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Abstract: Nowadays, spectrum in industrial radio systems
is already overoccupied. Therefore, future Industry 4.0
applications require coexistence management of differ-
ent wireless communication systems. For identification of
active systems, we propose Compressed Edge Spectrum
Sensing (CESS). Here, we focus on practical aspects and
show that the sampling rate can still be highly reduced.

Keywords: coexistence management, power spectrum
sensing, compressed sensing, sub-Nyquist sampling, cog-
nitive radio

Zusammenfassung: Das Spektrum in industriellen Funk-
systemen ist heutzutage überbelegt. Daher erfordern zu-
künftige Industrie-4.0-Anwendungen ein Koexistenzma-
nagement. Zur Identifikation drahtloser Kommunikations-
systeme schlagenwir Compressed Edge Spectrum Sensing
(CESS) vor. Hier fokussieren wir uns auf praktische Aspek-
te und zeigen, dass die Abtastrate selbst dann noch stark
reduziert werden kann.

Schlagwörter: Koexistenzmanagement, Spektralschät-
zung, Compressed Sensing, Unterabtastung, Cognitive
Radio

1 Introduction
In Industry 4.0, sensors andmachines are connected wire-
less, e. g., in manufacturing facilities, to enable smart fac-
tories. Today, all participants of this network act in un-
licensed ISM bands with limited bandwidth and in di-
rect vicinity. Radio channels are crowded and a reliable
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and fast communication is difficult to establish. In a con-
trolled environment or licensed spectrum, spectrum plan-
ning is an important tool to prevent collisions and to en-
hance throughput of different wireless systems. Therefore,
dynamic management is needed where shared spectrum
has to be continuously monitored. International norms al-
ready prescribe this coexistence management (CM) and
enable reliable industrial radio systems of the future [1].

One crucial component of CM and the related concept
cognitive radio [2] is spectrum sensing for interference pre-
vention. If an increasing number of systems shall be man-
aged, a large bandwidth has to be monitored. Sampling at
Nyquist rate drives up the cost of sensing hardware, may
lead to higher energy consumption and is generally waste-
ful. An approach from signal processing literature to over-
come these problems is Compressive Sensing (CS) [3]. In
CS, the number of required samples and therefore the aver-
age sampling rate can be reduced if a signal exhibits spar-
sity in some appropriate basis or dictionary. Fortunately,
the radio channels are expected to be under-utilized so
that CS theory can be applied to amplitude spectrum es-
timation [4] and power spectrum density (PSD) estimation
[5] as well. However, the spectramay not always be sparse,
e. g., in a busy environment, which makes application of
CS difficult and requires representation in another basis.
If the PSD is assumed piecewise constant in the respective
frequency bands, the derivative exhibits sharp edges at the
boundaries and is zero elsewhere. This point of view iswell
motivated since inmost cases, e. g., in OFDM, well defined
spectrum masks are employed. By this means, a CS esti-
mation problem is obtained again.

This article focuses on the novel approach Com-
pressed Edge Spectrum Sensing (CESS) capable of recon-
structing these PSD edges [6]. Its main contribution:
– Extensions to CESS by

– Complexity clarification
– Two different practical stopping criteria

– Examination of the performance in practical settings
including
– Different signal types
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– Channel disturbance
– Software-Defined Radio (SDR) measurements

2 Theoretical background

2.1 System model and problem statement

In the following, we shortly revisit the underlying theory
of compressed spectrum sensing in section 2.1 required to
understand the approach CESS in 2.2. For further details
on CESS and spectrum sensing in general, the reader is re-
ferred to [6, 7] and [2, 8, 9], respectively.

The main objective is to sense a wide band of band-
widthB in order to find the transmissions at particular car-
rier frequencies f . The related typical spectral occupation
is shown schematically in Fig. 1 and is assumed sparse in
frequency and time. Here, every color depicts one respec-
tive transmission (e. g., red, yellow, green) at correspond-
ing carriers. Usually, the spectrum manager observes the
signals in Fig. 1 as a vector of Nyquist samples x ∈ ℂN×1,
such that the amplitude spectrum is c = Fx with the DFT
matrix F ∈ ℂN×N . Thus, N defines the frequency resolu-
tion. Introducing subsampling by the measurement ma-
trix V ∈ ℂM×N , the available observation reads y = Vx =
VF−1c = Ac. A typical example for V is a Gaussian ran-
dommatrix. See [3] for more details onV and practical im-
plementations like the random demodulator and themod-
ulated wideband converter. Our proposed approach de-
pends on a piecewise constant signal structure only given
in the PSD and not the amplitude spectrum. By means of
the autocorrelation matrix Ry obtained in a proper time
window Δt (see Fig. 1), we establish a direct relation be-
tweenPSD s ∈ ℂN×1 andCSmeasurementsy.We formulate
the following matrix equation system

