)
The field of code words consists of exactly

�
5
2

�
=10 elements. They are listed in the following table.

index code words index code words
1 1 1 0 0 0 6 0 1 0 1 0
2 1 0 1 0 0 7 0 1 0 0 1
3 1 0 0 1 0 8 0 0 1 1 0
4 1 0 0 0 1 9 0 0 1 0 1
5 0 1 1 0 0 10 0 0 0 1 1

The code is not linear because for example the modulo 2 addition of the code words (1 1 0 0 0) and (0 0 0 1 1)
results in the word (1 1 0 1 1) which is not an element of the field of code words. Hence, the property of being
closed is violated.

Item b)
Because of the non-linearity of the code, the all-zero word cannot be used as reference for determination of the
distance properties (in this case it isn’t an element of the field of code words anyway). Rather the distances of
all pairs of code words have to be determined. The solution of this exercise can quickly be finished by a small
MATLAB routine. We get the following table.

index 1 2 3 4 5 6 7 8 9 10
1 0 2 2 2 2 2 2 4 4 4
2 2 0 2 2 2 4 4 2 2 4
3 2 2 0 2 4 2 4 2 4 2
4 2 2 2 0 4 4 2 4 2 2
5 2 2 4 4 0 2 2 2 2 4
6 2 4 2 4 2 0 2 2 4 2
7 2 4 4 2 2 2 0 4 2 2
8 4 2 2 4 2 2 4 0 2 2
9 4 2 4 2 2 4 2 2 0 2

10 4 4 2 2 4 2 2 2 2 0

You can see that each code word c has 6 neighbors with the distance 2 and 3 neighbors with the distance 4. Because
of this regular structure, it is possible to determine the error probabilities without great expense in the following
items.
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Item c)
The probability of the occurrence of an undetectable error can be calculated with eq. (3.14). With the assumption
that all code words are equally probable and because of the identical distance properties for all code words it is
sufficient to calculate Pue for any code word. The probability is

Pue = 6 · P 2
e · (1− Pe)

3 + 3 · P 4
e · (1− Pe)

and is shown in figure 12 in dependence on Pe (double logarithmic representation).

Pe →

10
−6

10
−4

10
−2

10
0

P
u
e
→

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Pue

Pe

Fig. 12: Undetectable error probability for the 2-out-of-5-code at the BSC

3.2 Distance Properties of Block Codes

Solution of exercise 3.6 Error correction

Item a)
The maximum number of correctable errors is determined with eq. (3.3) to:

t =

�
dmin − 1

2

�
=

�
8− 1

2

�
= 3 .

With eq. (3.4) results for the number of detectable errors at pure error detection:

t� = dmin − 1 = 8− 1 = 7 .

Item b)
At simultaneous correction of t errors and detection of t� > t errors, eq. (3.5) must be fulfilled. With t = 2 and
t� = 5 follows for the minimum distance:

dmin ≥ t+ t� + 1 = 2 + 5 + 1 = 8 .

Accordingly results the field of code words shown in figure 13 with a Hamming distance dmin = 8.

Item c)
At the transmission, the following cases for the change of a code word according to figure 14 have to be distin-
guished.
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Fig. 13: Field of code words for dmin = 8

• 1. Error-free transmission

• 2. Correctable error pattern ⇒ right correction

• 3. As false detectable error pattern (invalid word)

• 4. Correctable error pattern ⇒ false correction

• 5. Received word = other code word ⇒ neither error detection nor error correction

xxx
1

2

3

4

5

Fig. 14: Field of code words for dmin = 8

Solution of exercise 3.7 Sphere-Packing bound (Hamming bound)

Item a)
For a (n, 2)2-block code, the information word u of length k = 2 is mapped onto a code word x of length n, where
each digit can carry q = 2 different values. With eq. (3.3) follows for the maximum number of correctable errors
with dmin = 5:

t =

�
dmin − 1

2

�
=

�
5− 1

2

�
= 2 .

For a (n, k, dmin)q-code that shall correct t errors, the sphere-packing bound is fulfilled with eq. (3.7):

qn−k ≥
t�

r=0

�
n

r

�
· (q − 1)r .

