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Maik Röper and Armin Dekorsy
Department of Communications Engineering, University of Bremen, Bremen, Germany

Email: {roeper,dekorsy}@ant.uni-bremen.de

Abstract—Satellite communication systems are expected to
play an important role in the fifth generation mobile network
(5G) for global broadband coverage and service continuity.
Constellations with many cooperating small satellites offer great
advantages in terms of scalability and flexibility over traditional
satellite communication systems with few large satellites. Small
satellites means less power and low complexity per satellite while
delivering 5G services as enhanced Mobile Broadband (eMBB)
by exploiting the network of cooperating satellites. Thus, we
derive a Distributed Precoding (DiP) algorithm by solving an user
averaged Minimum Mean Square Error (MMSE) optimization
problem subject to individual satellite power constraints. To
come up with a robust precoder, the proposed design is based
on a contamination model taking channel estimation accuracy
into account. Simulation results show that the cooperation and
processing of the satellite swarm leads to an increase of the
Downlink (DL) sum rate.

I. INTRODUCTION

Satellite networks offer a promising and cost efficient solu-
tion to complement terrestrial networks due to reduced vulner-
ability to natural disasters and their capabilities of wide service
coverage [1], [2]. In the fifth generation mobile network (5G),
satellite networks are expected to play an important role to
enable enhanced Mobile Broadband (eMBB) service in un-
served areas, e.g., on board aircrafts or vessels, and to improve
the performance of terrestrial networks in underserved areas.
Furthermore, the possibility to provide global coverage with
satellite networks seems promising to increase the reliability
of massive Machine Type Communications (mMTC) by pro-
viding service continuity [3].

State-of-the-Art (SotA) precoding techniques for satellite
communication are mostly focusing on large satellites with
many antennas [4], [5]. However, due to the success of micro-
electronics and microsystems technology in recent years, there
has been a growing interest in small satellites and distributed
architectures for spacecraft systems, i.e., satellite swarms [6]
or fractionated spacecraft [7]. Such systems offer increased
flexibility and robustness against the failure of single satellites.
Additionally, these systems are easy to evolve and scale by
deploying additional satellites and replacing old ones without
disrupting the system [6]. Furthermore, the decreasing costs
for developing and launching small satellites into the Low
Earth Orbit (LEO) gives private companies the opportunity to
provide satellite services. Thus, small satellites have become a
core component of the so-called ”NewSpace” [8] and several

activities have been started to combine 5G and ”NewSpace”
to ”5G-NewSpace” [9]. The challenge in designing radio tech-
nologies implemented in small satellites are the strong power
and complexity limitations of small satellites [6]. Hence, we
propose a Distributed Precoding (DiP) algorithm where several
small satellites are transmitting the user data cooperatively
to compensate the limited transmit power of single satellites.
Moreover, the calculations to design the precoder are split over
the satellites resulting in low computational complexity per
satellite.

DiP under individual power constraints has already been
investigated for terrestrial networks. E.g., in [10], [11] dis-
tributed precoder designs are proposed for maximizing the sum
rate. Distributed algorithms for joint optimization of precoding
matrix and receive filter, i.e., transceiver optimization, based
on the Minimum Mean Square Error (MMSE) criterion under
individual transmit power constraints are shown in [12]–[16].

The main contribution of this paper is to provide a DiP
algorithm for satellite constellations consisting of small satel-
lites. The proposed DiP alogrotihm can be seen as an ex-
tension of [16] with increased robustness against channel
estimation errors. Following a similar approach as in [13]–
[15], the precoder design problem is formulated as a con-
strained MMSE optimization problem with per-satellite power
constraints (PSPC) and then a DiP algorithm for satellite
constellations is derived utilizing the Karush-Kuhn-Tucker
(KKT) conditions. Different to the algorithm in [15], the local
precoders in this paper are not updated in a sequential way but
in parallel in order to reduce the latency due to calculation.
To keep the computational complexity low, a large matrix
inversion is avoided at the cost of a higher communication
overhead between the satellites compared to [12], [13].

The rest of this paper is organized as follows. In the
following section, the system model is introduced and the
optimization problem is formulated. The DiP algorithm for
satellite constellations is presented in Section III and numer-
ically evaluated for a satellite constellation in the LEO in
Section IV. Finally, the paper is concluded in Section V.