Ry = E [yy
H] = E [Ac(Ac)H] = ARcA

H = Adiag {s}AH

(1)

Figure 1: Occupation of a spectrum in time t and frequency f . The
spectrum is assumed stationary in one time window Δt equaling
the time resolution. The total sampling time in the 2D-approach
amounts to T = KΔt.

where Rc denotes the autocorrelation of the amplitude
spectrum and diag {⋅} a matrix with all zeros except for the
main diagonal that is equal to the input vector. By defini-
tion s = E [|c|2], the PSD is found on the diagonal of Rc
whereas all off-diagonal elements are zero if we assume
wide-sense stationarity for all signals in the sampling time
window [5]. By vectorization, it can be simplified to

ry = vec {Ry} = (A
∗ ⊗ A) vec {Rc} = (A

∗ ⊙ A) s = Φs (2)

with ⊗ denoting the Kronecker product, ⊙ the column-
wiseKronecker product also termed “Khatri-Raoproduct”,
A∗ the complex conjugate of matrix A and vec {⋅} the vec-
torization operation stacking the columns of a matrix into
one vector. The new power spectrum sensingmatrixΦ has
the dimensionsM2 × N and (2) may thus exhibit a unique
solution for M2 ≥ N . Owing to the specific problem struc-
ture, (2) can only be solved if M > N/2 which in fact al-
lows for subsamplingwithout any further assumptions [5].
In this case, it is sufficient to compute the Least Squares
(LS) solution by applying the Moore-Penrose pseudoin-
verse Φ†: ŝ = Φ†ry. Much fewer samples M2 ≪ N are
needed by exploiting sparsity. ForM > ‖s‖0, we can solve
the CS reconstruction problem

ŝ = argmin
s
‖s‖0 s. t. ry = Φs (3)

uniquely [5]. Here, the zero-norm ‖∙‖0 counts the number
of non-zero elements.

2.2 Compressed edge spectrum sensing

2.2.1 One-dimensional compressed edge spectrum
sensing

Unfortunately, there is no guarantee for the spectrum to
be sparse since it can be crowded or full in the worst case.
Hence, we cannot apply the results of the previous sec-
tion directly. Instead, we exploit the following sparse ba-
sis: The PSD can be assumed to be piecewise flat because
well defined spectrum masks are employed. Considering
an OFDM signal where the rectangular pulse forming re-
sults in a si-shape of the single carriers, the superposition
of the subcarriers leads approximately to such a rectangu-
lar spectrum mask. Any other spectral shapes present in
communications systemscanbeadequately approximated
through rectangular shapes as well.

Consequently, edges occur naturally as peaks in the
derivative. For that reason, (3) can be modified by replac-
ing the PSD s by the edge spectrum z = Γs:

ẑ = argmin
z
‖z‖0 s. t. ‖ry −ΦΓ−1z‖2 ≤ ϵ . (4)
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Γ ∈ ℂN×N = toeplitz {[1,−1,0, . . . ,0]T} is the difference
matrix and toeplitz {∙} a Toeplitz matrix determined by the
first column or row, respectively. In addition, we included
noise by the bounded error ϵ. In the following, we denote
(4) as one-dimensional Compressed Edge Spectrum Sens-
ing (1D CESS). It allows not only for application in densely
occupied spectrum, but also for an even higher reduction
in sampling rate due to the fact that there are considerably
fewer edges (exactly J) than occupied entries of the PSD
(J = ‖z‖0 ≤ ‖s‖0 ≪ N). Unique reconstruction is guaran-
teed forM > J [6].