To determine the minimum block length n, the code parameters k = 2, t = 2, q = 2 are set in the sphere-packing
bound and then follows

2n−2 ≥
2�

r=0

�
n

r

�
· (2− 1)r

≥
�
n

0

�
+

�
n

1

�
+

�
n

2

�

≥ 1 + n+

�
n

2

�



3 LINEAR BLOCK CODES April 4, 2019 19

For n = 6 results:

26−2
?
≥ 1 + 6 +

�
6

2

�

16 �≥ 1 + 6 + 15 = 22 ,

so the sphere-packing bound is not fulfilled. For n = 7 results

27−2
?
≥ 1 + 7 +

�
7

2

�

32 > 1 + 7 + 21 = 29 ,

so the sphere-packing bound is fulfilled. The minimum block length therefore is n = 7.

Item b)
The solution follows analogously to item a). The maximum number of correctable errors with dmin = 5 is
determined with eq. (3.3):

t =

�
dmin − 1

2

�
=

�
5− 1

2

�
= 2 .

The existence of the code is then checked with the help of the sphere-packing bound eq. (3.7) with n = 15, k = 7,
t = 2 and q = 2:

qn−k
?
≥

t�

r=0

�
n

r

�
· (q − 1)r (9)

215−7
?
≥

2�

r=0

�
15

r

�
· (2− 1)r (10)

28
?
≥

�
15

0

�
+

�
15

1

�
+

�
15

2

�
(11)

256 > 1 + 15 + 105 = 121 . (12)

Thus, the Hamming bound is fulfilled and therefore a (15, 7, 5)2-code may exist.

• Left side: qn−k different possible syndromes

• Right side: Number of error patterns with maximum weight t

Statement: To be able to correct up to t errors, it must be possible to assign each error pattern to a unique syndrome.
qk times the difference of both sides results in the number of words in the vector field of dimension n that do not
lie in any of the correction spheres (around all code words).

Item c)
To check the existence possibility of a (15, 7, 7)2-code, first the maximum number of correctable errors is deter-
mined as

t =

�
dmin − 1

2

�
=

�
7− 1

2

�
= 3

and then the validity of the sphere-packing bound is checked:

qn−k
?
≥

t�

r=0

�
n

r

�
· (q − 1)r (13)

215−7
?
≥

3�

r=0

�
15

r

�
· (2− 1)r (14)

28
?
≥

�
15

0

�
+

�
15

1

�
+

�
15

2

�
+

�
15

3

�
(15)

256 �≥ 1 + 15 + 105 + 455 = 576 . (16)
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As the sphere-packing bound is not fulfilled, this code cannot exist!

Item d)
To check the existence possibility of a (23, 12, 7)2-code, first the number of correctable errors is determined

t =

�
dmin − 1

2

�
=

�
7− 1

2

�
= 3

and then the validity of the sphere-packing bound is checked:

qn−k
?
≥

t�

r=0

�
n

r

�
· (q − 1)r (17)

223−12
?
≥

3�

r=0

�
23

r

�
· (2− 1)r (18)

211
?
≥

�
23

0

�
+

�
23

1

�
+

�
23

2

�
+

�
23

3

�
(19)

2048 = 1 + 23 + 253 + 1771 = 2048 . (20)

As the sphere-packing bound is fulfilled such a code may exist and if so, it will be a perfect code! (Special code:
(23, 12, 7)2-Golay code)

Item e)
An input alphabet with 16 equiprobable different symbols corresponds to an input word u of length k = 4.

qn−k
?
≥

t�

r=0

�
n

r

�
· (q − 1)r (21)

2n−4
?
≥

4�

r=0

�
n

r

�
· (2− 1)r (22)

2n−4
?
≥

�
n

0

�
+

�
n

1

�
+

�
n

2

�
+

�
n

3

�
+

�
n

4

�
(23)

(24)

For n = 14 results:

214−4
?
≥

�
14

0

�
+

�
14

1

�
+

�
14

2

�
+

�
14

3

�
+

�
14

4

�

210
?
≥ 1 + 14 + 91 + 364 + 1001

1024 �≥ 1471 ,

so the sphere-packing bound is not fulfilled. For n = 15 results

215−4
?
≥

�
15

0

�
+

�
15

1

�
+

�
15

2

�
+

�
15

3

�
+

�
15

4

�

211
?
≥ 1 + 15 + 105 + 455 + 1365

2048 > 1941 ,

so the sphere-packing bound is fulfilled. The minimum possible block length therefore is n = 15 and for the code
rate Rc follows:

Rc =
k

n
≤ 4

15
= 0.2667 .
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3.3 Matrix Description of Block Codes

Solution of exercise 3.8 Generator and parity check matrices

Item a)
Generator and parity check matrices of the (4,1,dmin = 4)-repetition code in systematic form: (see ch. 3.5.7)

G = (1 | 1 1 1) H =




1 1 0 0

1 0 1 0

1 0 0 1


 .

