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Abstract—Consider following setup: A number of observations
from a data source shall be compressed jointly prior to a forward
transmission via several rate-limited links to a central processing
unit. To design the respective quantizers, here, Mutual Information
is chosen as the fidelity criterion and the broad-ranging structure
of Multivariate Information Bottleneck is then aptly tailored to that
purpose. This, indeed, not only yields a novel design approach for
the considered distributed scenario but also paves the way towards
perceiving the chance of leveraging this flexible conceptual frame
in a vast variety of applications regarding digital data transmission.
Explicitly, it immediately enables addressing various extensions of
the presumed arrangement, incorporating the parallel construction
of intertwined compression systems for several correlated sources.

I. INTRODUCTION
The joint compression of multiple observations from a given

source is considered. This frequently appearing distributed setup
is, indeed, the underlying scenario in a variety of applications,
i.a., decentralized inference sensor networks wherein a certain
number of measured (sensed) values must be quantized ahead
of transmission to the fusion center [1], cooperative relaying
schemes with Quantize-and-Forward strategy [2], and last but
not least, Cloud-based Radio-Access Networks with rate-limited
fronthaul links to the central processor in the cloud [3].

Most studies in the available literature on this setup follow
the Rate-Distortion philosophy and propose some algorithmic
approaches for the quantization design problem w.r.t. a specific
distortion measure, e.g., the Mean-Squared-Error (MSE) [4], the
Ali-Silvey distance [5], or the Fisher Information [6]. Contrary
to the previous investigations, here we employ the novel design
paradigm of the Multivariate Information Bottleneck (MIB) [7].
MIB is an immediate extension of the preliminary idea of the
Information Bottleneck (IB) [8] that has emerged originally in
the Machine Learning context as a novel, information-theoretic
approach towards Clustering which is a fundamental task in the
sub-branch of Unsupervised Learning [9].

To put it in a nutshell, the IB method is a variational principle
aiming for compressing a Random Variable (RV) in a fashion that
it retains most of the information content w.r.t. another relevant
variable and, interestingly, this preservation capability can be
controlled through twiddling a trade-off parameter. To attain an
overall picture on the IB method and several related algorithmic
approaches, interested readers are referred to [10]–[12]. There
exist a number of intriguing aspects which support the idea of
deploying this framework for communication applications as
well. Concerning a totally connected example, in case of noisy

source coding, following the IB philosophy, a purely statistical
design structure is achieved which directly engages the actual
source into its formulation. Besides, a major special instance of
this principle boils down to designing quantizers that maximize
the end-to-end data transmission rate for a given input statistics,
somethingsought in(almost)allcommunicationschemes.Infact,
the IB paradigm has already found its path into various aspects of
modern transmission systems from construction of polar codes
[13] to advanced discrete (channel) decoding concepts [14] with
relatively low complexity and yet quite promising performance.

MIBis a generic principle that not only enables considering the
cases for which the compression shall be relevant w.r.t. multiple
variables but also allows for simultaneous construction of several
systems of clusters. To make that happen, it utilizes the concept
of Multi-Information, a natural extension of the pairwise concept
of Mutual Information, over two Bayesian Networks (BNs). The
first network stipulates the imposed constraints, i.e., statistical
independencies among the involved RVs, and identifies the set
of compression variables. The second one, specifies the relations
that shall be retained. The general principle is then formulated as
a trade-off between the multi-information each network carries.
The fascinating feature of this mathematical establishment is that
the optimal solution and subsequently the relevant algorithms are
derived formally, i.e., irrespective of particular choices of BNs.
This, indeed, brings about a lot of flexibility into play and turns
the MIB into a comprehensive framework that can be suitably
applied to address a wide range of applications, especially, more
sophisticated situations wherein multiple RVs are involved.