II. PRELIMINARIES

A. System Model

We consider joint DL transmission of NS small satellites all
serving the same NU single antenna Non-Terrestrial Network
(NTN) terminals on earth assigned to the same time and
frequency slots, as depicted in Fig. 1. The NTN terminals978-1-7281-3627-1/19/$31.00 c© 2019 IEEE



are multiplexed based on their spatial distribution, i.e., space-
division multiple access (SDMA) is performed by linearly
precoding the data symbols. Furthermore, each satellite is
assumed to be equipped with Nt antennas. By employing
cooperation between the satellites, a total antenna array of
NTx = NtNS > NU antennas is created. The communication
between the satellites can be implemented via optical inter-
satellite links (ISLs), allowing reliable and high data rate
communication [17] and are assumed to be perfect.

The type of NTN terminals is not further specified here and
can be either some mobile devices, a Very Small Aperture
Terminal (VSAT) or a relay node forwarding the data towards
the User Equipments (UEs) [3], i.e., the satellites may serve
the UEs directly or indirectly by transmitting the data to
a relay node. The Doppler shift occurring due to the high
relative speed of the satellites compared to the NTN terminals
is assumed to be already compensated at the satellites.

The data symbols, intended for the NTN terminals, are
stacked into the multi-user vector s = [s1, ..., sNU ]

T ∈ ANU

with E
{
ssH

}
= I , where I is the identity matrix of appro-

priate dimension and A ⊆ C denotes the symbol alphabet.
The data vector s is linearly precoded with precoding matrix
Gj ∈ CNt×NU at each satellite j ∈ {1, ..., NS} to form the
transmitted signal

xj = Gjs ∈ CNt . (1)

The precoding matrices {Gj}NS
j=1 can be stacked to form the

global precoding matrix

G =
[
GT

1 , ...,G
T
NS

]T
= [g1, ...,gNU ] ∈ CNTx×NU (2)

with gu =
[
gT1,u, ...,g

T
NS,u

]T ∈ CNTx being the precoding
vector of all satellites intended for terminal u ∈ {1, ..., NU}.
Then, we can write the received signal yu at the NTN terminal
u as

yu = hHu gusu +
∑
v 6=u

hHu gvsv + nu = hHu Gs + nu (3)

where hu =
[
hT1,u, ...,h

T
NS,u

]T ∈ CNTx is the instantaneous
frequency-flat channel vector from all transmit antennas to
terminal u and nu ∼ CN (0, σ2

n) denotes independent and
identically distributed (i.i.d.) complex white Gaussian dis-
tributed noise. Each NTN terminal u re-scales the received
signal by βu > 1 only, due to the path loss affecting the signal
during the transmission. Thus, we can express the estimated
signal before hard decision ŝu ∈ C at the NTN terminal u to
be

ŝu = βu
(
hHu G + nu

)
. (4)

Furthermore, we can write the channel Hj from satellite j to
all NTN terminals as

Hj = [hj,1, ...,hj,NU ]
H
. (5)

Due to the long delay and the fast relative speed between the
satellites and the NTN terminals, accurate CSI at the satellites
is difficult to obtain. Therefore, we assume a contamination

Fig. 1. Satellite Network

model, where at each satellite j only an erroneous estimate Ĥj

of the channel matrix Hj is available. The estimated channel
Ĥj and the true channel Hj are related by

Ĥj = Hj + H̃j ∀j ∈ {1, ..., NS} (6)

where H̃j ∼ CN (0, NUσh̃I) is the i.i.d. additive channel
estimation error.

B. Problem Formulation

In this paper, we propose a DiP algorithm to minimize the
sum MSE over all terminals between the estimated symbols
{ŝu}NU

u=1 and the intended symbols {su}NU
u=1 under individual

power constraints. Thus, we can write the precoder design
problem as a constraint optimization problem

min
{Gj}

NS
j=1,{βu}

NU
u=1

NU∑
u=1

E
{
‖su − ŝu‖22

}
s.t. tr

{
GjG

H
j

}
≤ Pj ∀j ∈ {1, ..., NS}

(7)

where tr {·} denotes the trace operator and Pj is the maximum
allowed transmit power of satellite j. Note that the optimal
precoding matrices {Gj}NS

j=1 are depending on the re-scaling
factors {βu}NU

u=1 and vice versa. Therefore, we propose to
update the precoding matrices {Gj}NS

j=1 and re-scaling factors
{βu}NU

u=1 alternatingly as in [11]–[16].
Let B = diag (β1, ..., βNU) be the global re-scaling matrix

and

H = [H1, ...,HNS ] = [h1, ...,hNU ]
H ∈ CNU×NTx (8)

be the global channel matrix. The global estimated channel
matrix Ĥ and the erroneous channel vector ĥu for terminal
u are defined in the same way as (8). Using (4) and (8), we
can express the stacked estimated multi-user data vector ŝ =
[ŝ1, ..., ŝNU ] ∈ CNU to be

