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1 Concatenated Codes

Exercise 1.1 Decoding sequence of linear product codes

Considering concatenated codes as in chapter 1, the succession of the encoding and the decoding of
linear constituent codes is reversible. This has the effect that all columns and all rows represent valid
code words of the respective code. Show this for linear block codes with the help of matrix calculus and
check your results by means of the example given in the lecture slides (concatenation of (3, 2, 2)- and
(4, 3, 2)-SPC codes). Note that the block interleaver has to be taken into consideration.

Exercise 1.2 L-algebra

a) The definition of log-likelihood-ratio (LLR) is assumed to be known (see lecture slides). Prove

L
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i=1

⊕ui

)
= ln
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(eL(ui) + 1) +
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i=1
(eL(ui) − 1)

(1)

by induction.

b) Calculate the expected value E {x̂} for the estimation of a BPSK symbol x given the correspond-
ing LLR L(x̂). Plot the value E {x̂} for different signal-to-noise ratios by assuming the range
−2 : 0.1 : 2 for the receive symbols y and the range −2 : 2 : 10 dB for Es/N0.
Hint: For equiprobable input symbols the LLR L(x̂) is determined by the value L(y|x) = 4αEs

N0
y

and we assume α = 1 in this exercise.

Exercise 1.3 Comparison of the exact solution and approximation of LLR combining

Create a MATLAB function [exact, approx] = llr(L) which determines the LLRs of the combination of
several statistically independent symbols exactly (2) and approximately (3).

L(u1 ⊕ . . .⊕ un) = 2 artanh

(
n∏

i=1

tanh(L(xi)/2)

)
(2)

≈ min
j

(|L(xj)|) ·
n∏

i=1

sgn (L(xi)) (3)

Compare the exact solution and the approximate one by assuming the symbols y1 = −2 : 0.1 : 2 and
y2 = 0.2 : 0.2 : 1. Determine the LLRs and plot the result against y1 for Es/N0 = 2 dB.

Exercise 1.4 Soft-output decoding of SPC codes

a) The information word u = (1, 0, 1) is encoded with a (4,3,2)-SPC code, BPSK-modulated and
subsequently transmitted over an AWGN channel with a signal-to-noise ratio of Es/N0 = 2 dB.
At the receiver the sequence y = (−0.8, 1.1, 0.3, 0.4) is observed. Determine the LLRs with the
routine llr.m from exercise 1.3 and decode the receive vector. What is the result?
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b) Now decode with the approximation solution. Compare the result with a).

c) Determine the probabilities for a correct decoding decision.

Exercise 1.5 BCJR decoding of a convolutional code

Assume that y = [−0.6727,−0.8254, 0.8133,−0.2742, 0.4117, 1.1832,−1.1364,−0.8861] has been
received after transmission over an AWGN channel with a noise variance of σ2n = 1. On the transmitter
side the binary information word u = [1, 1, 0, 0] has been encoded with a [5, 7]8 convolutional code
(NSC), BPSK-modulated and finally transmitted. Perform BCJR decoding under the assumption that the
last state is known to be (0, 0). For ease of calculation use the Max-Log-MAP in the logarithmic domain.
(Hint: Draw a full trellis first, then follow the pertinent slides of Chapter 1, CC II.)

Exercise 1.6 Decoding of a modified product code

Given is a modified product code consisting of two (3, 2, 2)-SPC codes. The following 2×2 information
matrix describes the four information bits

U =

(
0 0

0 1

)
and the BPSK-modulated code bits are shown in the code matrix

X =

 +1 +1 +1

+1 −1 −1

+1 −1

 .

After transmission over an AWGN channel with Es/N0 = 2 dB, we get the following receive matrix

Y =

 −1.5 +1.5 +1.2

+1.1 +1.0 −1.5

+0.5 −2.5

 .

Decode this product code step by step using MATLAB.

Exercise 1.7 Decoding of a (7,4,3)-Hamming code using an LDPC decoder

Given is a (7,4,3)-Hamming code with the generator matrix

G =


1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


and the corresponding parity check matrix

H =

 1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

 .



1 CONCATENATED CODES November 11, 2019 3

a) Linear block codes can be represented by a Factor Graph. It is a bipartite graph with

– a variable node for each code symbol,

– a check node for each check equation,

– an edge between a variable node and a check node if the corresponding symbol participates
in the pertinent check equation.

A cycle is a closed path through the graph that begins and ends at the same variable node. The
length of a cycle is the number of edges traversed.