2.2.2 Two-dimensional compressed edge spectrum
sensing

So far, only edges in the frequency domain have been ex-
ploited. But signal transmissions exhibit spectrum edges
in the time domain as well as depicted exemplary in Fig. 1.
More specifically, most communication systems are only
active for a limited time either to adhere to regulation (duty
cycles, short range devices, etc.) or because of intermittent
activity (wandering systems). For example, the Bluetooth
standard realizes a frequency hopping pattern. Here, the
transmission carriers are randomly changed after a certain
number of packets, inducing edges in time and frequency.

Hence, the first step to exploit this additional structure
consists of adopting the problem formulation of the previ-
ous section. We stack K equations obtained in K time win-
dows of length Δt with subsampling matricesΦi into one
single equation system:

rT =
[[[[[

[

ry1
ry2
...
ryK

]]]]]

]

=

[[[[[[

[

Φ1 0 . . . 0

0 Φ2
. . .

...
...

. . . . . . 0
0 . . . 0 ΦK

]]]]]]

]

⋅
[[[[[

[

s1
s2
...
sK

]]]]]

]

= ΦT ⋅ sT .

(5)

Choosing the matrices Φi differently could improve re-
construction because different sampling patterns provide
more information. In fact, CS benefits frompseudorandom
sampling patterns in practice [3].

In the next step, we introduce the 2D-edge vector
z2D = Γ2DsT obtained by multiplying the numerical 2D-
differential Γ2D = [ΓTf , Γ

T
t ]

T . The 2D-differential divides
into the differential in the frequency domain Γf = IK ⊗ Γ1
with Γ1 ∈ {−1,0, 1}N−1×N = toeplitz {[−1, 1,0, . . . ,0]} and the
differential in the time domain Γt ∈ {−1,0, 1}(K−1)N×KN =
toeplitz {[−11,0, . . . ,0, 1N+1,0, . . . ,0]}. In contrast to (4), it

is non-invertible so that we cannot apply classic CS algo-
rithms directly. Therefore, we formulate a Total Variation
Norm (TVN) minimization problem

ŝT = argmin
sT
‖Γ2DsT‖1 s. t. ‖rT −ΦTsT‖2 ≤ ϵ (6)

whichwedenote 2DCESS. It simply states that the gradient
of sT should be minimized. This approach is widely used
to denoise pictures and promotes piecewise-constant sig-
nals as assumedpreviously. Theminimumnumber ofmea-
surements should intuitively decrease when considering
piecewise-constant spectra since more information is ex-
ploited. In comparison to the one-dimensional case, the
results are expected to allow for greater compression and
performance, respectively. However, this comes at the cost
of increased latency T = KΔt, the time for collecting the
samples.

3 Practical considerations

3.1 Assumptions and practical requirements

Now, we want to focus on the implications and practical
aspects of the proposed subsampling approach and re-
construction algorithms. In the previous section, we intro-
duced in (1) the autocorrelation matrix Ry. Here, the ex-
pected value has to be approximated by the mean:

Ry ≈ R̂y =
1
Q

Q
∑
i=1

yiy
H
i . (7)

This basicallymeans thatQ realizations of the randompro-
cess y have to be measured. So we have to assume an er-
godic and wide-sense stationary process at least for the
time window Δt. Since the time for measuring one realiza-
tion y amounts toN ⋅TSwithTS being theNyquist sampling
period, the whole time window for collecting the samples
sums up to Δt = QNTS. High values of Q lead to a high
noise or error reduction whereas high values ofN increase
the frequency resolution. As a result, a trade off between
latency, resolution and noise suppression has to be con-
sidered.

3.2 Reconstruction algorithms

3.2.1 Complexity

So far, we stated NP hard CS reconstruction problems, but
do not provide tools for solving them. Approximation of
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the ℓ0- by the ℓ1-norm iswellmotivated. It promotes sparse
solutions and leads to a convex optimization problem [3].
Thus, it can be solved by local optimization algorithms
to find the non-ℓ0 norm global optimum. The computa-
tional complexity of ℓ1-optimization can be expected to be
very large and limits its and thus 2D CESS’ application in
practice. Alternatively, the less computational demanding
greedy algorithms can be used which try to approach the
ℓ0-minimum iteratively. For that reason, these local opti-
mization methods cannot ensure global convergence. One
of them is the famous Orthogonal Matching Pursuit (OMP)
algorithm which we want to focus on in the following.

