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Abstract—Throughput and energy efficiency in 3-way relay
channels are studied in this paper. Unlike previous contributions,
we consider a circular message exchange. First, an outer bound
and achievable sum rate expressions for different relaying pro-
tocols are derived for 3-way relay channels. The sum capacity
is characterized for certain SNR regimes. Next, leveraging the
derived achievable sum rate expressions, cooperative and com-
petitive maximization of the energy efficiency are considered. For
the cooperative case, both low-complexity and globally optimal
algorithms for joint power allocation at the users and at the relay
are designed so as to maximize the system global energy efficiency.
For the competitive case, a game theoretic approach is taken,
and it is shown that the best response dynamics is guaranteed
to converge to a Nash equilibrium. A power consumption model
for mmWave board-to-board communications is developed, and
numerical results are provided to corroborate and provide insight
on the theoretical findings.

Index Terms—Multi-way networks, relay systems, energy effi-
ciency, green communications, resource allocation, fractional pro-
gramming, monotonic optimization, game theory, 5G networks,
mmWave communications, power control.

I. INTRODUCTION

Relays are fundamental building blocks of wireless networks.
Deploying relays in areas affected by significant shadowing
such as tunnels or the inside of buildings, or in areas that are
far away from the transmitter, allows to extend cell-coverage
and increase the network’s reliability and throughput. Thus, the
study of relay channels is essential in understanding the capacity
limits of modern networks and for the development of novel
communication schemes. One recently proposed channel model
for relay networks is the multi-way relay channel (MWRC),
which models clustered communication over a relay, where
the terminals in each cluster exchange information among
each other with the help of a relay. Such a model applies to
many communication architectures like the communication of
several ground stations over a satellite, or wireless board-to-
board communication in highly adaptive computing [2] where
multiple chips exchange data with the help of another chip
acting as relay. The MWRC was first introduced in [3] where
all users in the cluster send a message and are interested in
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decoding the messages of all other users in the cluster. In
[4] the common-rate capacity of the additive white Gaussian
noise (AWGN) MWRC with full message exchange is derived
and it is shown that for three and more users this capacity
is achieved by decode-and-forward (DF) for signal-to-noise
ratios (SNRs) below 0 dB and compute-and-forward otherwise.
The same authors present in [5] the capacity region of the
finite field MWRC. In [6] a constant gap approximation of
the capacity region of the Gaussian 3-user MWRC with full
message exchange is derived. In contrast to most other works,
the authors consider private messages instead of common
messages, i.e., each user transmits distinct messages to the
other users instead of a common one.

Besides throughput, another key performance metric in
modern and future 5G wireless networks is energy efficiency
(EE), which is steadily gaining momentum due to green
and sustainable growth concerns. The need for EE is even
stronger for battery-powered terminals, in order to extend
their lifetimes. From a mathematical standpoint, one well-
established definition of the EE of a communication system is
the ratio between the system capacity or achievable rate and
the total consumed power [7], [8]. With this definition, the EE
is measured in bit/J, thus naturally representing the efficiency
with which the available energy is used to transmit information.
Previous results on EE in relay systems mainly focus on one-
way amplify-and-forward (AF) or DF schemes and do not
consider the MWRC. In [9] the optimal placement of relays
in cellular networks is investigated and is seen to provide
power-saving gains. In [10] instead, cooperative approaches
aimed at weighted sum-power minimization with fairness and
rate constraints are devised. In [11] a pricing-based approach
is employed to come up with energy-saving power control
algorithms. There, the EE is defined as the difference of the
achievable rate and the transmit power scaled by a price. Instead,
[12] considers the bit/J definition of EE and devises energy-
efficient power control algorithms in interference networks. A
cooperative approach is considered in [13], where a multiple-
input multiple-output (MIMO) AF relay-assisted system is
considered and the source and relay precoding matrices are
allocated so as to maximize the global EE, for different channel
state information (CSI) assumptions [14]. Power control in one-
way and two-way relay channels with AF is studied in [15].

In this paper a 3-way relay channel is considered and both
throughput and energy efficiency are analyzed and optimized.
In contrast to most other works on MWRCs, we focus on a
partial message exchange where each message is only intended
for one receiver and, also, not every user sends a message
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to each other user. This might grant higher achievable rates
provided one can deal with interference at the receivers which
makes the analysis more involved.

In such a scenario, we make the following contributions:
1) We derive achievable sum rate expressions for the AF,

DF, and noisy network coding (NNC) relaying protocols,
and an outer bound on the sum capacity. The sum capacity
is characterized for certain channel configurations and
shown to be achieved by DF relaying in these cases.
For completely symmetric channels, this holds for all
SNRs below 8.1 dB. Furthermore, we show that the sum
capacity of these channels is achieved within a constant
gap by NNC and AF.

2) Based on the derived achievable sum rate expressions,
cooperative power control algorithms to maximize the
system global energy efficiency (GEE) are provided. If
DF is used at the relay, the global optimum of the system
GEE is found in polynomial time by means of fractional
programming theory. For all other relaying schemes,
leveraging fractional programming and monotonic opti-
mization theory, two algorithms are provided to compute
both a local solution with low complexity and the global
optimum with higher complexity. Numerical evidence
suggests that both algorithms actually achieve the global
optimum.

3) Energy-efficient power control is also investigated in a
competitive scenario formulating the problem as a non-
cooperative game. The existence of a Nash equilibrium
(NE) is shown and a best response dynamics (BRD)-
based algorithm is provided which is guaranteed to
always converge to a NE point.

4) The performance of the proposed algorithms and of the
different relaying schemes are thoroughly compared by
numerical simulations. A realistic power consumption
model for a mmWave board-to-board communication
system operating at 200 GHz is developed. It is shown
that, although not achieving the highest sum rate, AF
relaying is more energy-efficient than all other schemes
due to its low hardware complexity.

Notation: f ′(x) and f ′′(x) denote the first and second
derivative of f as functions of x, respectively. logb(·) denotes
the logarithm to base b. If not specified, b = 2. We define the
function C(x) = log(1 + x) for x ≥ 0.

II. SYSTEM MODEL

We consider a 3-user single-input single-output (SISO)
MWRC relay-assisted system in which the three users commu-
nicate with each other via a relay node. A symmetric scenario
is considered with a circular (i.e. partial) message exchange, to
be described in detail later. We assume full-duplex transmission
and consider a scenario in which no direct user-to-user link is
available. The users are denoted as node 1 to 3 and the relay
as node R. We define the set of all users as K = {1, 2, 3} and
the set of all nodes as KR = K ∪ {R}.

The considered communication system can be decomposed
in a multiple-access channel (MAC), which carries the su-
perposition of the signals from the three users to the relay,
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Fig. 1. Illustration of the system model where node R is the relay and nodes
1 to 3 are the users. Messages travel along the different line styles.

and a broadcast channel (BC), which conveys the signal from
the relay to the users. Specifically, the signal received by the
relay is given by YR =

∑
k∈KXk +ZR, with Xk the channel

input at node k ∈ KR and ZR the independent and identically
distributed (i.i.d.) zero mean circularly symmetric complex
Gaussian noise with power NR. The relay processes YR to
produce a new codeword XR, which is then broadcast to the
users. Then, for all k ∈ KR, the signal received at user k
is given by Yk = XR + Zk, with Zk the i.i.d. zero mean
circularly symmetric complex Gaussian noise with power NS .
The channel inputs are subject to an average power constraint
PS on each Xk, k ∈ K and PR on XR. The rule which defines
how XR is produced from YR depends on the particular relay
protocol. In this paper, we will consider DF, NNC, and AF, both
with treating interference as noise (IAN) and with simultaneous
non-unique decoding (SND) at the receivers. To conclude this
section, we describe in detail the considered circular message
exchange.

We consider the partial message exchange illustrated in
Fig. 1. It has two defining properties:

1) Each user has a message to transmit which is intended
for at least one other user.

2) Each user desires at most one message.

From these two properties it follows immediately that each
message is only required at one other user. We denote the
message of user k, k ∈ K, as mk and the node receiving it
is denoted by q(k). Furthermore, the user not interested in
mk is denoted as l(k). Also, it follows from the properties
listed above, that user k, k ∈ K, desires the message sent by
user l(k). Further, since mk and ml(k) are to be decoded by
users q(k) and k, respectively, mq(k) is the desired message at
node l(k). Without loss of generality, we assume a clockwise
message exchange with q(k) and l(k) defined as follows:

q(k) =


2 if k = 1

3 if k = 2

1 if k = 3

, l(k) =


3 if k = 1

1 if k = 2

2 if k = 3

.

