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Abstract—Motivated by large linear inverse problems where
the complexity of the Maximum A-Posteriori (MAP) detector
grows exponentially with system dimensions, e.g., large MIMO,
we introduce a method to relax a discrete MAP problem into a
continuous one. The relaxation is inspired by recent ML research
and offers many favorable properties reflecting its quality.
Hereby, we derive an iterative detection algorithm based on
gradient descent optimization: Concrete MAP Detection (CMD).
We show numerical results of application in large MIMO systems
that demonstrate superior performance w.r.t. all considered State
of the Art approaches.

Index Terms—MAP, maximum a-posteriori, Large MIMO de-
tection, concrete distribution, Gumbel-Softmax, Machine Learn-
ing

I. INTRODUCTION

After the Deep Learning revolution of the 2010s, Machine
Learning (ML) recently gained a lot of attention from the
digital signal processing community and the ”AI winter” has
ended [1], [2]. It was just a matter of time until researchers
wondered how communication systems can benefit from the
new insights. The main advantage of ML lies in handling
model and algorithm deficits.

To a great extent, a model deficit does not apply to wireless
communications since it features well-established models, e.g.,
AWGN. These models describe reality well and enable devel-
opment of optimized algorithms. However, these algorithms
may be too complex to be implemented and an algorithm
deficit results [1].

In large linear inverse problems, e.g., typical for large
MIMO (Multiple Input Multiple Output) systems with many
antennas at transmitter and receiver side [3], we have such
an algorithm deficit. On the one hand, Maximum A-Posteriori
(MAP) detection at the receiver exhibits high computational
complexity growing exponentially with system dimensions.
Even the efficient implementation, the sphere detector, remains
too complex in such a scenario [4]. On the other hand, sub-
optimal solutions like linear detectors show bad performance.

Therefore, we propose a new detection/classification ap-
proach inspired by recent ML research: Concrete MAP Detec-
tion (CMD). We relax the discrete Random Variables (RVs)
of the MAP problem by means of the continuous concrete
distribution [5], [6]. It was recently discovered in the context
of large scale stochastic computation graphs and enables
differentiation through discrete stochastic nodes.

The proposed relaxation offers many favorable properties:
On the one hand, the probability distribution function (pdf)
of the relaxed continuous RVs converges to the exact pdf
of the discrete RVs in the hyperparameter limit. Hence, also
the expected values converge. On the other hand, we notice
good algorithmic properties. First, a reparametrization of the
relaxed RVs makes knowledge of the true pdf for solving the
MAP problem irrelevant. Second, CMD allows to differentiate
continuously through the MAP cost function in any non-linear
probabilistic model. Finally, the hyperparameter can be, e.g.,
adapted, to improve algorithmics.

Furthermore, we show first numerical results of application
in large MIMO systems demonstrating only small performance
loss compared to discrete optimization.

II. THEORETICAL BACKGROUND

A. System Model and Problem Statement

To motivate the concrete relaxation, we consider a linear
observation model typically encountered in MIMO systems.
Here, we assume x to be a normalized multivariate discrete
Random Variable (RV), i.e., x = {xn}NT

n=1 with E[|xn|2] =
1, whose elements are from a real-valued set M. The RV
passes a linear channel H ∈ RNR×NT with i.i.d. Gaussian taps
hmn ∼ N (0, 1/NR). Then, the resulting RV is superimposed
by Gaussian noise n ∼ N (0, σ2

n INR) with variance σ2
n and

observed:
y = Hx+ n . (1)

The matrix INR denotes the identity matrix of dimension NR×
NR. To decide on the discrete multivariate RV x given the
linear observation y ∈ RNR×1, we solve the MAP problem

x̂ = arg max
x∈MNT×1

p(x|y) (2a)

= arg max
x∈MNT×1

p(y|x) · p(x) (2b)

= arg min
x∈MNT×1

− ln p(y|x)− ln p(x) (2c)

with p(y|x) = 1√
(2π)NRσ2NR

n

e
− 1

2σ2n
(y−Hx)T (y−Hx)

(3)

as the conditional pdf and p(x) as the a-priori pdf. Since
xn ∈ M, we have to do an exhaustive search over all
element combinations to solve the MAP problem. We mention
the sphere detector as an efficient implementation [4]. For
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Fig. 1. The conrete pdf relaxes the Bernoulli distribution into the interior.

complexity reduction in large systems, the discrete RV x is
usually relaxed to be continuous. For example, we obtain the
linear MMSE solution if we allow x ∈ RNT×1 in (2c) to
be continuous rather than discrete with p(x) = N (0NT , INT)
since mean and mode of Gaussian RVs coincide.