ŝ = B (HGs + n) (9)



with n = [n1, ..., nNU ]T . Then, we can rewrite the optimiza-
tion problem in a more compact way as

min
G,B

E
{
‖s− ŝ‖22

}
s.t. tr

{
GjG

H
j

}
≤ Pj ∀j ∈ {1, ..., NS} .

(10)

In order to solve the global optimization problem from a
per-satellite perspective, we rewrite the product of the channel
matrix H and the precoding matrix G as

HG =

NS∑
j=1

HjGj (11)

which directly follows from (2) and (8).

III. DISTRIBUTED PRECODING

A. Algorithm

The DiP algorithm proposed in this section is based on
the KKT conditions. Let λj ≥ 0 be the Lagrange multiplier
associated with the power constraint of the jth satellite, Λ =
diag (λ1, ..., λNS) ⊗ I and P = 1/Nt diag (P1, ..., PNS) ⊗ I,
where ⊗ denotes the Kronecker product. Then, the Lagrangian
of (10) can be stated as

L(G,B,Λ) = E
{
‖s− ŝ‖22

}
+ tr

{
Λ
(
GGH −P

)}
(12a)

=

NS∑
j=1

(
tr

{
E

{
NS∑
i=1

GH
i HH

i BHBHjGj

}}
− tr

{
E
{
GH
j HH

j BH + BHjGj

}}
+ λj

(
tr
{
GjG

H
j

}
− Pj

))
+ E

{
nHBHBn

}
+NU .

(12b)

By noting that B = BH , we can define Υ =
∑NU
u=1 β

2
u and

rewrite the expectation of the first term in (12b) to be

tr

{
E

{
NS∑
i=1

GH
i HH

i BHBHjGj

}}
=

tr

{
NS∑
i=1

GH
i ĤH

i BBĤjGj

}
+ Υσ2

h̃
tr
{
GjG

H
j

}
.

(13)

According to the KKT conditions [18], the first derivatives
of the Lagrangian have to vanish for the optimal precoding
matrices {G∗j}

NS
j=1, re-scaling factors {β∗u}

NU
u=1 and Lagrange

multipliers {λ∗j}
NS
j=1:

∇Gj
L (G∗,B∗,λ∗) = 0∀j ∈ {1, ..., NS} (14a)

∇βu
L (G∗,B∗,λ∗) = 0∀u ∈ {1, ..., NU} (14b)

Thus, necessary conditions for {G∗j}
NS
j=1 and {β∗u}

NU
u=1 to be

optimal solutions of (10) are given by

G∗j = T∗jĤ
H
j B∗

I−
∑
i6=j

B∗ĤiG
∗
i

 ∀j (15a)

β∗u =
Re
{

ĥHu g∗u

}
∥∥∥ĥHu G∗

∥∥∥2
2

+ σ2
h̃
‖G∗‖2F + σ2

n

∀u (15b)

with T∗j =
(
ĤH
j B∗B∗Ĥj + (Υ∗σ2

h̃
+ λ∗j )I

)−1
. Further KKT

conditions are for all j ∈ {1, ..., NS} [18]:∥∥G∗j∥∥2F − Pj ≤ 0 ∀j (16a)

λ∗j ≥ 0 ∀j (16b)

λ∗j

(∥∥G∗j∥∥2F − Pj) = 0∀j (16c)

Note that (15) and (16) do not represent an explicit solution.
According to (15a), the optimal precoding matrix G∗j of
satellite j depends on the Lagrange multiplier λ∗j , the matrices
{ĤiG

∗
i }i 6=j from the other satellites i 6= j and the re-scaling

matrix B, i.e.,

G∗j = f
(
{ĤiG

∗
i }i6=j , λ∗j ,B∗

)
. (17)