To vividly demonstrate the usability of exploiting MIB, within
this work we consider the predescribed distributed quantization
setup and tailor the general framework of MIB to that matter.
An asymptotic case of this Variational Principle then aims for
maximizing the mutual information between the given source
and the random vector comprising all the compressed variables.
This scenario has been recently investigated in [1] and as shown,
it engenders a set of quantizers which perform quite comparably
to the ones exclusively designed for the estimation and detection
purposes. That can be reckoned as another cogent argument for
MIB deployment. Indeed, it will be shown that our suggested
algorithm not only outperforms the proposed approach in [1],
but also broadens the scope of the underlying problem through
establishing a fundamental trade-off between the acquired level
of compression on the one hand and the amount of achievable
relevant information preservation on the other.
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II. MULTIVARIATE INFORMATION BOTTLENECK

A. Preliminary IB Method
The original IB setup [8] considers the quantization of a given

RV, a2, into the compression variable, z, such that it is highly
informative w.r.t. a relevant variable, a1. As a straightforward
translation to the context of Noisy Source Coding (NSC), one can
think of a2 as the noisy observation of the source, a1. The aim is
then to have a compressed representation, z, of the observation,
a2, that still preserves most of its information content w.r.t. the
source, a1. It is presumed that the joint distribution p(a1, a2) is
given and, further, a1↔ a2↔ z institutes a Markov chain. The
IB method then establishes a fundamental trade-off between the
compactness and informativity of its outcome in a symmetric
fashion, employing mutual information [15] terms to quantify
each aspect. On the one hand,I(a2; z) is considered as the term
gauging the compactness of the outcome. Clearly, lower values of
this quantity signify acuter compression and vice versa. A more
formal interpretation relates I(a2; z) to maximal number of bits
that can be reliably transmitted over quantizer block, exploiting
the Asymptotic Equipartition Property [15]. On the other hand,
I(a1; z) is chosen as the indicator of information preservation.

The quantizer design problem is then mathematically stated
as finding the mapping p(z|a2) that minimizes the IB functional
LIB = I(a2; z)−βI(a1; z), in which β denotes a non-negative
trade-off parameter. Applying the Variational Calculus, a formal
characterization of the optimal solution to the pertinent design
problem is derived in [8] for each pair (a2, z)∈A2×Z as

p(z|a2)=
p(z)

ψ(a2, β)
exp

(
−βd(z, a2)

)
, (1)

wherein ψ(a2, β) is a normalization function assuring a valid
distribution and the Relevant Distortion, d(z, a2), is given as

d(z, a2)=DKL
(
p(a1|a2)∥p(a1|z)

)
, (2)

with DKL(·∥·) denoting the Kullback-Leibler divergence [15].
Further, an iterative algorithm is also given in [8] that exerts the
Fixed-Point Iteration method [16] on the optimal solution (1).
B. Structural Extension to Multivariate Setup

A highly generalized version of the previous arrangement is
then to have a number of compression variables, zj :1≤j≤J ,
each quantizing a certain subset, yj , of the set of input RVs,
a={ai |i}, while preserving information about another arbitrary
subset, xj , of elements ina. In occasions of dealing with multiple
RVs, theconceptofMulti-information [17]willbethecounterpart
of the pairwise concept of mutual information. It is defined as

I
(
p(a)

)
=
∑
a

p(a) log
p(a)∏
i

p(ai)
, (3)

which captures the average amount of bits that can be secured by
the joint vs. independent compression of elements in a.