B. Concrete Distribution

In order to reduce the complexity of the MAP problem
(2c), we propose the following CONtinuous relaxation of
disCRETE variables: We replace the prior distribution p(x)
by means of the CONCRETE distribution or Gumbel-Softmax
distribution recently discovered in the ML community [5], [6].

To explain the idea, let us assume that we have the discrete
binary RV x ∈M withM = {−1,+1}. Further, let us define
the discrete RV z as a one-hot vector where all elements are
zero except for one element, i.e., z ∈ {0, 1}2×1 with values
z1 = [1, 0]T , z2 = [0, 1]T . In addition, we collect the values
of M in the representer vector m = [−1, 1]T . That way, we
can write x = zTm, e.g., x = [1, 0] · [−1, 1]T = −1.

We point out that the one-hot vector z ∈ {0, 1}M×1
represents a categorical RV with M = |M| classes. Motivated
by classification [5], [6], the one-hot vector can be defined to
be:

z = one-hot
(
argmax

j
[g + lnα]

)
. (4)

Note that g ∈ RM×1 is a multivariate continuous RV whose
elements are i.i.d. Gumbel distributed while α ∈ (0, 1)M×1 is
the vector of class probabilities that sum up to one.

So far, x is discrete. The idea is to replace the argmax
computation of the so-called Gumbel-Max trick (4) by the
softmax function

z̃ = f (g) =
e(ln(α)+g)/τ∑M
i=1 e

(lnαi+gi)/τ
. (5)

The RV z̃ ∈ (0, 1)M×1 is the so called concrete or Gumbel-
Softmax RV and now continuous, e.g., z̃ = [0.2, 0.8]. It is
controlled by a hyperparameter, the softmax temperature τ .
The distribution of z̃ in (5) was found to have a closed form
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Fig. 2. Examplary plot of the conrete binary MAP cost function and the
contribution of conditional and prior pdf to it.

density which is taken to be the definiton of the concrete
distribution:

pα,τ (z̃) = (M − 1)! τM−1
M∏
k=1

(
αkz̃

−τ−1
k∑M

i=1 αiz̃
−τ
i

)
. (6)

With z̃, we can also relax the discrete RV x into a continuous
RV x̃ by defining x̃ = z̃Tm. In Fig. 1, we illustrate the
distribution p(x̃) for the special case M = 2 in comparison
to the original categorical pdf p(x) reducing to a Bernoulli
pdf. It has the following properties reflecting the correctness
of the relaxation [5]: First, we can reparametrize the concrete
RV z̃ and hence the RVs x̃ by Gumbel variables g, a direct
result from the initial idea (5). Moreover, rounding z̃ restores a
categorical variable. The same is true for the zero temperature
limit τ → 0: The smaller τ , the more z̃ approaches a
categorical distribution and the approximation becomes more
accurate. Thus, the statistics of x and x̃ remain the same for
τ → 0.

III. CONCRETE RELAXATION OF MAP PROBLEM

A. Reparametrization

In this publication, the idea is to use the concrete distribution
in order to relax the MAP problem (2c) to

x̂ = arg min
x̃∈RNT×1

− ln p(y|x̃)− ln p(x̃) . (7)

The reparametrization property makes it possible to express
each x̃n in x̃ by a vector gn of i.i.d. Gumbel RVs instead:

x̃(G) =

 x̃1...
x̃NT

 =

 z̃T1
...

z̃TNT

m =

 f (g1)
T

...
f (gNT)

T

m (8)

with G =
[
g1 · · · gNT

]
∈ RM×NT . (9)

Now, we reformulate the relaxed MAP problem (7) and
optimize w.r.t. matrix G. This means, we replace p(y|x̃)



by p(y|G) and introduce the Gumbel distribution p(gkn) =
exp (−gkn − exp (−gkn)) as the new prior distribution:

Ĝ =argmin
G
− ln p(y|G)− ln p(G) (10)

=argmin
G
− ln p(y|G)−

NT∑
n=1

M∑
k=1

ln p(gkn) (11)

=argmin
G

1

2σ2
n
(y −Hx̃(G))T (y −Hx̃(G))

+ 1TG1+ 1T e−G1 (12)
=argmin

G
L(G) . (13)

However, owing to the softmax and exponential terms in
L(G), the objective (13) has no analytical solution. Fur-
thermore, it describes a non-convex objective function which
is illustrated in Fig. 2 for the binary case M = 2. This
results from log-convexity of the concrete distribution for
τ ≤ (M−1)−1 [5]. The conditional pdf p(y|x̃) is log-concave
and the prior pdf p(x̃) log-convex, so the negative log joint
distribution forms a non-convex objective function (13).