For the dual code, the parity check matrix is now used as the generator matrix. The consideration of H shows, that
a simple (4,3,dmin = 2)-SPC code results, that puts a test sum in front of the three information bits. Furthermore,
the product G ·HT = 0 illustrates the orthogonality of both codes.

Item b)
The parity check matrix of a Hamming code of rank r = 3 can easily be produced by assigning the dual numbers
from 1 to 7 in columns

H =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1


 .

The generator matrix cannot be directly produced with eq. (3.31) from this non-systematic form. In order to
achieve the generator matrix we construct an equivalent systematic code Hsys by exchanging the columns of H
and calculate the corresponding systematic generator matrix Gsys

Hsys =




1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1


 =⇒ Gsys =




1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


 .

To finally get the generator matrix G that fits to H, the exchange of columns has to be undone. The generator
matrix of the original code then has the form

G =




1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1


 .

Item c)
The consideration of H shows, that there exist no two linearly dependent (identical) columns. Nevertheless, there
are combinations of three columns that are linearly dependent (for instance the first three columns). This is exactly
the minimum distance of the code. The general connection is, that the minimum distance of the code is identical to
the minimum number of linearly dependent columns of its parity check matrix. Thus, every selection of dmin − 1
columns is linearly independent and there exists at least one selection of dmin linearly dependent columns.

Solution of exercise 3.9 Expansion, shortening and puncturing

Item a)
An additional test bit c7 implies for the parity check matrix Hsys of the original code, that the number of columns
(length of the code words) and rows (number of test bits) is increased for both by one. If the expanded code shall
have the minimum distance dmin = 4, its parity check matrix HE must contain according to exercise 3.8c at
least 4 linearly dependent columns. The easiest expansion consists of first adding a column of zeros, whereby the
decoding of the original code is not affected. Then, a row of ones is added, that forms an additional parity-check-
sum over all n = 7 bits of the original code. Therefore, each code word of the expanded code has an even weight,
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i.e., the odd minimum distance dmin = 3 is increased to dmin,E = 4. The new parity check matrix is

HE =

�
Hsys 0

1 1

�
=




1 1 0 1 1 0 0 0

1 0 1 1 0 1 0 0

0 1 1 1 0 0 1 0

1 1 1 1 1 1 1 1


 .

We get the corresponding generator matrix GE by adding an additional column g+ for the added test bit c7. As
c7 = u · g+ represents the test sum of all ci with 0 ≤ i < 7, the condition for g+ is

c7 = u · g+ !
=

6�

i=0

ci mod 2 = u ·Gsys ·




1
...
1


 =⇒ g+ = Gsys ·




1
...
1


 .

The column g+ can thus be calculated from the modulo 2 sum of all columns of Gsys. The generator matrix of
the expanded code has the form

GE = (Gsys | g+) =




1 0 0 0 1 1 0 1

0 1 0 0 1 0 1 1

0 0 1 0 0 1 1 1

0 0 0 1 1 1 1 0


 .

Item b)
The bisection of the field of code words is reached by cancellation of one information bit, which results in a half
rate (6,3)-code. Using the systematic coder from exercise 3.8, each of the four information bits of the original code
can be canceled. In each case the minimum distance remains the same, i.e., dmin,S = 3. The generator matrix
results by canceling the ith row and column of Gsys, 1 ≤ i ≤ k, at the parity check matrix accordingly the ith
column of Hsys. Both matrices for the example of i = 4 are:

GS =




1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


 , HS =




1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1


 .

Item c)
The punctured generator matrix is achieved by canceling the ith column (k + 1 ≤ i ≤ n) of Gsys, at the parity
check matrix accordingly the (i − k)th row and the ith column. The minimum distance is then dmin,P = 2. The
difference to item b) is in the fact, that still 16 code words exist.

GP =




1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1


 , HP =

�
1 1 0 1 1 0

1 0 1 1 0 1

�
.

Solution of exercise 3.10 Coset decomposition and syndrome decoding

Item a)
The (7,4,3)-Hamming code has n − k = 3 test bits, so the overall 2n−k = 8 syndromes (included s = 0) can
be formed. Furthermore, a single error can always be corrected due to dmin = 3. Because of the word length of
n = 7 there are exactly 7 different single error patterns. Thus, the number of non-zero syndromes corresponds to
the number of correctable error patterns and therefore the Hamming code is a perfect code.