A (2nR1 , 2nR2 , 2nR3 , n) code for the 3-user MWRC consists
of three message sets Mk = [1 : 2nRk ], one for each user
k ∈ K, three encoders, where encoder k ∈ K assigns a symbol
xk,i(mk, y

i−1
k ) to each message mk ∈ Mk and received

sequence yi−1
k for i ∈ [1 : n], a relay encoder that assigns

a symbol xR,i(yi−1
R ) to every past received sequence yi−1

R

for i ∈ [1 : n], and three decoders, where decoder q(k) ∈ K
assigns an estimate m̂k ∈Mk or an error message e to each
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pair (mq(k), y
n
q(k)).

We assume that the message triple (M1,M2,M3) is uni-
formly distributed over M1 × M2 × M3 and mutually
independent. The average probability of error is defined as
P

(n)
e = Pr

{
M̂k 6= Mk for some k ∈ K

}
.

A rate triple (R1, R2, R3) is said to be achievable if there
exists a sequence of (2nR1 , 2nR2 , 2nR3 , n) codes such that
limn→∞ P

(n)
e = 0. The capacity region of the 3-user MWRC

is the closure of the set of achievable rates. The sum rate is
defined as RΣ = max {R1 +R2 +R3 : (R1, R2, R3) ∈ R},
where R is an achievable rate region. Whenever R is the
capacity region, we call RΣ the sum capacity CΣ.

III. BOUNDS ON THE SUM CAPACITY

We start our treatment of the symmetric 3-user MWRC by
deriving an upper bound on the sum capacity and then continue
with several inner bounds.

A. Outer Bound

This outer bound consists of the cut set bound in the uplink
and a downlink bound [16] that takes the side information at
the receivers into account.

Lemma 1: The sum capacity of the symmetric 3-user MWRC
is upper bounded as

CΣ ≤ min

{
3

2
C

(
PR
NS

)
, 3 C

(
PS
NR

)}
. (1)

Proof: From a slight modification of the proof of [16, The-
orem 4], we have that every achievable rate tuple (R1, R2, R3)

must satisfy Ri+Rj ≤ C
(
PR

NS

)
, for i 6= j and i, j ∈ K. Since

the proof is rather technical and offers no new insights, it is
deferred to the appendix. Applying the simplex algorithm (see,
e.g., [17]) analytically, we can show that RΣ ≤ 3

2 C
(
PR

NS

)
.

For the second bound, apply the cut set bound [18, The-
orem 15.10.1] to the cuts S = {k}, k ∈ K. This results in
Rk ≤ C

(
PS

NR

)
, for k ∈ K, and, thus, RΣ ≤ 3 C

(
PS

NR

)
.

B. Amplify-and-Forward

We first consider AF relaying where the relay scales the
observed signal by a positive constant and broadcasts it
back to the users. The transmitted symbol at the relay is
XR = αYR, where α is a normalization factor chosen such
that the transmit power constraint at the relay is met, i.e.,
α =

√
P ′R /

(∑
k∈K P

′
k +NR

)
, where P ′k, k ∈ KR, is the

actual transmit power of node k satisfying the average power
constraints. The receiver first removes its self-interference from
the received signal1 and then decodes for its desired message
while treating the remaining interference as noise. We split
the transmission into three equal length blocks, i.e., time slots,
and switch off user i in time slot i, i = 1, 2, 3. This reduces
interference and allows for higher transmission powers in the
other two time slots while still meeting the average power
constraint.

1Due to the static channels and long transmission times, we can assume
without loss of generality that α is known at all nodes.

Lemma 2: In the 3-user MWRC, the sum rate

RAF-IAN
Σ = C

(
3PSPR

NRPR + 3PSNS +NSNR

)
(2)

is achievable with AF relaying and IAN at the receivers.

Proof: The received signal of user q(k) is Yq(k) =∑
j∈K αXj + αZR + Zq(k). Since Xq(k) is known at receiver

q(k), it can be removed from the received signal. Thus,
Ỹq(k) = Yq(k) − αXq(k) = αXk + αXl(k) + αZR + Zq(k).
Treating the interfering symbol Xl(k) as additional noise,
the maximum achievable rate Rk is C

(
α2P ′k

α2P ′
l(k)

+α2NR+NS

)
.

Plugging in the expression for α we have

Rk ≤ C

 P ′RP
′
k

P ′RP
′
l(k) + P ′RNR +

(∑
j∈K P

′
j +NR

)
NS

 ,

(3)
for all k ∈ K.

By computing its first-order derivative, it is shown that the
right-hand side (RHS) of (3) is monotonically increasing in
P ′R. Thus, P ′R = PR is optimal.

Next, we split the transmission into three equal length blocks
and switch off user i in time slot i, i.e., P ′ii = 0,2 i = 1, 2, 3.
Then, the achievable sum rate in time slot i is

RiΣ =
1

3

(
Rq(i) +Rl(i)

)
=

1

3
C

 PRP
′i
q(i)

PRNR +
(
P ′iq(i) + P ′il(i) +NR

)
NS

 (4)

+
1

3
C

 PRP
′i
l(i)

PRP ′iq(i) + PRNR +
(
P ′iq(i) + P ′il(i) +NR

)
NS

 .

Since each user transmits only in two out of three time slots
the average power constraint is met as long as

∑
j∈K\{k} P

′j
k ≤

3PS for all k ∈ K. From the first order derivatives of (4) it
is obtained that (4) is monotonically increasing in P ′iq(i) and
P ′il(i). Thus, this constraint should be met with equality.

We set P ′21 = 3PS − p, P ′31 = p, P ′32 = 3PS − p, P ′12 = p,
P ′13 = 3PS − p, P ′23 = p, for some p ∈ [0,3PS ] in (4) and get

1

3
C

(
3PSPR

NRPR +NS (3PS +NR)

)
as the achievable sum rate in time slot i. Summing over all
time slots results in (2).

Proposition 1: For AF-IAN, the power allocation policy
achieving Lemma 2 attains higher sum rates than transmitting
with maximum transmit power at all nodes.

Proof: Using maximum transmit power in (3), the achiev-
able sum rate with AF-IAN is

3 C

(
PRPS

PRPS + PRNR + 3PSNS +NRNS

)
.

2Notation: P ′ik is the transmit power used by user k in time slot i.
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This rate is always less than (2) if

0 ≤ (3PSPR +NRPR + 3PSNS +NSNR)

· (PSPR +NRPR + 3PSNS +NRNS)
3

− (2PSPR +NRPR + 3PSNS +NRNS)

· (NRPR + 3PSNS +NSNR)

Expanding the RHS, we have

0 ≤ P 3
SP

3
R (2NSNR + 2NRPR + 3PRPS + 6PSNS) ,

which is easily seen to hold.
Remark 1: Observe that time sharing is necessary to

achieve the sum rate in Lemma 2. Without time sharing, the
transmission scheme described above boils down to turning
off one transmitter during the whole transmission. Besides
being highly unfair to one user, this would also result in lower
achievable rates since the remaining two transmitters are only
allowed to transmit with power PS . More specifically, the
achievable sum rate in this case is C

(
2PSPR

NRPR+2PSNS+NSNR

)
.

It is easily shown that this rate is smaller than (2).
Remark 2: In each time slot of the transmission scheme

described above, one user transmits with power 3PS − p and
the other with power p, where p ∈ [0, 3PS ]. However, since
the sum rate does not depend on this parameter p, it may
be chosen arbitrarily without affecting the sum rate. Thus,
Lemma 2 included TDMA as a special case, since for p = 0
and p = 3PS , only one user transmits per time slot.

While AF-IAN offers low relay and decoder complexity,
SND [19] may be employed at the receivers to achieve higher
transmission rates. In SND, the interfering message is jointly
decoded with the desired message instead of treating it as
additional noise.