B. Gradient Descent Algorithm

In order to solve (13) with relatively low complexity, we
employ the gradient descent approach. It tries to approach the
minimum iteratively by taking gradient descent steps until the
necessary condition

∂L(G)

∂G
= 0 (14)

is fulfilled. We point out that convergence to the global
solution depends heavily on the starting point initialization
since the objective function is non-convex. Without any prior
information about the RV x, the optimal starting point is
G(0) = 0 since f (0) = α with τ = 1. After some ten-
sor/matrix calculus and by noting that every x̃n only depends
on one gn, the gradient descent step for (13) in iteration j is:

G(j+1) =G(j) − δ(j) · ∂L(G)

∂G

∣∣∣∣
G=G(j)

(15)

∂L(G)

∂G
=

1

σ2
n
·
[
∂x̃1(g1)
∂g1

· · · ∂x̃NT (gNT )

∂gNT

]
· diag

{
HTHx̃(G)−HTy

}
+ 1 · 1T − e−G (16)

∂x̃n(gn)

∂gn
=

1

τ (j)
·
[
diag {f (gn)} − f (gn) · f (gn)T

]
·m .

(17)

Here, the operator diag {a} creates a diagonal matrix with the
vector a on its main diagonal. The step-size δ(j) can be chosen
adaptively in every iteration j just as the hyperparameter
τ (j). For example, we can follow a heuristic schedule like in
simulated annealing: We start with a large τ (j) and decrease
until we approach the true prior pdf for τ (j) → 0. In the
following, we denote our approach as Concrete MAP Detec-
tion (CMD). It is a generic approach applicable in any non-
linear differentiable probabilistic model. Furthermore, only

elementwise nonlinearities and matrix vector multiplications
are present. In particular, the matrix vector multiplications in
HTHx̃ and operations in f (gn) f (gn)

T
m have the largest

impact on complexity of CMD. This implies a linear iterative
complexity O(NT · (2NR + 4M)), i.e., CMD scales linearly
with the input and output dimension as well as the number
of classes. Hence, CMD exhibits a much lower complexity
compared to that of MAP detection (2c) of O(MNT ·NTNR)
growing exponentially with the number of elements in x.

C. Special Case: Binary Random Variables

In order to interprete the algorithm, we now focus on the
special case of binary RVs. We have M = 2 classes and hence
only one degree of freedom in the softmax function (5):

x̃n(gn) = z̃Tnm =
[
z̃1n z̃2n

]
·
[
−1
1

]
=
[
z̃1n 1− z̃1n

]
·
[
−1
1

]
= −2z̃1n + 1 . (18)

After rewriting

z̃1n = f
(
[g1n, g2n]

T
)
=

e
lnα1+g1n

τ

e
lnα1+g1n

τ + e
lnα2+g2n

τ

=
1

1 + e
lnα2−lnα1+g2n−g1n

τ

, (19)

we notice that the difference of two i.i.d. Gumbel RVs sn =
g2n − g1n is distributed according to the logistic distribution
p(s) = exp(−s)/(1 + exp(−s))2. By transforming the two
Gumbel RVs g2n and g1n into one stochastic variable sn and
making use of α = α1 = 1− α2, we have

z̃1n =
1

1 + e
ln(1/α−1)+sn

τ

. (20)

Finally, we combine (18) and (20) to arrive at

x̃(s) = tanh
(
ln (1/α− 1) + s

2τ

)
. (21)

Now, we reparametrize the objective function for binary RVs
in terms of logistic RVs s ∈ RNT×1 with the new a-priori pdf
p(s):

L(s) =− ln p(y|s)−
NT∑
n=1

ln p(sn) (22)

=
1

2σ2
n
(y −Hx̃(s))T (y −Hx̃(s))

+ 1T s+ 2 · 1T ln
(
1 + e−s

)
. (23)
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Fig. 3. BER curves of several detection methods in a 30×30 MIMO system
with QPSK modulation. Effective system dimension is 60× 60.

The prior pdf acts like a regularization contributing the second
term. Analogously, we derive the gradient descent step of
binary CMD:

s(j+1) = s(j) − δ(j) · ∂L(s)
∂s

∣∣∣∣
s=s(j)

(24)

∂L(s)

∂s
=

1

σ2
n
· ∂x̃(s)

∂s
·
[
HTHx̃(s)−HTy

]
+ tanh

( s
2

)
(25)

∂x̃(s)

∂s
=

1

2τ (j)
· diag

{
1− x̃2(s)

}
. (26)

Again, we notice that the iterative complexity of O(2NTNR)
of binary CMD is much lower than the MAP detection
complexity of O(2NT ·NTNR).