Item b)
For the Hamming code, the columns of H represent all non-zero syndromes s �= 0. Because of t = 1, the
error words e with the Hamming weight wH(e) = 1 form the coset leaders. Now, only the assignment has to be
determined. The following table results:
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syndrome sµ coset leader eµ
1 1 0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0 0 0

1 1 1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

Hint: Let eµ denote the µth row of the n × n identity matrix, i.e. eµ contains a one at the µth position and zeros
elsewhere. Then s = eµ ·HT corresponds to the µth row of HT .

Item c)
The syndrome for the received word is

s = y ·HT = (1 0 1) .

So, there is an error. The coset leader belonging to the syndrome can be found in the second row of the table from
item b). The correction can be realized by adding y and e2 = (0 1 0 0 0 0 0).

ĉ = y + e2 = (1 0 0 1 0 0 1)

The estimated information word thus is û = (1 0 0 1).

Item d)
To be able to use the syndrome s directly for addressing the coset leader, the position of the one within the coset
leader has to correspond to the decimal representation of s (See hint for item a)). The parity check matrix is

H̃ =




0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


 .

Solution of exercise 3.11 Coding program

The (7, 4, 3)-Hamming code maps k = 4 information symbols onto n = 7 code symbols. Within the MATLAB
program, k information symbols are randomly chosen using randi and encoded by the generator matrix. A
randomly determined error vector is added and the syndrome is calculated. If the syndrome is non-zero, the
corresponding coset leader is added to the received word. Please notice: all calculations have to be executed within
GF(2).

3.4 Cyclic codes

Solution of exercise 3.12 Polynomial multiplication

Item a)
Multiplication of f(D) and g(D):

(D3 +D + 1) · (D + 1) = D4 +D2 +D +D3 +D + 1

= D4 +D3 +D2 + 1
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Item b)

T

g
0

g
1

f
3

f
2

f
1

f
0

Fig. 15: Block diagram of a non-recursive system for the sequential multiplication of two polynomials

Item c)
With in −→ memory+ and out = in ⊕ memory, the corresponding function table is achieved.

clock in memory out
0 0 0 0
1 1 0 1
2 0 1 1
3 1 0 1
4 1 1 0
5 0 1 1

The output (1, 1, 1, 0, 1) corresponds to the solution D4 +D3 +D2 + 1 achieved in item a).

Solution of exercise 3.13 Polynomial division

Item a)
Division of f(D) by g(D).

D3 +D +1 : D2 +D + 1 = D + 1

D3 +D2 +D

D2 +1

D2 +D +1

D

⇒ remainder Rg(D)[f(D)] = D

Item b)

g
1

r
0

g
0

r
1f

3

f
2

f
1

f
0

A B

Fig. 16: Block diagram of a recursive system for the sequential division of two polynomials
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Item c)
By defining A = Out ⊕ In −→ r+0 and B = Out ⊕ r0 −→ r+1 , the function table is easily generated.

clock In A r0 B r1 Out
0 0 0 0 0 0 0
1 1 1 0 0 0 0
2 0 0 1 1 0 0
3 1 0 0 1 1 1
4 1 0 0 1 1 1
5 0 - 0 - 1 1

Solution of exercise 3.14 Generator polynomial

Item a)
If g(D) shall be a generator polynomial, Rg(D)[D

n−1] = 0 has to be fulfilled according to ch. 3.6.2. With n = 15
and g(D) = D8 +D7 +D6 +D4 + 1 follows

(D15 − 1) : (D8 +D7 +D6 +D4 + 1)� �� �
g(D)

= D7 +D6 +D4 + 1� �� �
h(D)

⇒ rest = 0 ,

so the required condition is fulfilled.

Item b)
With eq. (3.56) the code word c can be divided into two parts at systematic coding:

c(D) = p(D) +Dn−k · u(D)

with the parity check polynomial
p(D) = Rg(D)[−Dn−k · u(D)] .

With the code parameters n = 15, k = 7, n−k = 8 follows Dn−k ·u(D) = D8 ·(D4+D+1) = D12+D9+D8.
Therefore results for the parity check polynomial

(D12 +D9 +D8) : (D8 +D7 +D6 +D4 + 1) = D4 +D3 ⇒ rest = p(D) = D7 +D4 +D3

and for the code word

c(D) = Dn−k · u(D) + p(D)

= D12 +D9 +D8

� �� �
D8·u(D)

+D7 +D4 +D3

� �� �
p(D)

= 001 0011 1001 1000 .