Therefore, we seek for an iterative procedure where at each
satellite j its precoding matrix Gj , the re-scaling factors
{βu}NU

u=1 and its Lagrange multiplier λj are updated in an
alternating fashion. Instead of directly updating the precoding
matrix Gj according to (15a), we introduce the relaxation
parameter 0 < ω ≤ 1 to ensure the convergence of the DiP
algorithm. The update of the precoding matrix at satellite j
and iteration k = 0, ...,K − 1 is thus given by

G
(k+1)
j =(1− ω)G

(k)
j + ωf

(
{ĤiG

(k)
i }i 6=j , λ

(k)
j ,B(k)

)
= G

(k)
j − ωT

(k)
j

(
ĤH
j B(k)B(k)

NS∑
i=1

ĤiG
(k)
i

+
(

Υ(k)σ2
h̃

+ λ
(k)
j

)
G

(k)
j − ĤH

j B(k)

)
.

(18)

The re-scaling factor β(k)
u for each NTN terminal u at iteration

k is determined by plugging the global precoding matrix G(k)

into (15b), i.e.,

β(k)
u =

Re
{

ĥHu g
(k)
u

}
∥∥∥ĥHu G(k)

∥∥∥2
2

+ σ2
h̃

∥∥G(k)
∥∥2
F

+ σ2
n

. (19)

Then, the Lagrange multiplier λ(k)j has to be chosen in order to
satisfy the KKT conditions (16). To the best of our knowledge,
there is no analytic solution for λ(k)j but it can be found
numerically. As we can see in (16), either λ(k)j has to be zero
or the power constraint (16a) has to be fulfilled with equality.
Therefore, a root-finding algorithm like Newton’s method or
the bisection method can be used in each iteration k to find
the λ(k)j which satisfies∥∥∥G(k+1)

j

(
λ
(k)
j

)∥∥∥2
F

= Pj . (20)

If no positive λ(k)j is found, that multiplier is set to zero.



The precoding matrix Gj of satellite j is initialized by the
local MMSE precoder without taking the precoding matrices
{Gi}i 6=j of the other satellites i 6= j into account and
assuming the same re-scaling factor for all NTN terminals
β = β

(0)
u = β

(0)
v ,∀u, v ∈ {1, ..., NU}, i.e.,

G′j =

(
ĤH
j Ĥj +NU

(
σ2
h̃

+
σ2
n

Pj

)
I

)−1
ĤH
j (21a)

β−1 =

√
Pj

tr
{
G′jG

′H
j

} (21b)

G
(0)
j = β−1G′j . (21c)

In Algorithm 1, the proposed robust DiP algorithm under
individual PSPC is summarized.

B. Computation and Inter-Satellite-Communication

In each iteration k, each satellite j needs the complete
matrix ĤG(k) in order to update its precoding matrix G

(k+1)
j

as well as the Lagrange multiplier λ(k)j and the re-scaling
matrix B(k). Therefore, we propose that in each iteration k

each satellite j transmits its matrix ĤjG
(k)
j ∈ CNU×NU via

ISLs to all other satellites i 6= j and receives the matrices
{ĤiG

(k)
i }i 6=j . Alternatively, only G

(k)
j ∈ CNt×NU can be

transmitted in order to reduce the communication overhead.
However, if only the precoding matrices are exchanged, each
satellite has to perform a larger matrix multiplication in each
iteration k to calculate ĤG(k), which significantly increases
the computational complexity for a large number of satellites
NS.

Note that ĥHu G(k) in (19) is a submatrix of ĤG(k) and the
total radiated power of the satellites can be well approximated
by ∥∥∥G(k)

∥∥∥2
F
≈

NS∑
j=1

Pj . (22)

Thus, the re-scaling matrix B(k) can be calculated locally at
each satellite without any further information exchange.