Lemma 3: In the 3-user MWRC, the sum rate

RAF-SND
Σ =

3

2
C

(
2PSPR

NRPR + 3PSNS +NSNR

)
(5)

is achievable with AF relaying and SND at the receivers.
Proof: We start from the discrete memoryless multi-way

relay channel (DM-MWRC) which is the discrete memoryless
equivalent of the considered channel and model the relay using
the instantaneous relaying approach from [20]. It can be seen
that the resulting channel is equivalent to a 3-user interference
channel (IC) with receiver message side information and
feedback. Then, we apply SND to this equivalent channel which
is a small variation of the proof for the 2-user IC (cf. [19,
p. 135]). Finally, applying this result to Gaussian channels
using the standard procedure [19, Section 3.4.1], we can show
that a rate tuples (R1, R2, R3) is achievable in the symmetric
MWRC with AF relaying and SND at the receivers if all rates
are non-negative and satisfy

∑
i∈S

Ri ≤ C

 PR
∑
i∈S P

′
i

NRPR +NS

(
NR +

∑
j∈K P

′
j

)
 ,

for all S ∈ {{k}, {k, l(k)} : k ∈ K}. Setting P ′k = PS , k ∈ K,
and applying the simplex algorithm [17], it is straightforward
to show (5).

C. Decode-and-Forward

In DF relaying, the relay completely decodes the messages
of each user and then broadcasts them back to the users.
Neglecting feedback, the maximum achievable rate region is
the intersection of the capacity regions of the 3-user MAC and
the BC with receiver side information and partial decoding at
the receivers.

Lemma 4: In the 3-user MWRC, the sum rate

RDF
Σ = min

{
3

2
C

(
PR
NS

)
, C

(
3PS
NR

)}
(6)

is achievable with DF relaying.
Proof: Evaluate the achievable rate region in [3, Propo-

sition 2] for L = 1, K = 3, P 1
r = PR, P1i = PS for all

i ∈ K, Nr = NR, and N1l = NS for all l ∈ K. Then, using
the simplex algorithm (see, e.g., [17]), we can show that

RDF
Σ =



3
2D if D < A and C > 3

2D,

or A < D < B and C > 3
2D

C if D < A and C < 3
2D,

or A < D < B and C < 3
2D,

or B < D

(7)

where A = C
(
PS

NR

)
, B = C

(
2PS

NR

)
, C = C

(
3PS

NR

)
, and

D = C
(
PR

NS

)
.

We observe that B < D ⇔ 2PS

NR
< PR

NS
. Thus, it holds

that
(

1 + 3 PS

NR

)2

<
(

1 + 3
2
PR

NS

)2

<
(

1 + PR

NS

)3

which is
equivalent to C < 3

2D. Hence, with B < D ⇒ C < 3
2D it

can be seen from (7) that RDF
Σ = min

{
3
2D,C

}
.

Remark 3: The result from [3] implements a full message
exchange. However, from the proof of Lemma 1 it can be seen
that in the symmetric case the relaxed decoding requirements
due to the partial message exchange considered here can not
result in higher rates for DF.

D. Noisy Network Coding

NNC [21] generalizes the compress-and-forward (CF) coding
scheme for the relay channel [22] and network coding for
graphical networks [23] to discrete memoryless networks
(DMNs).

Lemma 5: In the 3-user MWRC, the sum rate

RNNCΣ =
3

2
C

(
2PSPR

NRPR + 2PSNS +NSNR

)
(8)

is achievable with NNC and SND.
Proof: Use [21, Theorem 2] and identify DR = ∅ and

Dk = {q(k)} for k ∈ K. Assume Ŷi = Yi + Ẑi with Ẑi ∼
CN (0, Qi) for i ∈ KR, and Q = ∅, i.e., no time-sharing is
used. Then, the achievable rate region is

Rk < C

(
PS

NR +QR

)
,∑

i∈K\{k}

Ri < min

{
C

(
2PS

NR +QR

)
, C

(
PR
NS

)
− C

(
NR
QR

)}
,

for each k ∈ K.
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Using the simplex algorithm [17], it is obtained that the
sum rate is RΣ = 3

2 C
(

2PS

NR+QR

)
if QR > NS(NR+2PS)

PR
, and

RΣ = 3
2 C
(
PR

NS

)
− C

(
NR

QR

)
, otherwise. Due to monotonicity

in QR, the optimal choice for QR is NS(NR+2PS)
PR

. Evaluating
RΣ at this point results in (8).

E. Comparisons and Insights

In this subsection, we use the results from above to state some
analytical results on the sum capacity and compare achievable
sum rates of the considered relaying schemes.

Theorem 1: If PR

NS
≤
(

1 + 3 PS

NR

)2/3

− 1, the sum capacity

of the symmetric 3-user MWRC is CΣ = 3
2 C
(
PR

NS

)
and is

achieved using the DF strategy from Lemma 4.
Proof: Equation (6) is equal to (1) if in both equations

the first term of the minimum is active. Since C
(

3PS

NR

)
≤

3 C
(
PS

NR

)
, this is the case as long as 3

2 C
(
PR

NS

)
≤ C

(
3PS

NR

)
.

This condition is equivalent to the condition in Theorem 1.
Remark 4: For the completely symmetric channel where P =

PS = PR and N = NS = NR, the condition in Theorem 1 is
equivalent to P

N ≤ 3 + 2
√

3 ≈ 8.1 dB.
Theorem 2: The sum capacity of the completely symmetric

3-user MWRC is achieved within 0.877 bit by NNC and within
1.5 bit by AF-SND.

Proof: Let S = PR

NS
= PS

NR
. The achievable sum rate for

NNC and AF-SND is C
(

2S2

1+(1+a)S

)
with a = 2 for NNC and

a = 3 for AF. Its gap to the outer bound is

∆ =
3

2
C(S)− 3

2
C

(
2S2

1 + (1 + a)S

)
=

3

2
log

(
1 + (2 + a)S + (1 + a)S2

1 + (1 + a)S + 2S2

)
.

From the first derivative of ∆ it can be seen that this is an
increasing function in S for all relevant choices of a. Thus, its
maximum is attained at S →∞ and has value limS→∞∆ =
3
2 log

(
1+a

2

)
.

Corollary 1: The sum degrees of freedom (DoF) of the
3-user MWRC with circular message exchange is 1.5.

Proof: The sum DoF dΣ is defined as limP→∞
CΣ(P )
log(P )

where CΣ(P ) is the sum capacity of the completely symmetric
MWRC. From the proof of Theorem 2, for the outer and inner
bounds we respectively have

dout
Σ ≤ lim

S→∞

3

2

log(1 + S)

log(S)
=

3

2

din
Σ ≥ lim

S→∞

3

2

log
(

1 + 2S2

1+(1+a)S

)
log(S)

=
3

2
.

Since both bounds coincide, dΣ = 3
2 .

Remark 5: It is easily shown that DF and AF-IAN achieve
a sum DoF of 1.

Proposition 2: It holds that RNNCΣ ≥ RAF-SND
Σ ≥ RAF-IAN

Σ .
Proof: The first inequality follows directly from comparing

(5) and (8). For the second, note that RAF-SND
Σ ≥ RAF-IAN

Σ is

equivalent to(
1 +

2PSPR
NRPR + 3PSNS +NSNR

)3

≥
(

1 +
3PSPR

NRPR + 3PSNS +NSNR

)2

.

Since f(x) = (1 + 2x)
3− (1 + 3x)

2 is monotonically increas-
ing and f(0) = 0, we have f(x) ≥ 0 for x ≥ 0 and, hence,
the above inequality holds.

Remark 6: DF does not fit in this order since it outperforms
NNC only in certain SNR regimes. Even for the completely
symmetric case, the intersection point between DF and NNC
has to be determined numerically. In this case it is approxi-
mately 14.27 dB.

IV. RESOURCE ALLOCATION FOR ENERGY EFFICIENCY
MAXIMIZATION

From a physical standpoint, the efficiency in the use of a
given resource is the benefit-cost ratio, i.e. the benefit obtained
from using the resource, divided by the cost associated to the
use of the resource. Applying this general concept to the use
of energy to transmit data over a communication link, leads
to defining the EE as the amount of data that can be reliably
transmitted in a given time interval T , divided by the resulting
energy consumption over the same time interval.

In this section, we will deal with the problem of allocating
the transmit powers at the users and relay for EE maximization.
Both cooperative and competitive resource allocation will be
considered.