Item c)
The required condition for y(D) = D14 +D5 +D+1 to be a valid code word is that it must be divisible by g(D)
i.e., s(D) = Rg(D)[y(D)] = 0.

(D14+D5+D+1) : (D8+D7+D6+D4+1) = D6+D5+D3 ⇒ rest = s(D) = D7+D6+D3+D+1

Thus s(D) �= 0 and therefore y(D) cannot be a valid code word.
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Solution of exercise 3.15 Syndrome

Item a)
For now, all coset leaders are collected in the matrix E

E =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




and different syndromes are collected in the matrix S

S =




1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




.

With eq. (3.35) is
S = E ·HT

Therefore the parity check matrix H can be determined by

HT = E−1 · S = E · S = S

so that

H =




1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

1 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1




= (PT
3,5|I5,5)

results. With the decomposition of the parity check matrix H = (−PT
k,n−k|In−k,n−k) with eq. (3.31) results for

the generator matrix with eq. (3.30)

G = (Ik,k|Pk,n−k) = (I3,3|P3,5)

=




1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1


 .

Item b)
From the parity check matrix H = (−PT

k,n−k|In−k,n−k) it is directly readable that the number of test digits
n− k = 5 and the number of information digits k = 3.

Item c)
In ch. 3.62 it is explained how to calculate the generator matrix from the generator polynomial g(D). The
connection is
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G =




g0 . . . gn−k 0 0

0 g0 . . . gn−k 0

0 0 g0 . . . gn−k


 .

From the first row (10010100) of the generator matrix found in item a) therefore results the generator polynomial
g(D) = 1 +D3 +D5.

Item d)
According to the number of information digits k = 3, 23 = 8 different code words can be generated.

Item e)
For the detection of transmission errors the syndrome corresponding to the receiving word y1 is determined:

s = y1 ·HT = (0 2 1 2 2)modulo 2 = (0 0 1 0 0) .

As the syndrome is not equal to zero, y1 is not a code word. By comparing with the syndrome table we find s = s6,
so for the corresponding error vector we conclude e6 = 00000100. According to eq. (3.38)

ĉ = y1 + e6

= (0 1 1 0 1 0 1 1) + (0 0 0 0 0 1 0 0)

= (0 1 1 0 1 1 1 1) .

Item f)
For the decoding of the receiving word y2 = (1 0 1 1 0 1 1 1) again the corresponding syndrome is determined:

s = y2 ·HT = (2 0 3 1 2)modulo 2 = (0 0 1 1 0) .

Thus y2 is not a code word. As the syndrome is not contained in the syndrome table, no error correction can
follow.

Solution of exercise 3.16 Primitive polynomials

A polynomial p(D) of degree m (with coefficients pi∈GF(p)) is called irreducible if it cannot be factorized into
polynomials of degree < m (with coefficients from GF(p)). Consequently it does not have any zeros in the GF(p).

An irreducible polynomial p(D) of degree m (with pi∈GF(p)) is called primitive polynomial if there exists an
α∈GF(pm) such that p(α) = 0 and the powers α1, · · · ,αn with n = pm − 1 form the non-zero elements of the
extension field GF(pm). α is called primitive element of GF(pm) and n is the order of α.

Polynomial p(D) = g1(D) = D4 +D + 1:

For primitive element α the auxiliary condition α4 = α+ 1 is valid with p(α) = α4 + α+ 1 = 0.
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α0 = = 1

α1 = = α

α2 = = α2

α3 = = α3

α4 = = α+ 1

α5 = α · α4 α · (z + 1) = α2 + α

α6 = α · α5 α · (z2 + z) = α3 + α2

α7 = α2 · α5 = α4 + α3 = α3 + α+ 1

α8 = α4 · α4 = (α+ 1) · (α+ 1) = α2 + 1

α9 = α · α8 = α · (α2 + 1) = α3 + α

α10 = α · α9 = α4 + α2 = α2 + α+ 1

α11 = α · α10 = α · (α2 + α+ 1) = α3 + α2 + α

α12 = α · α11 = α4 + α3 + α2 = α3 + α2 + α+ 1

α13 = α · α12 = α4 + α3 + α2 + α = α3 + α2 + 1

α14 = α · α13 = α4 + α3 + α = α3 + 1

α15 = α · α14 = α4 + α = 1

For polynomial g1(D) therefore results the order n1 = 15 = 24 − 1 and thus it is a primitive polynomial.