The pseudo code of the OMP can be found in [3] and
leads to a complexity of O (iNM2) if QR decomposition is
employed and updated iteratively. Here, i equals the num-
ber of iterations. Since the signal vector is sparse and ev-
ery iteration reconstructs one element of this vector, the
number of iterations until the OMP terminates is assumed
very low i ≈ J ≪ N . In contrast, the LS solution has com-
plexity O (min{N ,M2} ⋅ NM2) being dominated by matrix
multiplications.Wenote that the bigO notation represents
the asymptotic behavior for large values of N and M so
that higher differences in computation time have to be ex-
pected.

3.2.2 Stopping criterion

In [6, 7], we evaluated the optimal performance and chose
the true residual as the stopping criterion of the OMP. In-
stead of prescribing the number of iterations according to
sparsity, we used the residual ϵ and checked whether it
has fallen below the threshold ηϵ-est. For problem (4), it is
ηϵ-est > ϵ(i) = """"ry −ΦΓ−1zi

""""2 being the current estimate
in iteration i. But in practice, we do not know the sparsity
of the unknown signal or the approximation error ϵ. To fill
this gap, we now propose two practical stopping criteria:
(i) based on residual estimation (ii) based on the change of
the residual. In the first approach, the approximation error
ϵ is estimated which we derive in the following. First, we
assume a circular complex Gaussian process Y with zero
mean. Now, consider the entries of R̂y = yiyHi in (7) for
Q = 1. It is straightforward to show that the variance of
one entry R̂jk is

Var [R̂jk] = Var [Y[j]Y
∗[k]] = Rjj ⋅ Rkk (8)

because real and imaginary part of Y[j] and Y[k] have the
same variance and are completely uncorrelated. Averag-
ing over Q realizations reduces this variance by Q. The ex-
pected residual can be derived as the sum of the variances

regardless of any correlations:

E [ϵ2] = E ["""""vec {Ry − R̂y}
"""""
2
2]

= (
M
∑
j=1

Rjj)
2/Q

= trace (Ry)
2 /Q . (9)

According to the central limit theorem, the distribution of
every single entry in R̂y converges to a Gaussian distribu-
tion for high Q. However, in general no closed form solu-
tion for the respective distribution of the resulting sum of
weighted and correlated chi-squared variables in ϵ2 exists.
Now, we can choose either the expected value as the stop-
ping criterion or define a probability of exceeding a certain
value of the residual to calculate a threshold ηϵ-est.

Another heuristic approach is to focus on the rate
of change of the residual. Intuitively, the residual should
only decrease significantly if signal components are recon-
structed. Hereafter, only small changes according to the
current noise level can be expected. We normalize the rate
of change by the initial residual in order to define a proper
threshold below which the algorithm is terminated:

ηϵ-change > |ϵ(i − 1) − ϵ(i)|/‖ry‖2 . (10)

3.3 Classification

After reconstruction with one of the previous algorithms,
either the power spectrum s or the edge spectrum z is ob-
tained. This soft information has to be processed in order
to locate the bands and classify them according to their
current occupation. We think feature detection is appro-
priate for this purpose and add it as a subsequent step in
the whole processing chain depicted in Fig. 2.

First, the wavelet edge detector (WED) detects the
band boundaries ̂fi by looking for the local maxima in
the absolute values of the edges |z|. In practice, non-ideal
spectral shapes, reconstruction and noise introduce false
edges. As a result, a threshold has to be applied. In order
to choose a reasonable threshold ηWED, a relation to de-
tection rates PD,WED and false alarm rates PF,WED has to be
established which was done in [6]. It holds

PF,WED = 2 ⋅ FN (−ηWED/√Var [Z]) (11)

with FN denoting the cumulative distribution function
of the standard normal distribution and Var [Z] =
2 (σ2n + σ

2
s)
2
/Q where σ2n is the noise power and σ

2
s the sig-

nal power in the PSD. Analogously, the missed detection
rate can be derived [6].
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Figure 2: Proposed design of the spectral estimator and classifier with block diagram.