After the final precoding matrix G(K) is calculated, each
NTN terminal u has to estimate its re-scaling factor β̂u.
This can be done by an automatic gain control (AGC) or by
estimating the effective channel hHu G(K) with pilot signals.
At the terminals, it is less challenging to obtain accurate CSI
than at the satellites. Therefore we assume, that each NTN
terminal u has perfect knowledge about the effective channel
hHu G(K) and calculates its re-scaling factor β̂u by

β̂u =
Re
{

hHu g
(K)
u

}
∥∥hHu G(K)

∥∥2
F

+ σ2
n

. (23)

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
DiP algorithm through numerical simulations. The simulation
scenario consists of NS = 6 satellites, each equipped with
Nt = 2 antennas, randomly deployed in a circular area of
Aspace = 2000 km2 with an altitude of d0 = 1000 km. The

Algorithm 1 Robust DiP under PSPC
For each SC j = 1, ..., NS in parallel

1: Initialize local precoding matrix G
(0)
j according to (21);

2: for k = 0, ...,K − 1 do
3: Transmit the data matrix ĤjG

(k)
j to other SCs;

4: Update re-scaling matrix B(k) according to (19);
5: Update λ(k)j by numerically solving (20);
6: Update the precoding matrix G

(k+1)
j according (18);

7: end for
8: Transmit xj = G

(K)
j s to all user terminals

NU = 8 NTN terminals are randomly deployed in a circular
area of Aearth = 50 km2. The center of the area where the
NTN terminals are deployed is at the same position as the
projection of the satellite’s area center on the earth surface.
It is further assumed that all satellites have a dominant line-
of-sight (LOS) path to all NTN terminals. The path loss (PL)
is therefore modeled as the free-space loss [19] times a log-
normal random variable. Thus, the PL from satellite j to NTN
terminal u is modeled in decibels as

PLj,u = 20 log10

(
4πdj,ufc

c

)
− (GTx +GRx) + ξj,u (24)

where GTx = 20 dBi and GRx = 40 dBi is the antenna gain
of the satellites and users, respectively, and dj,u is the distance
between satellite j and terminal u. The carrier frequency
is assumed to be fc = 18 GHz and c = 3× 108 m/s is
the propagation speed of the electromagnetic wave. ξj,u is
a Gaussian random variable with variance σ2

ξj,u
= 9 dB

representing large scale fading effects due to the atmosphere.
Let aj,u = 10−PLj,u/20, then the channel from satellite j to
NTN terminal u is modeled as

hj,u = aj,ue
−j2π

fcdj,u
c + χj,u (25)

where the random vector χj,u ∼ CN (0, 1/a2j,uI) represents
small scale fading effects and phase distortions due to atmo-
spheric effects. The maximum transmit power of each satellite
is limited to P1 = P2 = ... = PNS = 1/NS. Let further
σ2
H = tr

{
HHH

}
/(NTxNU) be the average gain of the

transmitted signal power due to the channel, σ2
h̃

is chosen

such that 10 log10

(
σ2
H/σ

2
h̃

)
= 10 dB. The signal-to-noise

ratio (SNR) is defined as the ratio of the average signal power
received by the NTN terminals and the noise power σ2

n.
The relaxation parameter ω for updating the precoding

matrices {G(k+1)
j }NS

j=1 is empirically chosen to ω = 0.6
to ensure convergence of the DiP algorithm. The Lagrange
multiplier λ(k)j are determined using the bisection method at
the first iteration k = 0 and with three steps of Newton’s
method for k ≥ 1 taking the previous λ(k−1)j as initial guess.

All simulations are averaged over L = 100 randomly chosen
satellite and terminal positions, each with M = 60 different
realizations of the noise, the fading variables and channel
estimation errors. Let sl,m be the multi-user data vector of the
lth constellation and mth realization and ŝl,m be its stacked
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Fig. 2. ASE w.r.t. number of iterations for the proposed DiP algorithm with
and without considering the channel estimation error

estimates at the NTN terminals. The average squared error
(ASE), i.e., an estimate of the MSE, is then given by

ASE =
1

NU

1

LM

L∑
l=1

M∑
m=1

‖sl,m − ŝl,m‖22 (26)

where the factor 1/NU is included to normalize the ASE to
the number of NTN terminals. In Fig. 2, the ASE is shown
against the executed number of iterations K of the proposed
DiP algorithm. We compare the performance of the robust
DiP algorithm with its non-robust counterpart, where the
erroneous channel estimate is assumed to be the true channel
without considering the statistics of the estimation error, i.e,
assuming σ2

h̃
= 0. Furthermore, the algorithm is evaluated for

SNR = 10 dB and SNR = 30 dB. It is shown that the DiP
algorithm converges after roughly K ≈ 20 iterations and the
robust design approach outperforms the non-robust approach.
This becomes more clear for high SNR, i.e., SNR = 30 dB,
where the channel estimation error is large compared to the
noise power. Then, the ASE of the non-robust approach even
increases after a few iteration, because the interference is tried
to be reduced based on erroneous CSI.