A. Cooperative resource allocation

From a system-wide perspective, the benefit and cost related
to the use of energy over a time interval T are identified as the
amount of data that can be reliably transmitted in the whole
network during T , and the total energy consumption in the
network. This leads to defining the system GEE as [8], [24]

GEE =
TBRΣ

T (φPS + ψPR + Pc)
=

BRΣ

φPS + ψPR + Pc
. (9)

In (9), B is the communication bandwidth and RΣ is the
achievable sum rate in bit/s/Hz, which depends on the particular
relay protocol and receive scheme. Therefore, the numerator
TBRΣ is the total amount of data that can be reliably
transmitted during T . On the other hand, the associated total
energy consumption is given by the sum of the energies
consumed for signal transmission at the users and relay plus
the circuit power that is dissipated in all terminals to operate
the devices. The first component is expressed as φPS + ψPR,
with φ and ψ being the inefficiencies of the users and relay
transmit amplifiers,3 while the second component is modeled
by the constant term Pc.

In the cooperative scenario, the users and the relay cooperate
and jointly allocate PS and PR to maximize the common per-
formance metric (9). Given the achievable sum rate expressions

3Specifically, ψ ≥ 1 is the inefficiency of the relay amplifier, while φ ≥ 3,
accounts for the inefficiency of the amplifiers of the three users.
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TABLE I
PARAMETERS FOR GLOBAL ENERGY EFFICIENCY MAXIMIZATION.

(a) GEE1

Scheme a1 α1 a2 α2

Outer bound 3
2

1 3 1

DF 3
2

1 1 3

(b) GEE2

Scheme α a b c

AF-SND 3
2

3
2
NS

1
2
NR

1
2
NSNR

AF-IAN 1 NS
1
3
NR

1
3
NSNR

NNC 3
2

NS
1
2
NR

1
2
NSNR

from Section III, (9) takes two different functional forms. For
the outer bound and for the DF case we have GEE1, and for
the AF and NNC cases we have GEE2 as defined next:

GEE1 =
min

{
a1 C

(
α1

PR

NS

)
, a2 C

(
α2

PS

NR

)}
φPS + ψPR + Pc

,

GEE2 =
αC
(

PSPR

aPS+bPR+c

)
φPS + ψPR + Pc

,

with a1, a2, α1, α2, α, a, b, and c non-negative parameters as
defined in Table I.

Being fractional functions, the considered GEEs are in gen-
eral non-concave functions and conventional convex program-
ming tools can not be used. Instead, fractional programming
provides a framework to optimize fractional functions. In
particular, we will exploit the following result from fractional
programming theory.

Proposition 3: Let S ∈ Rn, f, g : S → R, with
f(x) ≥ 0 and g(x) > 0. Solving the problem maxx∈S

f(x)
g(x)

is equivalent to finding the unique zero of the function
F (λ) = maxx∈S (f(x)− λg(x)).

Proof: See [25], [26].
Proposition 3 provides a way to maximize a fractional function
by finding the zero of the auxiliary function F (λ). This can
be accomplished (for example) by means of Dinkelbach’s
algorithm [26], which is reported in Algorithm 1.

Algorithm 1 Dinkelbach’s Algorithm
Initialize λ0, such that F (λ0) ≥ 0. Set n = 0.
while F (λn) > ε do

x?
n ← arg maxx∈S f(x)− λng(x) (10)

λn+1 ← f(x?
n)

g(x?
n)

n← n+ 1
end while
Output (x?

n, λn)

Dinkelbach’s algorithm exhibits super-linear convergence and
only requires the solution of a sequence of convex problems,
provided f(x) and g(x) are concave and convex, respectively,
and that S is a convex set. Indeed, in this case the subproblem
to be solved in each iteration to find x∗n is convex. Moreover,
we stress that Dinkelbach’s algorithm converges to the global

solution of the associated fractional problem also when f(x)
is not concave and/or g(x) is not convex, even though in this
case a non-convex problem must be globally solved in each
iteration.

1) Maximization of GEE1: The optimization problem is
formulated as max

PS ,PR

min
{
a1 C

(
α1

PR

NS

)
, a2 C

(
α2

PS

NR

)}
φPS + ψPR + Pc

s. t. PS ∈ [0;Pmax
S ], PR ∈ [0;Pmax

R ].

(11)

Problem (11) is an instance of a non-concave and non-smooth
fractional problem. However, it can be efficiently solved by
means of Dinkelbach’s algorithm because the minimum of
concave functions is concave. Therefore, the objective of (11)
has a concave numerator and an affine denominator. Moreover,
it is possible to reformulate (11) into a smooth problem by
introducing the auxiliary variable t as follows.

max
t,PS ,PR

t

φPS + ψPR + Pc

s. t. a1 C

(
α1
PR
NS

)
− t ≥ 0,

a2 C

(
α2

PS
NR

)
− t ≥ 0,

PS ∈ [0;Pmax
S ], PR ∈ [0;Pmax

R ].

(12)

In (12) the numerator and denominator of the objective are
both linear, while the constraints are convex. Then, (12) can be
solved by means of Dinkelbach’s algorithm with an affordable
complexity.

2) Maximization of GEE2: In this case, the optimization
problem is formulated as max

PS ,PR

αC
(

PSPR

aPS+bPR+c

)
φPS + ψPR + Pc

s. t. PS ∈ [0;Pmax
S ], PR ∈ [0;Pmax

R ].

(13)

Problem (13) is more challenging than Problem (11) because
the numerator of the objective function is not jointly concave
in the optimization variables. Therefore, directly applying
Dinkelbach’s algorithm requires solving a sequence of non-
convex problem, which is computationally demanding. In
general, no optimization tool is available to maximize a
fractional function with non-concave numerator with limited
complexity [25]. As a consequence, finding the global solution
of (13) with limited complexity appears difficult. In the
following, we propose two approaches to solve (13). The
first approach will be based on the alternating maximization
algorithm [27] and will find a local optimum of (13) with a
limited computational complexity. Instead, the second approach
will leverage the theory of monotonic optimization, determining
the global solution of (13) with an exponential complexity.
Interestingly, numerical evidence to be provided in Section VI
will show that the two algorithms achieve virtually equal
performance.

a) Alternating maximization approach: This approach is
based on the observation that the numerator of the objective,
although not being jointly concave in PS and PR, is separately
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concave in the two variables. To be more specific, the numerator
of the objective is concave in PS for fixed PR and vice
versa. Therefore, if we fix either PS or PR, we can solve (13)
with respect to the other variable by applying Dinkelbach’s
algorithm and solving a sequence of convex problems. The
formal algorithm is reported next and labeled Algorithm 2.

Algorithm 2 Alternating maximization for Problem (13)

Set P (0)
R ∈ [0, Pmax

R ]; ε > 0; n = 0.
while

∣∣∣EE
(n)
2 − EE

(n−1)
2

∣∣∣ ≥ ε do

P
(n+1)
S ← Solve Problem (13) with respect to PS

for fixed P (n)
R .

P
(n+1)
R ← solve Problem (13) with respect to PR

for fixed P (n+1)
S .

n← n+ 1
end while
Output (P

(n)
S ,P

(n)
R ).

The following proposition holds.
Proposition 4: Algorithm 2 converges to a stationary point

of Problem (13).
Proof: After each iteration of Algorithm 2 the objective is

not decreased. Hence, convergence follows since the objective
is upper bounded. Convergence to a stationary point follows by
leveraging [27, Proposition 2.7.1], which states that alternating
maximization converges to a stationary point if: 1) the feasible
set is the Cartesian product of closed and convex sets; 2) the
objective is continuously differentiable on the feasible set; 3)
the solution to each subproblem is unique. In our case, 1) and
2) are apparent. As for Assumption 3), it follows from the
properties of fractional functions. In particular, when either
PS or PR is fixed, the numerator of the objective is strictly
concave in the other variable, as can be seen by computing the
second derivative (see also [12]). Then, since the ratio between
a strictly concave and an affine function is known to be strictly
pseudo-concave, each subproblem in Algorithm 2 has a strictly
pseudo-concave objective. Finally, the thesis follows because
a strictly pseudo-concave function admits a unique maximizer.

b) Monotonic optimization approach: As mentioned,
when the concave/convex structure of the objective does not
hold, Dinkelbach’s algorithm still converges to the global
solution of the original fractional problem, provided one can
globally solve the non-convex Problem (10) in each iteration.
For the case at hand, Problem (10) takes the form max

PS ,PR

αC

(
PSPR

aPS + bPR + c

)
− λ (φPS + ψPR + Pc)

s. t. PS ∈ [0;Pmax
S ], PR ∈ [0;Pmax

R ].
(14)

Although being non-convex, Problem (14) can be globally
solved by means of monotonic optimization theory. For a
detailed review on monotonic optimization we refer to [28],
[29]. Here we only remark that monotonic optimization
provides a framework to globally maximize monotone functions
over normal sets, and recall the following facts.