Now, the Energy Detector (ED) can classify the con-
tents of the bands in s regarding occupation. It simply
compares the average signal strength in one band to a
threshold in order to distinguish between empty and oc-
cupied. In contrast to literature [2], we derive the threshold
of the ED from the WED: If one rising edge lies above the
threshold, then also the respective band can be regarded
as occupied. Considering the noise level, we choose: ηED =
ηWED + σ2n. Since the spectrum is sparse, we extract the
noise level σ2n from the band with lowest energy. Finally,
we receive the binary vector b̂ comprised of the informa-
tion regarding occupation of the PSD. In practice, it can be
used to start transmissions in white spaces.

4 Simulative and practical
evaluation

To evaluate CESS, we use the unlicensed 2.45GHz-ISM-
band.We consider two different scenarios and challenges,
respectively: (i) 802.11g/n-WiFi and Bluetooth transmis-
sions. (ii) Distortion by a transmission channel. We model
every single point in the amplitude spectrumof the respec-
tive bandwidth of those signals to be a Gaussian process
with carrier power σ2i = [4, 6, 8, 10, 12]. The bandwidth of
the WiFi signals was fixed to 20MHz whereas Bluetooth
consumes 1MHz. In order to generate a very general test
case, the carrier frequencies of Bluetooth signals were set
to integers of the whole considered frequency range and
sampling frequency of 100MHz. WiFi carriers were as-
sumed at 10, 30, 50, 70 and additionally at 90MHz. One
randomBluetooth and two randomWiFi signals were gen-
erated in the simulations. The occupation of β = 41% was
fixed and superposition avoided to maintain the same ba-
sic condition for the algorithms. Since 2D CESS relies on

Table 1: Default simulation parameter set.

Parameter N Q β σ2n PF,WED

Value 100 1000 0.41 0.1 0.1%

information in the time domain, also the time behavior
had to be modeled. Therefore, we used a Markov model
for WiFi with the states occupied and empty. The rate for
switching the state fromempty to occupied in one time slot
Δt was set to 1/30 and 1/20, vice versa. Hence, start and
mean occupation equal each other. Bluetooth signals fol-
lowed a random frequency hopping pattern and changed
the carrier after 5 time slots. Other parameters of the sim-
ulations reflecting practical settings can be extracted from
table 1. For 1D CESS, we used the OMP algorithm, and for
TVN Minimization, the convex optimization toolbox CVX
[10] with the solver SDPT3. For theoretical analysis, the
stopping criterion was chosen to be the true residual ϵ =
‖Ry−R̂y‖F reflectingoracle estimation. In apractical imple-
mentation, it is unknown since there is an unknown chan-
nel. Hence, in these cases the proposed stopping criteria
were adopted. An appropriate threshold ηWED to realize a
sufficient dynamic range for the test signals was obtained
by dynamically estimating V̂ar [Z] = 2 ⋅ max(ŝ)2/Q and
choosing PF,WED = 0.1%. To obtain subsampling matrices
V with optimal CS properties, we used Gaussian random
matrices with normalized columns. Finally, the number of
Monte Carlo trials was chosen as 1000 in the simulations
and as 100 in the practical verification.

4.1 WiFi and Bluetooth

The simulation results in terms of detection PD and false
alarm rates PF in the WiFi/Bluetooth setup are shown in
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Figure 3: (a) Detection PD and false alarm rates PF of the proposed algorithms as a function of compression ratio κ = M/N. (b) Detection
rates of WiFi/Bluetooth signals for 1D and 2D CESS.

Fig. 3a. 1D and 2D CESS are compared to the LS solution
of (2) with ℓ2-regularization [5]. It can be seen as an ap-
proximation to the ℓ0-norm of the direct CS approach (3)
of [5]. Because the latter leads to a performance compara-
ble to those of the LS solution [6], it is omitted here. Above
a compression ratio of κ = M/N = 20%, all tested meth-
ods achieve perfect detection and false alarm rates. Below
20%, the performance of LS deteriorates rapidly whereas
1DCESS performswell even at very low κ = 8%. In particu-
lar, this is the highest compression allowing for unique re-
construction since κ = M/N = 8/100 > J/N = 7/100. Here,
6% false alarms have to be tolerated while the detection
rate is 98%. Remarkable is the non-monotonic behavior of
false-alarm rate at low κ. It is difficult to pinpoint since the
spectral classifier is complex. Here, further investigations
are needed.