Polynomial p(D) = g2(D) = D4 +D3 +D2 +D + 1:

For primitive element α the auxiliary condition α4 = α3+α2+α+1 is valid with p(α) = α4+α3+α2+α+1 = 0.

α0 = = 1

α1 = = α

α2 = = α2

α3 = = α3

α4 = = α3 + α2 + α+ 1

α5 = α · α4 = α4 + α3 + α2 + α = 1

As α0 = α5 = 1, for the polynomial g2(D) follows the order n2 = 5 < 24 − 1 so it is not a primitive polynomial.

Solution of exercise 3.17 CRC codes

Item a)
A CRC code has the parameters n = 2r − 1 and k = 2r − r − 2. For n = 15 is accordingly r = 4 and hence
k = 10. Besides, the generator polynomial can be factorized to g(D) = p(D) · (1 + D), such that p(D) is a
primitive polynomial of degree 4 (g(D) is of degree n − k = 5). Considering the solution of previous task, the
primitive polynomial can be chosen as p(D) = 1+D+D4. Therefore the corresponding generator polynomial is

g(D) = 1 +D2 +D4 +D5 .

Item b)
MATLAB calculates the generator matrix G and the parity check matrix H from the generator polynomial g(D)
with the help of the command cyclgen.

H =




1 0 0 0 0 1 1 1 0 1 1 0 0 1 0

0 1 0 0 0 0 1 1 1 0 1 1 0 0 1

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

0 0 0 0 1 1 1 0 1 1 0 0 1 0 1



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G =




1 0 1 0 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 0 0 0 0 0 0 0 0 1




Item c)
If only burst errors are considered that do not contain any correct digits, all such error patterns are detectable as
the corresponding syndromes are always not equal to zero. To prove this, it suffices to show that there exists
no valid code word which consists of le successive ones (and zeros elsewhere). For le being odd, the proof is
straightforward, as the code word (polynomial) will not be divisible by D+1. For le being even, a direct approach
using gfdeconv shows that the corresponding remainder (division of 1+D+ ...+Dle−1 by g(D)) is non-zero.

Solution of exercise 3.18 Reed-Solomon codes

Item a)
For the extension field GF(23) shall be constructed a Reed-Solomon code that is able to correct t = 1 error. Hence
it results the code parameters n = 23 − 1 = 7 and n− k = 2t = 2 ⇒ k = 5 and d = n− k+ 1 = 3 from which
can be calculated the code rate Rc = 5/7 ≈ 0.714. Thus we get a (7,5,3)8-code with 85 = 32.768 code words.

Item b)
The command rsgenpoly(n,k) yields the generator polynomial g(D) of a (n, k)-RS-code. Applying n = 7
and k = 5, the vector [1 6 3] results. The entries are the decimal representation of the corresponding
coefficients of different powers of D in descending order. Hence, the corresponding generator polynomial follows
as: g(D) = D2 + (α2 + α)D + (α+ 1) in which α is the primitive element with respect to the default primitive
polynomial.

Item c)
The coding can follow with the help of the command rsenc. We get the code word

c = (110 010 111 000 001 010 010) .

As exactly one false symbol can be corrected with t = 1, the maximum correctable error length is m = 3 bits.
The superposition of a 3-bit error is only disturbing the transmission if two or three code symbols of the GF(8) are
affected. If only one symbol is altered the error can be corrected.

A binary code with the same correction ability would have to have a minimum distance of dmin = 7. Hereby
becomes clear, that RS codes are suitable for the correction of burst errors. If the three bits of error appear in
different symbols of the GF(8), they correspond to three single errors and are not correctable anymore.

Item d)
With the same extension field shall be constructed a t = 2-errors correcting code, from which directly results the
requirement for dmin = 5. The further parameters are k = 23 − dmin = 3 and Rc = 3/7 ≈ 0.429. The code thus
consists of (8)3 = 512 code words.