From a system design perspective, the sum rate R may be of
larger interest than the ASE. The signal-to-interference-plus-
noise ratio (SINR) at the NTN terminal u is given by

SINRu =
|hHu gu|2∑

v 6=u |hHu gv|2 + σ2
n

(27)

and the sum rate R is then given by

R =

NU∑
u=1

log2 (1 + SINRu) . (28)
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Fig. 3. Sum rate w.r.t. SNR for the proposed robust DiP algorithm for NU = 8
users

In Fig. 3 and 4, the sum rate achieved with the proposed
robust DiP algorithm is shown for NU = 8 and NU = 4
NTN terminals, respectively. For the setup with NU = 4, the
relaxation parameter is reduced to ωNU=4 = 0.5 to avoid
divergence of the DiP algorithm. Note that the precoding
matrices G

(0)
j are initialized by solving the local MMSE

precoder design problem and therefore, K = 0 represents
the performance of the DL transmission if no information
between the satellites regarding the precoder design are ex-
changed. With only K = 2 iterations, the sum rate can
be significantly increased for both setups. If the processing
time to calculate the precoding matrices is limited due to
some latency constraints, still a good performance can be
achieved by performing only a few iterations. Because the
Lagrange multiplier λj are optimized in each iteration, the
power constraints are fulfilled after each iteration as well.

V. CONCLUSION

In this paper, a robust DiP algorithm is proposed for joint
DL transmission from a LEO satellite constellation towards
NTN terminals on the ground. Satellite communication is
expected to become an essential part for 5G in order to provide
global coverage and satellite swarms offer great advantages
over traditional satellite systems in terms of scalability and
robustness against the failure of single satellites. Simulation
results show a noticeable improvement of the sum rate at low
computational costs by allowing communication between the
satellites for the precoder design. Moreover, its fast conver-
gence makes the algorithm a promising precoding approach for
satellite constellation in 5G consisting of many small satellites.
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However, there are open questions to be clarified for prac-
tical realization such as synchronization of the satellites and
quantization of the exchanged information.

ACKNOWLEDGMENT

This work was partly funded by the European Regional
Development Fund (ERDF) under grant LURAFO2012A.

REFERENCES

[1] L. Kuang, C. Jiang, Y. Qian, and J. Lu, Terrestrial-Satellite Com-
munication Networks: Transceivers Design and Resource Allocation,
ser. Wireless Networks. Cham, Switzerland: Springer International
Publishing AG, 2018.

[2] A. Guidotti et al., “Architectures and key technical challenges for 5G
systems incorporating satellites,” IEEE Trans. Veh. Technol., vol. 68,
no. 3, pp. 2624–2639, Mar. 2019.

[3] 3GPP TR 38.811, “Study on New Radio (NR) to support non terrestrial
networks (Release 15),” Jun. 2018.

[4] R. T. Schwarz, T. Delamotte, K. Storek, and A. Knopp, “MIMO
applications for multibeam satellites,” IEEE Trans. Broadcast., pp. 1–18,
2019.

[5] G. Zheng, S. Chatzinotas, and B. Ottersten, “Generic optimization of
linear precoding in multibeam satellite systems,” IEEE Trans. Wireless
Commun., vol. 11, no. 6, pp. 4695–4707, Jun. 2012.

[6] C. Verhoeven, M. Bentum, G. Monna, J. Rotteveel, and J. Guo, “On the
origin of satellite swarms,” Acta Astronautica, vol. 68, no. 7, pp. 1392
– 1395, 2011.

[7] M. Mosleh, K. Dalili, and B. Heydari, “Optimal modularity for fraction-
ated spacecraft: The case of system F6,” Procedia Comput. Sci., vol. 28,
pp. 164 – 170, 2014.

[8] M. N. Sweeting, “Modern small satellites-changing the economics of
space,” Proc. IEEE, vol. 106, no. 3, pp. 343–361, Mar. 2018.

[9] A. Dekorsy, F. Bittner, and D. Wübben, “5G-NewSpace,” ITG News, pp.
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