The Bayesian Network, G, is a powerful tool to describe the
statistical relations among the RVs in a. It is a directed acyclic
graph that considers the entries of a as its nodes and encodes the
proper factorization ofp(a)with its edges in a sense that it applies
p(a)=

∏
i p(ai|P

G
ai), with PG

ai denoting the parent nodes of ai in
G. In that case, the multi-information (3) can be calculated as the
sum of local mutual information terms between each variable ai

a1 z a1

a2

z

Gin Gout

a2

Fig. 1. Input BN, Gin, and output BN, Gout, of the original IB setup

and its parents PG
ai . Note that for an arbitrary distributionq(a) that

may not be correctly factorable as G suggests, this sum of local
mutual information terms is still well defined. This leads to the
definition of Multi-Information in q(a)w.r.t. the BN, G, [7] as

IG
(
q(a)

)
=
∑
i

I(ai;PG
ai), (4)

where every local mutual information term is calculated using the
marginal distributions of q(a). In general,I

(
q(a)

)
>IG

(
q(a)

)
and

their gap measures how close is q(a) to the class of distributions
being correctly factorable as suggested by the structure of G.

Then, Slonim et al. in [7] make use of two BNs, Gin and Gout,
to establish the MIB variational principle as a trade-off between
the multi-information term each network carries. The structure
of input BN,Gin, determines the Solution Space and also signifies
“what quantizes what”. Basically, the statistical relations among
input RVs get projected in the construction of Gin. Furthermore,
the compression variables, zj :1≤j≤J , appearing as the leaves
in Gin, are set to be the children of yj , i.e., the RVs they have to
represent compactly. Hence, via BN conventions (see, e.g., [18]),
given its parents,yj , each compression variable, zj , is assumed to
be independent of other nodes. The multi-information, IGin , will
then be a suitable measure for indication of the compactness of
outcome,asbasedon(4)andsimilar to thepreliminary IBsetup, it
contains input-output mutual information terms I(zj ; yj) for all
the involved quantizers. The output BN, Gout, on the other hand,
specifies “what is informative w.r.t. what” and is built in a fashion
that each compression variable, zj , is set to be the parent of its
relevant RVs, i.e., xj . By doing so, the multi-information, IGout ,
becomes a natural gauge regarding the informativity of outcome
as it sums up all the relevant mutual information terms I(zj ; xj).
Analogous to the original IB setup, the trade-off between both
aspectscan thenbeformalizedasminimizing theMIBfunctional,
LMIB=IGin−βIGout , withβ playing the same role as before. This
minimization is carried out over the complete set of mappings
{p(zj |yj) |j} from subsets of a entries which are intended to be
quantized, i.e., yj , and their pertinent compact versions, zj .

To more tangibly understand the above description, one may
use the original IB setup as a simple yet illustrative example.
For that, the respective input/output BNs are depicted in Fig. 1.
The input BN, Gin, stipulates that the overall joint distribution
shall be factorable as p(a1, a2, z) = p(a1)p(a2|a1)p(z|a2). This
indicates the presumed Markov chain a1↔a2↔z in the original
IB setup. Further, noting both BNs, it is realized that z must be
a compressed representation of y= a2 such that it is informative
w.r.t. x=a1. Applying (4), it holds IGin=I(a2; a1)+I(a2; z) and
IGout =I(a1; z). Since I(a2; a1) is a fixed term (joint distribution
of all input RVs are assumed to be fixed), it can be dropped and
then the MIB functional,LMIB, equals the IB functional,LIB.



C. Optimal Solution & an Iterative Design Algorithm
For a given trade-off parameter, β, and input statistics, p(a),

a formal optimal solution (yielding a stationary point of LMIB)
regarding any of the present mappings p(zj |yj) for 1≤ j≤J
between the compression variable, zj , and its parents in Gin
denoted byyj=PGin

zj is derived for each (zj ,yj)∈Zj×Yj as [7]

p(zj |yj)=
p(zj)

ψzj(yj , β)
exp

(
−βd(zj ,yj)

)
. (5)

ψzj(yj , β) is a partition function that assures a valid conditional
distribution and the Multivariate Relevant Distortion (MRD),
d(zj ,yj), is calculated as

d(zj ,yj)=
∑

i:zj∈vai

Ep(·|yj)

{
DKL

(
p(ai|v−j

ai ,yj)∥p(ai|v
−j
ai , zj)