– Give the corresponding Factor Graph for the Hamming code with the parity check matrix H.

– How large is the minimum length of a cycle (the girth of the Factor Graph)?

b) Determine the sets Kk and Jj which provide the connection between the variable nodes and the
check nodes by Kk = {j : Hk,j = 1} and Jj = {k : Hk,j = 1}, where k = 0, 1, . . . ,K − 1
and j = 0, 1, . . . , J − 1 with K and J being the number of check nodes and the variable nodes,
respectively.

An information sequence u = [1, 1, 0, 1] is encoded with c = u ·G. The code word c is BPSK-
modulated via x = 1 − 2 · c. The sequence x is then transmitted over an AWGN channel with
the signal-to-noise ratio of Es/N0 = 2 dB. Assume that the receive signal y = x + n is given by
y = [-1.3, -0.4, 1.1, -1.2, 0.6, 0.3, 0.7].

c) Calculate and collect the extrinsic information (of the first iteration) at each check node from the
connected variable nodes. Use the boxplus approximation.

Ek
j =

∑
i 6=j, i∈Kk

� L(x̂i)

d) Collect the extrinsic information at each variable node from the connected check nodes.

aj =
∑
k∈Jj

Ek
j

e) Make a decision at each variable node.

f) Implement in MATLAB a simulation chain wherein the decoding is done iteratively and compare
your results with the hard decoding scheme for the Hamming code.
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2 Trelliscoded Modulation (TCM)

Exercise 2.1 Field of signals

Given is the 8-ASK/PSK constellation in Fig. 1, that consists of two 4-PSK constellations staggered by
45◦ with the radii r and 2r.
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Fig. 1: Field of signals for the 8-ASK/PSK constellation

a) Determine the minimum Euclidean distance ∆0 for Ēs = 1.

b) Determine the asymptotic gain compared to the 8-PSK and the BPSK.

Exercise 2.2 TCM calculation

Given is the represented convolutional encoder with the code rate Rc = k/(k + 1) = 1/2 and two
memory elements, that shall be used for TCM together with an M = 2m+1 = 8-ASK constellation.
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Fig. 2: The considered TCM encoder

a) Determine the corresponding partitioning of the field of signals for 8-ASK.

b) Determine the corresponding Trellis segment.

c) Determine the asymptotic gain compared to the uncoded 4-ASK.

Exercise 2.3 Transmission scheme

Write a simulation program for an 8-PSK transmission. Construct the transmitter (source, modulator),
the channel (AWGN) and the receiver (demodulator, decision). Subsequently determine the bit error rate
and the symbol error rate over Eb/N0 and Es/N0, respectively.
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3 Adaptive Error Control

Exercise 3.1 Go-Back-N strategy

Assume a Go-Back-N Strategy with TB = 15ms and TG = 60ms.

a) Calculate the minimum window size N .

b) Determine the average transmission time per block T∞AV as a function of the detectable error
probability Ped.

Now assume a packet can only be retransmitted at most 3 times.

c) Determine the average transmission time per block T 3
AV as a function of the detectable error

probability Ped.

d) Calculate the average transmission time per block for both cases (T∞AV , T 3
AV ) given thatPed = 0.1, 0.9.

e) Calculate the efficiency η for all 4 cases given that Rc = 1
3 .

Exercise 3.2 Hybrid ARQ

A system with two nested Stop & Wait schemes is considered. The inner scheme utilizes a hybrid ARQ
protocol that allows up to two retransmissions. The outer scheme is a conventional Stop & Wait ARQ
scheme in which one packet comprises ten packets of the inner scheme. The feedback channels can be
assumed to be error-free.

First, we consider only the inner hybrid ARQ scheme. The probability that the first transmission of a
packet be successful, is 33%. The probability that the packet can be decoded successfully after the first
retransmission is 66%. After the second retransmission the probability of a successful decoding is 99%.
Assume that all errors are detected. If an error is detected after the second retransmission, the erroneous
packet is accepted and passed to the outer scheme.

a) Calculate the efficiency ηi = # accepted packets
# transmitted packets .

b) How big is the packet error rate Pi(E) after passing the inner scheme.

The outer scheme that operates on blocks of ten inner packets requests for retransmissions (of the whole
block) until all packets are error-free.

c) What is the probability Po(NAK) for a repeat request of the outer scheme?

d) What is the average number Θo of transmission trials per outer block?

e) Calculate the efficiency η of the overall scheme.