It can be clearly seen that 2D CESS surpasses both
mentioned algorithms by far. At κ = 8%, it detects 98% of
all spectral points as well, but leads to 1% false alarms. In
fact, 2DCESSgives goodperformance for all relevant ratios
down to κ = 3%. In summary, it can be stated that in ac-
cordance with the first guess 2D CESS offers performance
benefits because it utilizes the additional structural infor-
mation in the time domain. But this comes at the cost of a
higher delay KΔt, the time for collecting the samples. Ow-
ing to the focus on CS approaches and limited space, we
restrict our attention in the following to 1D and 2D CESS.

Until now, the whole spectrum was considered. How-
ever, it should be significantly easier to detect wide WiFi
spectra than narrow Bluetooth spectra. Indeed, we prove

it to be true. Fig. 3b depicts the detection rates of WiFi and
Bluetooth signals. We notice that the detection rates of
WiFi reflect the overall detection rate since they occupy al-
most the whole bandwidth. It becomes obvious that Blue-
tooth signals are detected less likely than WiFi transmis-
sions. 1D CESS is able to detect 90% of all Bluetooth sig-
nals at κ = 20% whereas 2D CESS recovers 94%. We ex-
plain the different behavior with the fact that edge repre-
sentation is not appropriate at a resolution of 1MHz. In this
case, Bluetooth occupies one single sampling point and
two edges result in 1D. As a consequence, the representa-
tion becomes less sparse and we need more information
for reconstruction. Since signals with bandwidth greater
than one point do not suffer from this drawback, it should
be no problem in practical settings and is regarded as the
worst case. At κ = 8% only 68% detections of Bluetooth
signals arepossible for 2DCESSandPD = 59%for 1DCESS.
Finally, we notice that 2D CESS performs better than 1D
CESS since it uses the information regarding the slow vary-
ing PSD in the time domain.

4.2 Transmission channel

We have seen that narrowband transmissions are a chal-
lenge for the proposed algorithms, but indeedmanageable
if we choose either a slightly higher compression ratio or
resolution. Now, we impose another challenge on them:
the channel H always being present in practice. Equation
(2) can be modified to include the channel by ry = ΦHs.
Since the narrowband signals do not suffer severely from
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Figure 4: Detection PD and false alarm rates PF of 1D CESS for variation of compression ratio κ in (a) channel disturbance with (b) proposed
stopping criteria.

the distortion and stay a single peak, we restrict our at-
tention to the WiFi spectrum scheme. A high deviation
from the ideal shape has to be expected. Furthermore, we
consider only 1D CESS since space is limited and it of-
fers a good trade-off between latency and detection per-
formance.

For introduction of the channel in the simulations,
we adopted a common standard scenario: a multi-path
Rayleigh fading channel. Based on industrial measure-
ments,we chose three tapswhose varianceswere assumed
to be equal and normalized to 1/3 for worst case anal-
ysis. Furthermore, we performed a practical verification
with a real channel.Weused two Lyrtech/Nutaq SDRswith
4 phase-coupled MAX2829-Single-Chip RF transceivers
working in the 2.45GHz and 5GHz bands. For further de-
tails, see [7]. Owing to filter bandwidth limitations, the sig-
nals had to be downsampled from 104MHz to 26MHz and
hence the spectra were scaled to 5.2MHz. A carrier fre-
quency of 2484MHz was fixed. The TX-SDR generates the
test spectra described in the previous section and trans-
mits every single one over a different transceiver chain so
that every transmission experiences different channel con-
ditions. At an approximate distance of 8m, one transceiver
chain is used to sense the spectrum and to reconstruct the
emitted spectra using offline processing in Matlab. Sub-
sampling was also simulated offline in Matlab.

Fig. 4a shows the performance of 1D CESS in chan-
nel disturbance. In comparison to the results of the pre-
vious section, an offset in detection rates for simulated
(simH) and practical environments (practH) becomes ob-
vious. Here, oracle estimation with the known number of

edges was applied. In practice, the detection rate amounts
to roughly 90% which is even higher than in the simula-
tions with 80%. This can be simply explained by the fact
that transmitter and receiverwere in line of sight. The com-
pressibility does not seem to suffer from the channel influ-
ence since a heavy degradation from the highest detection
rate and lowest false alarm rate can first be observed at
6%. This value equals again the lowest compression ratio
for unique reconstruction and offers still a false alarm rate
of 10% as well as 90% and 80% detections, respectively.