)}
+

∑
ℓ:zj∈vzℓ

Ep(·|yj)

{
DKL

(
p(zℓ|v−j

zℓ ,yj)∥p(zℓ|v
−j
zℓ , zj)

)}
+DKL

(
p(vzj |yj)∥p(vzj |zj)

)
, (6)

with vai=PGout
ai , vzℓ=PGout

zℓ , denoting sets of parent nodes of ai
and zℓ in Gout, meaning the RVs that have to be informative
about ai and zℓ, respectively, and v−jai =vai\{zj}, v−jzℓ =vzℓ\{zj}.
Moreover, by definition

Ep(·|yj)

{
DKL

(
p(b|r,yj)∥p(b|r, zj)

)}
=

∑
r

p(r|yj)DKL
(
p(b|r,yj)∥p(b|r, zj)

)
,

(7)

where b and r denote a RV and a set of RVs (a random vector),
respectively. It should be noted that the first summand in (6)
concerns all input RVs, ai, where zj must preserve information
about while its second summand contributes in cases where zj
must be informative w.r.t. some other compression variables, zℓ,
as well. Eventually, the third summand in (6) comes into play
when information shall be maintained by at least one of the other
compression variables w.r.t. zj itself. From the form of (5) it
is directly inferred that for a given yj , the lower the value of
d(zj ,yj), the higher the probability of assigningyj to the cluster
zj ∈Zj .Principally, thebetterzj representsyj , the lowerbecome
the respective KL divergences in (6) and, consequently, the larger
gets the probability of allottingyj to zj . It is also noteworthy that
for the given input/output BNs in Fig. 1, the MRD in (6) reduces
to the provided relevant distortion in (2).

Since minimizing the MIB functional, LMIB, w.r.t. the set
of all involved mappings, {p(zj |yj) |j}, for a particular input
statistics, p(a), is not a convex optimization task in general [7],
attaining the globally optimal solution is quite demanding.
Therefore, following a pragmatic approach, one shall resort to
some heuristics which aim for addressing the design problem
efficiently at the cost of converging to local optima. Based
on the assumption of either having a fixed or varying set of
output levels, {|Zj | |j}, the authors in [7] have adapted the
Partitional and Hierarchical Clustering concepts [19] to the MIB
paradigm and proposed four heuristics to practically address
its underlying optimization problem. Here, we solely discuss
a generally soft (stochastic) clustering procedure known as the
Multivariate iterative IB (MultiIB) algorithm which is, indeed,
the immediate generalization of the presented routine in [8] for

Alg. 1 Multivariate iterative IB (MultiIB)

Input: p(a), Gin, Gout, β, |Zj |, convergence parameter ε>0
Output: Generallysoftpartitionzj of Yj into |Zj |bins ∀j=1:J
Initialization:m=0, random mappings {p(m)(zj |yj) |j}

while True do
for j=1:J do
• p(m)(zj)←

∑
yj

p(m)(zj |yj)p(yj) ∀zj ∈Zj

• find the mth update for all distributions in d(zj , yj) via
marginalizing w.r.t. p(m)(a, z)=p(a)

∏J
j′=1p

(m)(zj′ |yj′)
• p(m+1)(zj |yj)← p(m)(zj)

ψ
(m+1)
zj

(yj ,β)
exp

(
−βd(m)(zj ,yj)

)
• p(m+1)(zℓ|yℓ)← p(m)(zℓ|yℓ) ∀ℓ=1:J, ℓ ̸=j
• m← m+1

end for
if ∀j, ∀yj :D

{ 1
2 ,

1
2}

JS

(
p(m)(zj |yj)∥p(m−J)(zj |yj)