Definition 1: Let xmin,xmax ∈ Rn+ with4 xmin ≤ xmax. Then,

4Inequalities between vectors are component-wise.

[xmin,xmax] = {x ∈ Rn+ : xmin ≤ x ≤ xmax} is a hyper-
rectangle in Rn+ and the set S ⊂ Rn+ is normal if [0,x] ∈ S,
∀ x ∈ S.

Proposition 5: The set S = {x ∈ Rn+ : g(x) ≤ 0} is
normal and closed if g : Rn+ → R is lower semi-continuous
and increasing.
The feasible set of (14) is normal, being the cartesian product of
two closed convex intervals in R, but the objective function is
not monotone, as it is the difference of two increasing functions.
However, the following proposition shows how to reformulate
(14) into a monotonic problem.

Proposition 6: Problem (14) can be equivalently reformulated
as

max
t,PS ,PR

αC

(
PSPR

aPS + bPR + c

)
+ t

s. t. t+ λ (φPS + ψPR) ≤ λ (φPmax
S + ψPmax

R ) ,

t ≥ 0, PS ∈ [0;Pmax
S ], PR ∈ [0;Pmax

R ],
(15)

which is a monotonic problem in canonical form.
Proof: Introducing the auxiliary variable t and

using the substitution λ (φPS + ψPR + Pc) + t =
λ (φPmax

S + ψPmax
R + Pc), yields the objective of (15), up

to the inessential constant −λ (φPmax
S + ψPmax

R + Pc). Next,
since λ (φPS + ψPR + Pc) is non-negative and increasing in
both PS and PR, the considered substitution is equivalent
to t ≥ 0, t + λ (φPS + ψPR) ≤ λ (φPmax

S + ψPmax
R ), and

we obtain Problem (15). Finally, we have to show that (15)
is a monotonic problem. The monotonicity of the objective
follows because the function C(·) is increasing and its
argument PSPR

aPS+bPR+c can be shown to be increasing in both
PS and PR by direct computation of first-order derivatives.
Moreover, since the constraint function t+ λ (φPS + ψPR) is
increasing, the feasible set is contained in the hyper-rectangle
[0;Pmax

S ] × [0;Pmax
R ] × [0;λ(φPmax

S + ψPmax
R )]. Finally, the

feasible set is also normal by virtue of Proposition 5.
As a consequence of Proposition 6, we can apply Dinkelbach’s
algorithm to globally solve (13), where in each iteration the so-
lution to the subproblem (14) is found by solving the equivalent
problem (15) by standard monotonic optimization algorithms,
such as the polyblock algorithm [29]. The drawback of this
approach is that the complexity of monotone programming is
in general exponential. However, we stress two points. First,
in our scenario we only have three variables, PS , PR, and
the auxiliary variable t, which makes the use of monotonic
optimization viable. Second, the proposed method provides a
benchmark for the proposed low-complexity algorithm based on
alternating optimization. As already mentioned, our numerical
results will show that the two methods enjoy very similar
performance.

B. Competitive resource allocation

After analyzing the cooperative case, we turn our attention
to the competitive scenario in which a distributed power
allocation is performed. This scenario is particularly relevant
for distributed networks in which no central coordination is
employed and power allocation needs to be performed in a
distributed fashion. More in detail, in this section we consider
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the case in which PS and PR are not jointly allocated to
maximize the GEE, but rather are separately allocated in
a competitive fashion for individual EE maximization. We
observe that in the considered symmetric scenario where the
three users use a common power level PS , the competition
occurs between the relay, which allocates PR, and the collective
of the three transmitters, which together allocate PS . This
competitive power control problem can be formulated as a
non-cooperative game in normal form G, whose players are
the relay R, with strategy set [0;Pmax

R ], and the three sources
together {Sk}k∈K, with strategy set [0;Pmax

S ]. The players’
utility functions are the individual EEs, defined as

uS =
RΣ

PS + Pc,S
, uR =

RΣ

PR + Pc,R
, (16)

with Pc,S and Pc,R the energy consumptions of the three
sources and the relay, respectively.5 We observe that both the
EEs in (16) have the achievable sum rate at the numerator.
This is motivated by the following observation: since the users
allocate the same power level PS , they should tune PS so as
to optimize their collective benefit, i.e. the achievable sum rate
RΣ. On the other hand, the relay benefit is also represented
by the achievable sum rate, since the relay typically does not
favor any particular user. Moreover, in many circumstances,
the relay is deployed by a third-party operator, which loans
the relay to the users, and whose revenue is proportional to
the total amount of conveyed data.

The BRD of G is expressed as the following two coupled
problems maxPi

RΣ(Pi,P−i)
Pi+Pc,i

, with Pi ∈ [0;Pmax
i ], i ∈ {S,R},

and P−i denoting the strategy of the player other than i. The
optimization problem for i = S is the best response (BR) of the
sources to the relay strategy, whereas the problem for i = R is
the BR of the relay to the sources strategy. Depending on the
relay operation, RΣ can take one of the two following general
forms

RΣ,1 = min

{
a1 C

(
α1
PR
NS

)
, a2 C

(
α2

PS
NR

)}
, (17)

RΣ,2 = αC

(
PSPR

aPS + bPR + c

)
, (18)

with a1, a2, α1, α2, α, a, b, and c non-negative parameters
as defined in Table I. In the following, we will denote by G1

and G2 the game with RΣ,1 and RΣ,2, respectively. Moreover,
for ease of notation, let us define γ1 = α1PR

NS
, γ2 = α2PS

NR
,

and γ = PSPR

aPS+bPR+c . We start our analysis with the following
result.

Proposition 7: G1 and G2 always admit an NE. Moreover,
denote by BRS(PR) and BRR(PS) the BRs of the sources
and of the relay, respectively. In case of G1 it holds

BRS(PR) = min{Pmax
S , P̄max

S , P̄S}, (19a)
BRR(PS) = min{Pmax

R , P̄max
R , P̄R}, (19b)

with P̄max
S = NR

α2
[(1 + α1PR

NS
)a1/a2 − 1], P̄max

R = NS

α1
[(1 +

5We have not considered any scaling coefficients in front of the transmit
powers. This entails no loss of generality since any scaling coefficient can be
included in the circuit power terms without affecting the maximizers of the
utilities.

α2PS

NR
)a2/a1 − 1], P̄S the unique solution of the equation

NR C(γ2)

α2 C
′
(γ2)
− PS = Pc,S , and P̄R the unique solution of the

equation NS C(γ1)

α1 C
′
(γ1)
− PR = Pc,R. In case of G2 it holds

BRS(PR) = min{Pmax
S , P̄S}, (20a)

BRR(PS) = min{Pmax
R , P̄R}, (20b)

with P̄S the unique solution of the equation C(γ)

C
′
(γ)dγ/dPS

−PS =

Pc,S and P̄R the unique solution of the equation C(γ)

C
′
(γ)dγ/dPR

−
PR = Pc,R.

Proof: The existence follows by observing that for both
G1 and G2 the strategy sets are closed and compact [30], the
utility functions are continuous in PS and PR, and that uS is
pseudo-concave in PS , while uR is pseudo-concave in PR.

Next, let us focus on G1 and on the derivation of BRS(PR).
For any fixed PR, the PS where a1 C(γ1) intersects a2 C(γ2)
is P̄max

S . A key observation is that the optimal PS will never
be larger than P̄max

S , because for PS ≥ P̄max
S the numerator of

uS keeps constant, while the denominator increases. On the
other hand, in the range [0; P̄max

S ], we have uS = a2
C(γ2)

PS+Pc,S
,

which is increasing in [0; P̄S ], with P̄S its unique maximizer.
This proves (19a) and by a similar reasoning we can prove
(19b).