Finally, we examine the performance of the proposed
practical stopping criteria of section 3.2.2 in compari-
son to oracle estimation (pract H). The stopping criterion
based on the change of the residual (ϵ-change) was set to
ηϵ-change = 0.5%. Estimation of the expected residual as a
criterion (ϵ-est) was realized by application of approxima-
tion (7) on (9). To cover a broader range of random values,
we multiplied by a factor of √2 to obtain ηϵ-est. Clearly, no
large difference in detection and false alarm rate can be
deduced from Fig. 4b. Both proposed algorithms perform
very close to the oracle estimator. Therefore, we can ex-
pect no great degradation in PD and PF by application of
practical stopping criteria.

In summary, we assume that spectra are represented
by rectangular shapes very well since detection and false
alarm rates do not vary heavily over a broad range of com-
pression. Dissolving of some edges in channel influence
leads to degradation indetection rate and canonly be tack-
led by channel estimation or exploiting spatial diversity,
e. g., MIMO approaches or cooperative sensing [11]. Any-
way, cooperative sensing becomes necessary due to log-
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Figure 5: Comparison of Nyquist rate and sub-Nyquist rate spectrum sensing based on software-defined radio measurements of WiFi and
Bluetooth signals.

normal shadow fadingaswell as thehidden terminal prob-
lem and seems to be the optimal solution.

4.3 Real signals

Last but not least, we apply the algorithms on measure-
ments of real WiFi and Bluetooth signals for practical ver-
ification including all imperfections. For this purpose, we
emulatedwideband sensing of thewhole 2.45GHzbandby
connecting 4 transceivers of the RX-SDR in parallel. Every
single chain sensed an effective bandwidth of 22MHz. In
order to avoid aliasing, we added a Chebyshev FIR filter
and excluded overlapping spectral ranges. The total band-
width from 1 to 83MHz covers the entire ISM band. We
chose the resolution of one transceiver chain as N = 100
and the number of frames as Q = 100. The resulting to-
tal frequency resolution is 328 and the total sampling time
amounts to Δt = NQTS = 384.6 μs.

The results in formof twowaterfall plots are illustrated
in Fig. 5. The left one (a) depicts the ideal spectral shape
if all measurements are available, whereas the right one
(b) shows the reconstruction based on subsamples with
1D CESS at κ = 15%. Furthermore, we chose the stopping
criterion to be the change of the residual with ηϵ-change =
0.1%. The color bar indicates the logarithmic scale where
−20 dB/Hz depicts the noise level. At a carrier frequency of
12MHz equaling the null carrier and channel 1, we observe
a 802.11n-WiFi signal of 17.5MHz bandwidth. A deep fade
of the channel can be clearly seen at 8MHz. From roughly
20ms to 22ms, also a foreign 802.11b-WiFi signal without

this deep fade shows up. At higher frequencies, the Blue-
tooth transmissions take place which avoid the occupied
channel 1 and followa random frequencyhoppingpattern.
A duration of 3.125ms leads to a maximum packet length
of 5. It canbe clearly seen that 1DCESS is able to recover the
spectrum ofWiFi and Bluetooth transmissions despite im-
perfections. Only the Bluetooth signals at higher frequen-
cies cannot be detected since they experience heavy chan-
nel distortions. The magnitude differs about 15 dB so that
the dynamic range does not suffice to recover both WiFi
and Bluetooth signals. However, this can be overcome by
cooperative sensing mentioned earlier. In conclusion, we
can state that sensing of practical spectra at very low com-
pression ratios is indeed possible.

5 Conclusion

In this article, we presented complexity considerations
and novel stopping criteria for practical implementations
of 1D/2D CESS. Furthermore, we have shown that careful
parametrization and cooperation of the spectrum sensing
units is required, e. g., to properly detect small band sys-
tems like Bluetooth. Ourmain result is the reduction of the
sampling rate by up to a factor of 10 with realistic assump-
tions. Indeed, reconstruction based on measurements of
real WiFi and Bluetooth signals with SDRs indicates that
CESS enables wideband sensing at sub-Nyquist rates in
practical settings and low hardware cost. In summary, it
seems to be a proper candidate for future solutions of co-
existence management and cognitive radio applications.
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