)
≤ε then

Break
end if

end while

preliminary IB setup. In the asymptotic case of letting β→∞,
this leads to a partitional approach. As its name suggests, the
MultiIB is an iterative routine which aims for obtaining the set
of required mappings, {p(zj |yj) |j}, by direct use of (5). Note,
that (5) has an implicit form as p(zj) and d(zj ,yj) on its right
hand side depend on {p(zj |yj) |j}. The principal idea behind
the MultiIB is then to commence with a random (still valid)
initialization of the mappings,{p(0)(zj |yj) |j}, and perform the
update steps (till convergence/fulfillment of a stopping criterion)
for every pair (yj , zj)∈Yj×Zj via

p(m+1)(zj |yj) =
p(m)(zj)

ψ
(m+1)
zj (yj , β)

exp
(
−βd(m)(zj ,yj)

)
, (8)

wherein m denotes the running index. The quantizer output
probability, p(m)(zj), and the respective MRD, d(m)(zj ,yj),
are calculated employing {p(m)(zj |yj) |j} and the conditional
independencies imposed by the structure of Gin. Updates are
performed asynchronously, meaning when a RV, zj , is chosen
the update will be executed merely for this variable and for every
1≤ℓ≤J and ℓ̸=j, p(m+1)(zℓ|yℓ)=p(m)(zℓ|yℓ). To avoid getting
trapped in bad local optima, this procedure is repeated several
times (with different initialization) and the best outcome is
retained. The pertinent pseudo-code of the MultiIB routine is
presented in Alg. 1 where D{·,·}

JS (·∥·) stated in the termination
criterion part denotes the Jensen-Shannon (JS) divergence [7].

III. MIB-BASED DISTRIBUTED QUANTIZATION

A. System Model & Problem Formulation
In this part, we focus on the predescribed distributed scenario

known as the Chief Executive Officer (CEO) setup [20] and aptly
tailor the general paradigm of MIB to that matter. The presented
discussion for this concrete case study better clarifies the concise
and rather abstract presentation of MIB in the previous section.
Consider the presumed system model that is illustrated in Fig. 2.



Source

Channel 1
z1 ∈ Z1

y1 ∈ Y1

x ∈ X Channel 2 Quantizer 2
y2 ∈ Y2

Channel J Quantizer J
yJ ∈ YJ zJ ∈ ZJ

Quantizer 1

z2 ∈ Z2

Processing
Remote

Unit

Fig. 2. Presumed system model for distributed quantization

A data source, x, is transmitted overJ noisy channels. The access
channels’ output variables, yj , for 1≤ j ≤ J , then have to be
compressed into the variables, zj , for 1≤ j≤J , before getting
transmitted over several rate-limited fronthaul links to a central
unit for further processing. To perform this task, we propose
utilizing the MIB framework which leads to a joint yet local
quantization of individual noisy observations yj .

The very first step towards achieving this end is then to specify
the corresponding input and output BNs. Fig. 3 illustrates them.
Please note that to clearly distinguish between the source and
the access channels’ output variables which both are the input
RVs from perspective of the MIB for this setup, we chose two
different letters for pertinent denotations. As the joint probability
of involved RVs, p(x, y, z), must be consistent with the structure
of Gin, the solution space consists of distributions conforming to
the layoutp(x, y, z)=p(x)

∏
j p(yj |x)

∏
j p(zj |yj), implying the

Markov relation of x↔y↔z. Assuming a given input statistics,
p(x, y), the free parameters are then the mappings p(zj |yj) for
1≤j≤J . The compression rate that is aimed to be minimized, is
the multi-information, IGin, calculated as

IGin =
∑
j

I(x; yj) +
∑
j

I(yj ; zj) . (9)

Considering Gout, the relevant information term that is aimed to
be maximized, is the multi-information, IGout , being equal to

IGout = I(x; z1, · · · , zJ) . (10)

Consequently, the MIB functional is derived as

LDist.
MIB =

∑
j

I(yj ; zj)− βI(x; z1, · · · , zJ), (11)

where the first summation in (9) has been dropped since it is a
constant term given by the input statistics, p(x, y). The design
optimization problem is then formulated as