Finally, let us focus on G2 and on the derivation of BRS(PR).
In this case, the utility functions are differentiable, which
allows to obtain P̄S from the first-order optimality condition

C(γ)

C
′
(γ)dγ/dPS

− PS = Pc,S . Since uS is also pseudo-concave
in PS , first-order conditions are also sufficient and P̄S is the
global maximizer of uS for any fixed PR. Accounting for
the maximum power constraint we obtain (20a), while (20b)
follows by a similar argument.
After establishing the existence of at least one NE, a natural
question to ask is whether a unique NE exists and whether
the BRD converges to an NE. Unlike previous related results
on non-cooperative power control in two-hop systems [12],
[31], which show the uniqueness of the NE for the scenario
in which the relay is not one player of the game, for the case
at hand uniqueness does not hold. To see this, first observe
that the strategy profile (PS = 0, PR = 0) is an NE. Indeed,
if either PS or PR is set to zero, then the utility functions are
both identically zero and the other player has no incentive to
use a non-zero transmit power. This circumstance is a direct
consequence of the fact that the relay has been included as a
player of the game, a scenario which was not considered in
previous works where the relay was assumed to have no EE
concerns. Next, it is easy to find numerical examples in which
also non-trivial NE exist, thus proving that more than one NE
exists in general. However, while the uniqueness of the NE is
lost if the relay takes part in the game, the convergence of the
BRD still holds. To show this, the following lemma is required,
which proves the monotonicity of the BR functions of G1 and
G2.

Lemma 6: For G1 and G2, BRS(PR) is increasing in PR
and BRR(PS) is increasing in PS .

Proof: Let us consider G1 first. We will show the
monotonicity of BRS(PR). The monotonicity of BRR(PS)
can be obtained by a similar argument. From Proposition 7
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we know that BRS(PR) = min{Pmax
S , P̄max

S , P̄S}. The only
argument of the minimum function that depends on PR is
P̄max
S , since the equation whose solution defines P̄S does not

actually depend on PR. Moreover, P̄max
S , whose expression has

been provided in Proposition 7, is an increasing function of
PR. Consequently, recalling that the min function is increasing,
we conclude that BRS(PR) is increasing in PR.

Let us now consider G2. The BR of the sources to the relay
strategy is BRS(PR) = min{Pmax

S , P̄S}, with P̄S obtained by
solving

C(γ)

C
′
(γ)dγ/dPS

− PS = Pc,S (21)

Let us define the left-hand side (LHS) of (21) as the function
g(PS ,PR). The first step of the proof is to show that g is
increasing in PS .

∂g

∂PS
= −

C(γ)
[
C
′′
(γ)(γ

′
(PS))2 + γ

′′
(PS) C

′
(γ)
]

(
C
′
(γ)γ′(PS)

)2 ≥ 0 ,

where we have exploited the fact that C(γ) and γ(PS) are
positive, increasing, and concave. Next, we will show that g is
decreasing in PR. Note that ∂g

∂PR
≤ 0 is equivalent to(

C
′
(γ)
)2

− C(γ) C
′′
(γ) ≤ C(γ) C

′
(γ)

∂2γ

∂PSPR

1
∂γ
∂PR

∂γ
∂PS

.

(22)
Elaborating, the last two terms of the RHS can be expressed
as
∂2γ

∂PSPR

1
∂γ
∂PR

∂γ
∂PS

=
2abPSPR + acPS + cbPR + c2

(bPR + c)(aPS + c)

(
aPS + bPR + c

PSPR

)
=

1

γ

(
1 +

(
1 +

c

ab

aPS + bPR + c

PSPR

)−1
)

=
1

γ
+

1

γ + d
,

with d = c/ab. Thus, (22) becomes
(

C
′
(γ)
)2

−C(γ) C
′′
(γ) ≤

C(γ) C
′
(γ)
(

1
γ + 1

γ+d

)
, and plugging the expressions of C(γ)

and its derivatives, we have

γ ≤ loge(1 + γ) +
γ(1 + γ)

γ + d
loge(1 + γ) (23)

It can be seen that (23) holds if d ≤ 1. In particular, for d = 1
we have γ ≤ (γ + 1) loge(1 + γ). Both functions start from
zero, but the RHS has a larger derivative for all γ ≥ 0. Then,
(23) holds also for d < 1 since the RHS is decreasing in d. For
both AF-IAN and NNC we have d = 1, while for AF-SND
we have d = 2/3. Hence, for all of the considered schemes,
(23) is true and if PR increases, the LHS of (21) decreases.
As a consequence, in order to reach the constant level Pc,S at
the RHS, P̄S must increase, since we have also shown that the
LHS of (21) is increasing in PS . Finally, the monotonicity of
the BR follows from the fact that the min function is increasing.

Proposition 8: For any set of system parameters and
initialization point, the BRDs of both G1 and G2 are guaranteed
to converge.6

Proof: Denote by P
(0)
S the initial value of PS . Then,

P
(0)
R = BRR(P

(0)
S ) and P

(1)
S = BRS(P

(0)
R ). Let us consider

three cases.
If P (1)

S = P
(0)
S , we have reached convergence.

If P (1)
S > P

(0)
S , then we also have P (1)

R = BRR(P
(1)
S ) ≥

P
(0)
R by virtue of Lemma 6. But then, at the second iteration

we also have P
(2)
S = BRS(P

(1)
R ) ≥ P

(1)
S and P

(2)
R =

BRR(P
(2)
S ) ≥ P

(1)
R . Similarly, at the n-th iteration we have

P
(n)
S ≥ P

(n−1)
S and P

(n)
R ≥ P

(n−1)
R . Since the sources and

relay BRs are upper bounded by Pmax
S and Pmax

R , respectively,
the iteration must converge.

If P (1)
S < P

(0)
S , by a similar argument it follows that after

each iteration PS and PR are not increased, i.e. P (n)
S ≤ P (n−1)

S

and P (n)
R ≤ P (n−1)

R . Thus, convergence must eventually occur
since the BRs are non negative.
Based on Proposition 8, the BRD-based, competitive, power
control algorithm in which each player iteratively maximizes
his own utility function is guaranteed to converge. The formal
procedure is reported next and labeled Algorithm 3.

Algorithm 3 Competitive power control algorithm

Initialize P (0)
R ∈ [0,Pmax

R ]. Set a tolerance ε.
while max

i=S,R

{
|EE(n)

i − EE(n−1)
i |

}
≥ ε do

P
(n+1)
S ← min{Pmax

S , P̄S} for given P (n)
R , with P̄S

defined in Proposition 7.

P
(n+1)
R ← min{Pmax

R , P̄R} for given P (n+1)
S , with P̄R

defined in Proposition 7.
end while
Output (P

(n)
S ,P

(n)
R ).

Even though it would seem that Algorithm 3 requires each
player to know the other player’s strategy, this is not the case
and Algorithm 3 can be actually implemented in a distributed
fashion with similar techniques as explained in [12].

V. EXTENSION TO NON-SYMMETRIC CHANNELS

In this section we show how the tools developed for energy
efficiency maximization in the symmetric case can be applied
to asymmetric scenarios, too. The main difficulty is to obtain
closed-form sum rate expressions for non-symmetric channels.
Moreover, even if closed-form expressions could be obtained,
they would be very cumbersome and involved, thus not allowing
to gain any analytical insight, as we did in the symmetric
case. Lacking an expression for the sum rate, we develop an
alternative, yet equivalent, approach, which allows to formulate
the GEE maximization problem based on the system rate region
instead of the sum rate expression.7

6Convergence is meant in the value of the utilities.
7A similar approach has been used for sum rate optimization in the

downlink of a MIMO multi-cell network [32].
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Specifically, the GEE optimization problem from Section IV
can be equivalently formulated as

max
R1,R2,R3,
P1,P2,P3,PR

R1 +R2 +R3

φ1P1 + φ2P2 + φ3P3 + ψPR + Pc

s. t. (R1, R2, R3) ∈ R(P1, P2, P3, PR) ,

Pi ∈ [0, Pmax
i ] , i = 1, 2, 3,

PR ∈ [0, Pmax
R ] ,

(24)

with (R1, R2, R3) ∈ R(P1, P2, P3, PR) being the constraints
which define the system rate region. Problem (24) can be seen
to have a pseudo-linear objective, and therefore can be solved
by means of Dinkelbach’s algorithm as done in Section IV for
the symmetric scenario. The complexity in solving (24) lies in
the constraints (R1, R2, R3) ∈ R(P1, P2, P3, PR), which are
usually non-convex. Then, we have again a similar trade-off
as in the symmetric scenario: low-complexity solutions can
be obtained by means of sub-optimal methods, such as the
alternating optimization, whereas the global solution can be
obtained by means of monotonic optimization, at the expense
of computational complexity.