IV. NUMERICAL RESULTS

In order to evaluate the performance of the proposed ap-
proach, we present numerical simulation results for application
in MIMO systems with NT transmit and NR receive antennas.
In this paper, we restrict to QPSK transmissions with Gray
encoding and transform the complex-valued into the equivalent
real-valued system model (1) so that we have x ∈ M2NT×1

and xn ∈ {±1}. The model allows to compare to Deep
Neural Network (DNN) based approaches for MAP detection
in MIMO transmissions [7], [8], [9]. Hence, we test Concrete
MAP Detection (CMD) for the binary case. The step size
δ(j) and softmax temperature τ (j) are chosen to minimize
the cross-entropy of x. That means, we learn δ(j) and τ (j)

using data and applying stochastic gradient descent methods.
As an example, we assume the number of iterations to be
Nit = 2NT. Furthermore, we compare CMD to several State of
the Art (SotA) approaches for MIMO detection. Fig. 3 shows
the results in a large symmetric 30 × 30 MIMO system in
terms of Bit Error Rates (BER) as a function of Eb/N0. For
QPSK, Eb/N0 = 10 log10(1/σ

2
n )− 3dB.

Apparently, linear detectors perform bad in this setup: The
curve of the Matched Filter (MF) remains almost constant
at BER ≈ 20%. The Zero Forcer performs even worse and
is hence not shown. At least, the MMSE estimator shows
acceptable behavior but is still separated by a 7 dB gap from
the optimal performance of the Sphere Detector (SD).

Nonlinear SotA detectors show good performance. For
example, the BER of MMSE Successive Interference Cancel-
lation with sorted QR decomposition and post sorting (MMSE
SIC) from [10] decreases much faster. However, a 5 dB gap
still remains as the low-complexity approach is only well-
suited for small system dimensions. In contrast, Approximate
Message Passing (AMP) is also of low complexity and optimal
for large system dimensions [3]. This becomes evident at small
Eb/N0 < 8 dB, where the BER curve is 1 dB close to that of
the SD. At high Eb/N0 > 8 dB, the AMP runs into an error
floor since the message statistics are not Gaussian anymore in
finite small-scale MIMO systems.

Notably, our approach CMD offers the best performance of
considered detection methods. It performs only slightly worse
than the AMP at low SNR and does not run into an error
floor in the simulated SNR range. The BER curve for Nit =
60 decreases very fast and the performance loss compared
to SD only amounts to 1-2 dB at high SNR. Additionally,
the complexity is comparable to that of the AMP due to the
similar algorithmic structure. An exact complexity comparison
is left for future work.

We conclude our investigation by a comparison with results
of latest research. To the best of our knowledge, DetNet [7],
[8] is one of the first approaches transferring the results of
Deep Learning research into communication systems. It is
a very complex DNN architecture with a large number of
parameters based on a projected gradient descent. The BER
curve of DetNet with L = 180 layers is similar at low
SNR but decreases more slowly than that of CMD at high
SNR. Inspired from AMP, the authors from [9] propose a new
DNN-like network MMNet with 2 parameters per layer like
CMD. Designed for massive MIMO systems similar to DetNet,
MMNet with the same number of iterations L = 60 fails to
beat CMD. Surprisingly, MMNet works even worse than its
inspiration, the AMP, at low SNR. In contrast to CMD, both
approaches run into an error floor early.

For the sake of completeness, we also show results for a
smaller 10 × 10 MIMO system in Fig. 4. Now, all soft non-
linear approaches run into an error floor at lower SNR. Thus,
we conjecture that they share the same suboptimality at finite
system dimensions which requires further research. However,
CMD offers still the best overall performance and is even
better than MMSE SIC for Eb/N0 < 10 dB.

V. CONCLUSION

In this paper, we presented Concrete MAP Detection
(CMD). By means of the machine learning inspired continuous
relaxation of discrete random variables, the concrete distribu-
tion, we relaxed the discrete MAP problem. This offers many
favorable properties such as a differentiable objective function
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Fig. 4. BER curves of several detection methods in a 10×10 MIMO system
with QPSK modulation. Effective system dimension is 20× 20.

enabling a gradient descent based optimization. CMD beats
the performance of the considered SotA approaches in large
MIMO systems. In contrast to recent DNN based approaches,
it offers a low iterative complexity comparable to that of the
AMP as well. We leave extensions of CMD, e.g., to massive
MIMO systems, and a detailed complexity analysis for future
research.
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