Applying n = 7 and k = 3 to the command rsgenpoly(n,k), the vector [1 3 1 2 3] results. The entries are
the decimal representation of the corresponding coefficients of different powers of D in descending order. Hence,
the corresponding generator polynomial follows as: g(D) = D4 + (α+ 1)D3 +D2 + αD + (α+ 1) in which α
is the primitive element with respect to the default primitive polynomial.
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Item e)
This task can be addressed using the command [decoded,cnumerr,ccode] = rsdec(code,n,k). Ap-
plying n = 7, k = 3 and the received word as gf([6 2 7 3 2 6 6],3), the transmitted message,
the number of errors and the corrected code word are achieved directly.

Solution of exercise 3.19 BCH codes

Item a)
The MATLAB command gfcosets yields the following cyclotomic cosets for the extension field GF(24):

K1 = {1, 2, 4, 8}, K3 = {3, 6, 12, 9}
K5 = {5, 10}, K7 = {7, 14, 13, 11} .

To fulfill the requirement of t = 3 correctable errors, a union set M must contain at least d−1 = 2t = 6 successive
elements. This aim is reached with

M1 = K1 ∪K3 ∪K5 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12}
and also

M2 = K3 ∪K5 ∪K7 = {3, 5, 6, 7, 9, 10, 11, 12, 13, 14} .

Thus we get a BCH code of the length n = 24 − 1 = 15 with the dimension k = n − |M| = 15 − 10 = 5. One
may note, that the BCH code with Rc = 1/3 requires smaller code rate for the correction of three errors compared
to the RS code (Rc = 5/7) from exercise 3.18. Nevertheless, it is able to correct single errors, while the RS code
can only correct three successive errors.

Item b)
With n = 15 and k = 5, MATLAB yields the generator polynomial g(D) as

g(D) = 1 +D +D2 +D4 +D5 +D8 +D10 .

Item c)
We get the code word

c(D) = D2 +D4 +D9 +D10 +D11 +D13 +D14

for the information word u(D) = 1 +D +D3 +D4. The roots of a polynomial can be quickly determined with
the command gfroots. They are

c(D) = 0 for D∈ {0 , α , α2, α3, α4, α5, α6, α8, α9, α10, α12} .

It can be seen, that c(D) has its roots at successive lower powers of α. The reason behind is the choice of the
cyclotomic cosets to generate the code, i.e., M1 is chosen.

Item d)
The function gf dft executes a transformation into the spectral domain. The output polynomial C(D) is rep-
resented in the exponential format, i.e., the coefficients represent powers of the primitive element α (the input
polynomial c(D) also has to have this format). We get

C = (1, 0, 0, 0, 0, 0, 0, α3, 0, 0, 0, α9, 0, α12, α6) .

The powers of α that form the roots of the code word c(D) correspond exactly to the positions, at which C has
coefficients equal to zero.
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4 Convolutional Codes

4.1 Fundamental Principles

Solution of exercise 4.1 Convolutional codes

x l1( )

u l( -2)u l( -1)
u l( )

x l2( )

x l3( )

Fig. 17: Shift register structure for the code of the rate Rc = 1/3

Item a)
For the input sequence u = (0 1 1 0 1 0) results the following output sequence:

c = (000 111 010 010 000 101) .

Thus it is not a systematic encoder.

Item b)
For the input sequence u = (0 1 1 0 1 0) results the path in the Trellis diagram shown in figure 18.

Fig. 18: Trellis diagram for the input sequence u = (0 1 1 0 1 0)

Item c)
The corresponding state diagram is given in figure 19.

Item d)
The free distance df gives the minimum Hamming distance between any two sequences. Because of the linearity
of convolutional codes, the comparison of sequences with the all-zero sequence is sufficient for determination of
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1�0

1�1

0�1

1/111

0/000

1/101

0/010

0/101

1/000

0/111

1/010

Fig. 19: State diagram for the code of the rate Rc = 1/3
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w d l=1, =8, =3
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w d l=2, =8, =4

l=5

w d l=2, =10, =5

0/111

0/000

1/000

0/101

Fig. 20: Free distance for the code of the rate Rc = 1/3

the Hamming distance. The figure 20 shows three sequences, that are different from the all-zero sequence, with
l = 3, l = 4 and l = 5, respectively.

The first sequence corresponds to the input sequence u = (1 0 0) (input weight w = 1) and to the output sequence
c = (111 101 111). By comparison with the all-zero sequence (u = (0 0 0) and c = (000 000 000)) results the
Hamming distance d = 8.

The second sequence corresponds to the input sequence u = (1 1 0 0) (input weight w = 2) and to the output
sequence c = (111 010 010 111), such that again the Hamming distance is d = 8.