As an illustrative example, consider AF-SND. It can be
easily seen from the proof of Lemma 3 that R contains all
non-negative rate tuples (R1, R2, R3) that satisfy

∑
i∈S

Ri ≤ C

 PR
∑
i∈S Pi

NRPR +Nq(k)

(
NR +

∑
j∈K Pj

)
 , (25)

for all S ∈ {{k}, {k, l(k)} : k ∈ K}. The RHS of (25) can be
written as

log

PR∑
i∈S

Pi +NRPR +Nq(k)

NR +
∑
j∈K

Pj


− log

NRPR +Nq(k)

NR +
∑
j∈K

Pj

 ,

which is a d.i. function, and therefore can be reformulated
into a monotone constraint as done in Section IV for the
symmetric scenario. Thus, monotonic optimization provides
the global solution of (24). Instead, low-complexity solutions
can be determined again by means of alternating optimization,
alternatively optimizing the rate tuple (R1, R2, R3), the users’
powers (P1, P2, P3), and the relay power PR. It can be seen
that each resulting sub-problem is a pseudo-linear maximization
subject to convex constraints.

Similar considerations can be made for the other considered
relaying protocols, too. As for AF-IAN, the asymmetric rate
region can be straightforwardly obtained by following the proof
for the symmetric case, which yields a formally equivalent
expression as (3).

As for DF, the achievable rate region in the asymmetric case
is already available in [3], for the case of full message exchange.
It can be seen that plugging the inequalities for the DF region
of [3] into (24) yields again a problem which can be globally
solved by monotonic optimization, whereas low-complexity
solutions can be obtained by alternating optimization. Applying
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Fig. 2. Achievable sum rates in the 3-user MWRC; 1) Outer bound from
Lemma 1, 2) NNC, 3) AF-SND, 4) AF-IAN, and 5) DF plotted as a function
of the SNR.

the approach used in [3] for the full message exchange to our
considered partial message exchange is straightforward.

Finally, as for NNC, the rate region in the asymmetric
scenario can be obtained by following the arguments in
Section III. However, lengthier, but not difficult, derivations are
required, since one has to include Qk, k ∈ K, as variables into
the resource allocation problem. We omit further details here,
since our focus is on the resource optimization problem. It
suffices to remark that also in this case we obtain expressions
which, when plugged into (24), yield a problem which can be
globally solved by means of monotonic optimization, while
low-complexity solutions can be obtained by means of sub-
optimal approaches such as alternating optimization.

VI. NUMERICAL RESULTS

For a discussion and numerical evaluation of the presented
transmission schemes, we consider completely symmetric
channels with N = NS = NR and P = PS = PR. For
the EE evaluation, we have Pmax = Pmax

S = Pmax
R and define

SNRmax = Pmax/N . At first, we will assume Pc = 1 W, unit
bandwidth, and no power loss at the transmitter, i.e., ψ = 1
and φ = 3, to compare algorithms and gain some general
insight on the EE. In the next subsection, we model a wireless
200 GHz board-to-board communication system to obtain more
realistic simulation parameters.

Fig. 2 shows the achievable sum rates from Section III as a
function of the SNR. It reflects the analytical results derived
in Section III-E. First, observe that both NNC and AF-SND
scale with the outer bound in the high SNR regime. Second,
DF achieves the sum capacity up to a SNR of 8.1 dB and is
the best performing scheme up to 14.27 dB (see Remarks 4
and 6). In the high SNR regime, its gap to the outer bound
grows unbounded. Finally, AF-IAN scales with DF in the high
SNR regime. It can be shown using the same methods as in
Section III-E that its gap to DF approaches exactly 2 bit as
SNR→∞.

Fig. 3 illustrates the performance of the cooperative GEE
maximization algorithms developed in Section IV-A. As for
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Fig. 3. GEE in the 3-user MWRC with 1) NNC, 2) AF-SND, 3) AF-IAN, 4) DF, and 5) the outer bound from Lemma 1 as a function of the SNR for fixed
circuit power Pc = 1W and noise variances N = 1W and N = 0.1mW in the left and right figure, respectively. The GEEs of NNC and AF are reported
for both alternating and monotonic optimization.

the GEE2-type optimization problems, the performance of
both monotonic optimization and alternating optimization are
reported and it is seen that they perform virtually equally, thus
suggesting that alternating optimization achieves the global
optimum of the GEE. This is also the case in all other numerical
simulations carried out in this paper. Thus, the alternating
optimization algorithm is a good alternative to monotonic
optimization when low computational complexity is the primary
concern.

Fig. 3a shows the GEE as a function of the SNR for a fixed
circuit power Pc = 1 W and unit noise variance. First of all,
it can be seen that the GEE saturates when SNRmax exceeds
a given value, which is lower than 5 dB for all considered
schemes. This is explained recalling that, unlike the achievable
rate, the GEE is not increasing with the transmit powers, but
instead admits an optimum transmit power level. If Pmax is
larger than such power level, then it is not optimal to transmit
at full power. This also explains why DF performs significantly
better than all other schemes, including NNC. Indeed, due to
the saturation of the GEE, the SNR range for which NNC
yields a larger achievable sum rate than DF is not reached
when GEE is optimized. Finally, as expected, NNC is better
than AF-SND, which is better than AF-IAN.

In Fig. 3b the same simulation parameters as in Fig. 3a have
been used but with different noise variance N = 0.1 mW. This
results in a much higher saturation point which is approximately
30 dB and produces a different behavior of the curves. In the
low SNR regime, DF achieves the outer bound, while in the
high SNR regime NNC and AF-SND perform best while DF
has significantly lower GEE. Due to the different DoFs, it
can be expected that for even higher saturation points the gap
between NNC and DF grows further, while the gaps between

NNC and AF-SND, and between DF and AF-IAN stay nearly
the same.

Figs. 4 and 5 consider the competitive scenario of Sec-
tion IV-B, also in comparison with the performance of the
cooperative algorithms. The same simulation parameters as
in Fig. 3a have been used, and it is assumed that every node
consumes the same circuit power. Thus, Pc,S = 3

4Pc and
Pc,R = 1

4Pc. In particular, Fig. 4 compares the GEE achieved
by the competitive power control algorithms to that obtained
by the cooperative allocation of Section IV. It is seen that
competitive and cooperative power control perform virtually
the same if DF is used, whereas a limited gap appears if the
other relaying strategies are employed. This can be intuitively
explained recalling that a more significant coupling in a non-
cooperative game results in a higher price of anarchy, and in
our scenario, the game for DF is more coupled than the game
for the other schemes. Indeed, the numerator of the players
EEs for DF is given by (17), while for the other schemes it is
given by (18). In the latter case, the two variables PS and PR
are more heavily coupled than in the former one because they
appear in the same C(·) expression.

Instead, Fig. 5 shows the behavior of the competitive
algorithms for DF and NNC for different initialization values.
It is observed that DF is more sensitive to the initialization
point than NNC. In particular, the closer the initialization point
to Pmax, the sooner the GEE reaches the saturation level. This
can be explained recalling that for DF the BRs are expressed as
in (19), where the variables P̄max

S and P̄max
R appear, which are

increasing in the strategy of the other player. If the initialization
values of the transmit power is low with respect to Pmax, the
corresponding values P̄max

S and P̄max
R will also be low and will

likely prevail in the min operation, preventing from transmitting
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at the saturation levels P̄S and P̄R. This does not occur for
NNC and AF since the BR has a different expression which
does not depend on similar variables as P̄max

S and P̄max
R .

Comparing previous illustrations and especially Fig. 3, we
learn that the energy-efficient performance of the different
transmission and relaying scheme highly depends on the
saturation point of the GEE function, which in turn is heavily
affected by the system parameters. Thus, for a sensible
comparison of the different schemes, it is necessary to choose
physically meaningful values for the noise variance and the
circuit power consumption. Furthermore, assuming the same
circuit power consumption for all schemes is unfair since they
have different hardware complexity. For this reason, in the
following subsection we consider a specific communication
system and develop a simple model for its power consumption
which allows for a fair comparison of the considered schemes.

A. mmWave Board-to-Board Communications

We consider a wireless board-to-board communication
system operating at 200 GHz carrier frequency with 25 GHz
bandwidth. Channel measurements and a link budget for such
a system with 4-by-4 antenna arrays are given in [2]. Since
there is no mobility in this scenario, the beams have a fixed
direction and the antenna array combined with the beamforming
network can be regarded as a single antenna with a gain of
7 dB. With a link length of 0.1 m, the resulting channel gain
is -65.8 dB as reported in [2, Table I].8,9 As for the noise, we
have NS = NR = kBTc where kB is the Boltzmann constant
and Tc the absolute temperature of operation.