Q∗ = [p∗(z1|y1), · · · , p∗(zJ |yJ)] = argmin
Q

LDist.
MIB, (12)

subject to a fixed cardinality of the output levels, {|Zj | |j}. It
shall be also noted that in the extreme case of letting β →∞,
the design formulation in (12) boils down to

Q∗ = argmax
Q

I(x; z1, · · · , zJ), (13)

to derive which, the effective compression rate, i.e., the first
term in (11) is not considered anymore and the minimization
is substituted by the maximization through dropping the minus
sign. Please note that even in this case, although the focus is
solely on the preservation of relevant information, the effective
compression rate is not allowed to grow arbitrarily large and,
indeed, will be upper-bounded by

∑
j log2 |Zj | bits. For each

pair (yj , zj)∈Yj×Zj the optimal solution regarding the present

z1

x

zJ

z2

y1

y2

yJ
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z2

zJ

GoutGin

x

y1

y2

yJ

Fig. 3. Chosen input/output BNs for distributed quantization

quantizers in (12) is then given as

p(zj |yj) =
p(zj)

ψzj(yj , β)
exp

(
−βd(zj , yj)

)
, (14)

with the respective MRD, d(zj , yj), being equal to

d(zj , yj)=Ep(·|yj)
{
DKL

(
p(x|v−j

x , yj)∥p(x|v−j
x , zj)

)}
=
∑
v−j
x

p(v−j
x |yj)DKL

(
p(x|v−j

x , yj)∥p(x|v−j
x , zj)

)
, (15)

where v−j
x ={z1, · · ·, zj−1, zj+1, · · ·, zJ}. Comparing (15) with

(6), one may note that the second and the third summands in (6)
do not appear and the first summation is only w.r.t. the source, x.

B. Distributed Design Algorithm
Employing the MultiIB as an algorithmic approach towards

addressing (12) for a given input statistics, p(x, y), a trade-off
parameter, β, and a set of quantizers’ output levels, {|Zj | |j},
one has to start with a group of random (yet valid) mappings,
{p(0)(zj |yj) |j}, and then for every particular branch, j, the
respective quantizer mapping update is

p(m+1)(zj |yj) =
p(m)(zj)

ψ
(m+1)
zj (yj , β)

exp
(
−βd(m)(zj , yj)

)
, (16)

where
p(m)(zj) =

∑
x∈X

∑
yj∈Yj

p(x) p(yj |x) p(m)(zj |yj) . (17)

To calculate the corresponding MRD, d(m)(zj , yj), in (16) three
conditional probabilities have to be derived (with z={zj |j})

p(m)(x|v−j
x , zj) = p(m)(x|z) = p(m)(x, z)∑

x′∈X
p(m)(x′, z)

, (18)

with
p(m)(x, z) = p(x)

∏
j

p(m)(zj |x) (19a)

p(m)(zj |x) =
∑
yj∈Yj

p(m)(zj |yj) p(yj |x), (19b)

in which (19a) results from the fact that given the source, x, all
the compression variables, zj , for 1≤ j≤J , are independent
and (19b) is due to the presumed Markov chain per branch.
Further, it holds

p(m)(v−j
x |yj) =

∑
x∈X

p(x, yj)
∏
j′ ̸=j

p(m)(zj′ |x)

p(yj)
, (20)

and, finally,

p(m)(x|v−j
x , yj) =

p(x, yj)
∏
j′ ̸=j

p(m)(zj′ |x)∑
x′∈X

p(x′, yj)
∏
j′ ̸=j

p(m)(zj′ |x′)
. (21)



Performing the update process iteratively is, indeed, nothing
but applying the Multivariate Fixed-Point Iteration method [16]
in an asynchronous fashion (i.e., the update for zj encompasses
the implications of recent updates from all of its preceding
compression variables, zℓ, for 1 ≤ ℓ ≤ j−1, a similar idea as
the Gauss-Seidel method now applied to a nonlinear system) over
the set of all mappings and their respective optimal solutions.