The third sequence corresponds to the input sequence u = (1 0 1 0 0) (input weight w = 2) and to the output
sequence c = (111 101 000 101 111), such that the Hamming distance is d = 10.

The free distance therefore is df = 8.

4.2 Characterization of Convolutional Encoders

Solution of exercise 4.2 Catastrophic encoders

In figure 21 the shift register structure and the state diagram of the encoder is shown. As in the state diagram
exists a closed loop with the weight zero (closed loop in the state 11 has the weight zero), it is a catastrophic
encoder.
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u l( )
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g21=1 g22=0g20=1

g12=1

Fig. 21: Shift register structure and state diagram for catastrophic encoder

Further characteristic: as can be seen in figure 21, all adders have an even number of connections. Because of
these properties a finite number of transmission errors can lead to an infinite number of errors after decoding.

4.3 Optimal Decoding with Viterbi Algorithm

Solution of exercise 4.3 Viterbi decoding

Item a)
In figure 22 the Trellis diagram for the convolutional code is presented.

Fig. 22: Trellis diagram of the convolutional code with g1(D) = 1 +D +D2 and g2(D) = 1 +D2

For the terminated information sequence u(�) = (1 1 0 1( 0 0)) follows the code sequence x = (11 01 01 00 10 11).

Item b)
The decoding of the code sequence x = (11 01 01 00 10 11) is shown in figure 23. From the decoding follows the
transmitted data sequence u(�) = (1 1 0 1 (0 0)).

Figure 24 shows the decoding for the disturbed receiving sequence y1 = (11 11 01 01 10 11) and the estimated
data sequence u1 = (1 1 0 1 (0 0)) follows, such that the two transmission errors were corrected.

Figure 25 shows the decoding for the disturbed receiving sequence y2 = (11 11 10 01 10 11) and the estimated
data sequence u2 = (1 0 0 1 (0 0)) follows which doesn’t correspond to the transmitted data sequence.
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Fig. 23: Viterbi decoding of x
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Fig. 24: Viterbi decoding of y1 = (11 11 01 01 10 11)

Solution of exercise 4.4 Viterbi decoding with puncturing

Item a)
The puncturing matrix P

P =

�
1 1 1 0

1 0 0 1

�

consists of n = 2 rows and LP = 4 columns. Only 5 bits of the originally n · LP = 8 code bits are transmitted
after the puncturing, such that the code rate of the punctured code results

Rc,punc =
1

2
· 8
5
=

4

5
.

Item b)
Under consideration of the puncturing scheme follows from the receiving sequence y = (1 1 0 0 0 1 0 1) the
punctured receiving sequence y = (11 0x 0x x0 10 1x) (with placeholder x for the punctured bits).



4 CONVOLUTIONAL CODES April 4, 2019 35

Fig. 25: Viterbi decoding of y2 = (11 11 10 01 10 11)

The decoding is presented in figure 26 and it is correctly decided to u = (1 1 0 1 (0 0)).
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Fig. 26: Viterbi decoding with puncturing

Solution of exercise 4.5 RSC encoders

Item a)
Figure 27 shows a Trellis segment for the considered convolutional code. The dashed lines typify transitions for
an information bit u = 1, the solid lines for u = 0. The 2-bit-words at the right margin represent the code words
of the respective state transitions, where the upper code word is assigned to the upper path, that arrives at the
respective state.

Item b)
The input sequence of the information bits is given by u(�) = (1 1 0 1 1). Tail bits have to be added at the end
of the sequence to conduct the encoder to the zero state. As this is a recursive encoder, the tail bits cannot be
determined until the end of the input sequence u(�). We get the following scheme and therefore the tail bits are
(1 0 1).
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Fig. 27: Trellis segment for convolutional code with the generators g̃1(D) = 1 and g̃2(D) = (1+D+D3)/(1+D+D2+D3)

u(�) state successor state output
1 0 0 0 1 0 0 1 1
1 1 0 0 0 1 0 1 1
0 0 1 0 1 0 1 0 1
1 1 0 1 1 1 0 1 1
1 1 1 0 1 1 1 1 0
1 1 1 1 0 1 1 1 0
0 0 1 1 0 0 1 0 1
1 0 0 1 0 0 0 1 1

Solution of exercise 4.6 Simulation of a convolutional encoder and decoder

The curve of the simulated bit error rates is shown in figure 28.

Fig. 28: Simulation result for the bit error rates of the convolutional code (5, 7)8