For finite values of the trade-off parameter, β, this yields a
set of stochastic mappings while for case of letting β→∞,
the normalization function, ψzj(yj , β), for each realization yj
concentrates all of the probability mass into only one cluster
and therefore induces the quantizers to become hard. To justify
this behavior, one shall note that the objective functional in (13)
is separately convex w.r.t. any of the mappings p(zj |yj) for
1≤j≤J . This is due to the fact that, for a given p(x), I(x; z)
becomes convex w.r.t. p(z|x)=

∏
j p(zj |x) [15] and as fixing the

quantizer mappings p(zj |yj) for all j ̸=ℓ directly corresponds
to fixing the pertinent distributions p(zj |x), the relation among
p(z|x) and p(zℓ|x) becomes affine which preserves convexity.
As it holds p(zℓ|x)=

∑
yℓ
p(zℓ|yℓ)p(yℓ|x) that once again defines

an affine relation between p(zℓ|x) and p(zℓ|yℓ), the claim is
proven. Recalling that in each processing step of MultiIB only
one mapping is altered (due to asynchronous update procedure)
and since the solution space of this active mapping is a closed
convex polytope, S, engendered by the Cartesian product of its
constituent probability simplices [10], the objective functional
in (13) obtains its maximum over one of the extreme points of
S (convex maximization [21]) which correspond to its vertices,
implying a hard mapping result at the end.

C. Supplementary Mathematical Discussion
To provide better insights, one shall note that the underlying

design optimization (12) can be reformulated as maximizing the
end-to-end transmission rate,I(x; z), with a side-constraint in the
form of an upper-bound on the effective compression rate, i.e.,
sum of the individual compression rates of different branches

Q∗ = argmax
Q:

∑
j I(yj ;zj)≤R

I(x; z), (22)

wherein each certain R value corresponds to a certain β value.
Attaining the required β for a particular R is then usually done
by (repeatedly) performing the bisection method over a proper
initial interval of β values, running the MultiIB, calculating the
resultant effective compression rate and finally modifying the
current interval accordingly (up to a certain precision).

Interesting is the fact that the derived optimal solution in (14)
with the corresponding MRD presented in (15) is also valid for
the case in which a more stringent constraint set is demanded, i.e.,
maximizing the overall transmission rate, I(x; z), subject to a set
of constraints in a form of an upper-bound on each compression
rate of different branches individually

Q∗ = argmax
Q: ∀j I(yj ;zj)≤Rj

I(x; z) . (23)

To realize this, one shall recall that the stated optimal solution
per branch is obtained by taking the functional derivative of
the MIB functional given in (11) w.r.t. each of the mappings

p(zj |yj), when fixing others. Multiplying (11) by -λ= - 1β , the

LDist.
MIB can be reformulated as LDist.,(1)

MIB =I(x; z)−λ
∑
jI(yj ; zj),

which gets simplified to LDist.,(2)
MIB = I(x; z)−λI(yℓ; zℓ), when

taking the required functional derivative w.r.t.p(zℓ|yℓ) and fixing
p(zj |yj) for all j ̸= ℓ. The corresponding functional for (23)
is obtained as I(x; z)−

∑
j λjI(yj ; zj), wherein each λj is,

indeed, the pertinent Lagrange Multiplier for the jth constraint.
Taking its functional derivative w.r.t. p(zℓ|yℓ) is then basically
the same as taking the relevant functional derivative from the
simplified version of LDist.,(2)

MIB up to the trivial substitution of
λ←λℓ, that is already provided in (14)–(15). All in all, it is
inferred that one can directly address (23) by a straightforward
extension of the original MultiIB wherein a vector-valued β
input comprising all the individual βj for 1≤j≤J replaces the
scalar-valued β input and, subsequently, the quantizer mapping
for jth branch is updated w.r.t. its own βj . The corresponding
procedure to obtain the apposite vector β is then to alternate
between all branches and to perform bisections over a fine grid
per branch, till fulfillment of all individual constraints.

IV. SIMULATION RESULTS
In this part, we investigate the performance of our proposed

treatment (joint yet local quantization of multiple observations)
and compare it with the approach of fully-independent local
quantization per branch to verify achievable gains. Specifically,
we consider an equiprobable standard 64-QAM (σ2

x=42) source
signaling over a number of Additive White Gaussian Noise
(AWGN) channels. To simulate this, we generate 1000 samples
per branch. The outputs of these channels are then compressed
(utilizing the MultiIB) such that the overall transmission rate,
I(x; z), is maximized (i.e., assuming β→∞). In case of the
individual (and fully-independent) quantization per observation,
the so-called iterative Information Bottleneck algorithm [8] is
executed to compress each channel output such that it becomes
highly informative w.r.t. the given source (maximize I(x; zj) for
1≤j≤J). Further, since (as already mentioned) these routines
are initialized randomly, for the sake of a fair comparison, we
use the same starting points for both approaches and to avoid
getting stuck into bad local optima, we repeat each method 100
times and retain the best outcome. We consider both symmetric
and asymmetric setups with J=3 branches. For the symmetric
setup, all present model parameters are set to be the same for
different branches while in case of the asymmetric arrangement,
we fix the output cardinality of the first branch to |Z1|=2 and
then vary the output cardinalities of the other two branches that
are set to be the same. Figs. 4 and 5 illustrate the obtained results,
respectively. Explicitly, the overall transmission rates, I(x; z),
vs. the number of output levels (per branch) are depicted on the
left while the resultant compression/informativity trade-offs are
represented on the right. Principally, a quite similar behavior
is observed in both configurations except for the restricting
effects of the first branch (in asymmetric case) that necessitates
higher output levels (compared to the symmetric configuration)
for other branches to attain the same overall transmission rate.
For relatively high values of the Signal-to-Noise Ratio (SNR)
(σ

2
x

σ2
n

per branch), the available mutual information, i.e., I(x; y),
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reaches its upper-bound given by the source entropy [15],H(x),
being equal to 6 bits for equiprobable signaling. This amount
of information can be entirely supported by relatively small
output level cardinalities when applying the MultiIB, whereas
the fully individual treatment of different branches requires
larger numbers of output levels. By decreasing the SNR, the
available mutual information decreases as well and, besides, it
is ostensible that for its full support, regardless of the chosen
approach, the required amounts for output cardinalities become
substantially larger. One may note that irrespective of specific
choices of model parameters, i.e., the noise variance and the
number of output levels, our proposed approach outperforms
the non-cooperative method. This, substantiates the fact that
exploiting cooperation among different branches brings about
some performance gain at the expense of requiring a more
complex treatment compared to the non-cooperative approach.
Finally, the performance comparison of our proposed method
with the Double-Max [1], a SotA routine which formulates the
quantizer design problem (per branch) as a double (alternating)
maximization (hence the name), reveals better or at least the same
results. Moreover, it should be noted that the setup in [1] solely
considers the extreme instance of full informativity, meaning to
have an asymptotically large trade-off parameter,β. Thus, also in
this sense, our approach expands the horizon of problem through
enabling a complete sweep over the entire range of validβ values.

V. SUMMARY

We considered a certain distributed quantization setup which
frequently appears in multiple applications. For that, we were
the first to successfully apply the wide-ranging design framework
of the Multivariate Information Bottleneck and to envision the
potentialities of such a generic conceptual paradigm to cover
a rich family of applications in communications context. This,
particularly, enables addressing various extensions of presumed
distributed arrangement including the simultaneous construction
of intertwined compress models of multiple correlated sources.
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