Next, we develop a model for the circuit power consumption
Pc that reflects the different hardware complexities of the
considered transmission schemes. We assume that Pc depends
neither on the power allocation nor on the transmission rate
for simplicity. The analog part of each receiver consists of
an Rx front end and two analog-to-digital converters (ADCs)
consuming a total power of PADC. Similarly, each transmitter
consists of a Tx front end, two digital-to-analog converters
(DACs) (consuming a power PDAC), and a power amplifier
(PA) with efficiency η, i.e., ψ = 1

η and φ = 3
η . The Rx

front end has 16 low noise amplifiers (LNAs), one for each
antenna, two mixers and one LO-driver (local oscillator) for
those mixers resulting in a power Prx. Similarly, the Tx front
end consists of two mixers and a LO-driver consuming a
power Ptx.10 Realistic numbers for hardware-dissipated power
and PA efficiencies are reported in Table II, and the resulting
model parameters are given in Table III. We define Pc,analog =
Prx + PADC + PDAC + Ptx. The digital signal processing (DSP)
power consumption PDSP of each node is modeled as a multiple
of the power Pdec required by a single user decoder. From the
LDPC decoder model in [33]11 we get a decoding power of
267.6 mW. Adding some power to account for other processing
such as encoding, we round Pdec to 300 mW.

As for the users, when interference is treated as noise, only
one message needs to be decoded, hence P IAN

c,S = Pc,analog+Pdec.
For SND, we model the power consumption as if the two
messages were decoded sequentially,hence, PDSP = 2Pdec.12 A
similar assumption is used for receive decoding if DF relaying
is used because also in this case the receiver has to decode
two messages. Thus, P SND

c,S = PDF
c,S = Pc,analog + 2Pdec.

As for the relay, DF uses a 3-user MAC decoder. Hence,
PDF
c,R = Pc,analog + 3Pdec. The NNC relay does not decode

the received messages, and, in our scenario, does not have
a message to transmit on its own. Instead it uses a vector
quantizer to compress the received sequence. Following [34],
we assume that the (scalar) ADC in our model roughly models

8Computed without considering the polarization mismatch since we do
not consider polarization here.

9In previous sections, unit channel gain and bandwidth have been assumed
in the sum rate expressions. However, previous results and algorithms can be
straightforwardly extended to the case in which the powers PS and PR in
RΣ are scaled by a channel coefficient and divided by the bandwidth.

10We do not include the PA in the Tx front end since it is modeled
separately.

11For our model, the following parameters are suitable: Eedge = 108·kB ·T ,
rCOD = 1

2
, R = 50GBit/s, λ = 3, l = 2.

12Recall that NNC uses SND at the receivers.
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TABLE II
EXEMPLARY POWER CONSUMPTIONS FOR 200 GHZ RF COMPONENTS.

Component Value Unit Reference

Mixer 17 mW [35]

LO-driver 23 mW [35]

LNA 18 mW [36]

ADC 406 mW [37]

DAC 400 mW Estimate13

PA efficiency 6.2 % [38]

TABLE III
PARAMETERS FOR CIRCUIT POWER MODELING OF BOARD-TO-BOARD

COMMUNICATIONS.

Component Symbol Value Unit

Rx Frontend Prx 345 mW

Analog-to-digital converter PADC 812 mW

Single User Decoder Pdec 300 mW

Digital-to-analog converter PDAC 800 mW

Tx Frontend Ptx 57 mW

Power amplifier η 6.2 %

the quantization operation of NNC. The only DSP operation
then is encoding, and we have Pc,R = Pc,analog + 0.1Pdec.14 In
contrast to the other relaying schemes, AF directly amplifies
the analog signal, so neither DSP nor ADC and DAC are
necessary. Thus, PAF

c,R = Prx + Ptx. Finally, the circuit power
Pc = 3Pc,S + Pc,R.

Fig. 6 was obtained using the developed power consumption
model with the algorithms from Section IV-A. It can be
seen that in the low SNR regime DF performs best but that
starting from approximately 10 dB AF-SND achieves the best
GEE. This continues to hold for higher SNR’s, where DF is
outperformed by all other schemes. Since there are currently no
NNC implementations available, we might have underestimated
its power consumption. If we assume its decoding complexity
is actually higher than that of DF and add an additional Pdec
for each user and set PDSP = 4Pdec for the relay (instead of
0.1Pdec). The resulting GEE is shown as a dashed line in Fig. 6.
It can be seen that it still outperforms DF in the high SNR
regime despite its much higher power consumption.

VII. CONCLUSION

In this paper, we studied both achievable sum rates and the
EE of the symmetric 3-user MWRC with a partial message
exchange. We provided analytic sum rate expressions for
the most common relaying schemes and characterized the
sum capacity for certain SNR regimes. Next, we discussed
the problem of energy-efficient power control both in the

13This value has been provided by project partners from the DFG CRC
912 “Highly Adaptive Energy-Efficient Computing”.

14We assume PDSP = 0.1Pdec, which is roughly the power we accounted
for other processing in Pdec before.
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Fig. 6. GEE in the 3-user MWRC of 1) NNC, 2) AF-SND, 3) AF-IAN, 4) DF,
and 5) the outer bound from Lemma 1 as a function of the SNR for wireless
board-to-board communication at 200 GHz as discussed in Section VI-A.

cooperative and competitive scenario. The results indicate that
competitive optimization suffers a limited gap with respect
to cooperative resource allocation, and that the proposed low-
complexity cooperative allocation achieves the global optimum.

Moreover with reference to a realistic mmWave board-
to-board communication system, we have shown that AF
performs best for SNRs above 10 dB, closely followed by NNC,
while DF suffers from a higher hardware power consumption.
However, as discussed in Section VI, the performance of the
different schemes is significantly affected by the simulation
parameters. Also, the performance of NNC might be improved
by optimizing the quantization operation instead of assuming
a vector quantizer with Gaussian quantization noise. Further
analysis is required to understand which is the most energy-
efficient relaying scheme in other communication systems.
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APPENDIX

In this section, we complement the proof of Lemma 1
by modifying the proof of [16, Theorem 4] to match our
system model. In the following, Yk,i, k ∈ K, denotes
the i-th symbol received at node k, and Y nk denotes the
vector [Yk,1, Yk,2, . . . , Yk,n]. Similarly, XR,i is the i-th symbol
transmitted by the relay, and Zk,i is the AWGN at node k in
time instant i.

With Fano’s inequality, we have

Rk − εn ≤
1

n
I(Mk;Y nq(k),Mq(k))

≤ 1

n
I(Mk;Y nq(k),Mq(k),Ml(k))

=
1

n
I(Mk;Y nq(k)|Mq(k),Ml(k)) (26)
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and

Rq(k) − εn ≤
1

n
I(Mk;Y nl(k),Ml(k))

=
1

n
I(Mk;Y nl(k)|Ml(k)) (27)

=
1

n
I(Mk;Y nq(k)|Ml(k)) (28)

where (26) and (27) follow from the mutual independence
of the messages, and (28) is due to (Ml(k),Mq(k), Y

n
l(k)) and

(Ml(k),Mq(k), Y
n
q(k)) having the same distribution.

Summing over (26) and (28), we have

Rk +Rq(k) − 2εn

≤ 1

n

[
I(Mk;Y nq(k)|Mq(k),Ml(k)) + I(Mk;Y nq(k)|Ml(k))

]
=

1

n
I(Mk,Mq(k);Y

n
q(k)|Ml(k)) (29)

=
1

n

n∑
i=1

I(Mk,Mq(k);Yq(k),i|Ml(k), Y
i−1
q(k) ) (30)

=
1

n

n∑
i=1

[
h(Yq(k),i|Ml(k), Y

i−1
q(k) )

− h(Yq(k),i|Mk,Mq(k),Ml(k), Y
i−1
q(k) )

]
≤ 1

n

n∑
i=1

[
h(Yq(k),i)− h(Yq(k),i|Mk,Mq(k),Ml(k), Y

i−1
q(k) )

]
≤ 1

n

n∑
i=1

[
h(Yq(k),i)− h(Yq(k),i|XR,i)

]
(31)

=
1

n

n∑
i=1

[
h(Yq(k),i)− h(Zq(k),i)

]
≤ log

(
1 +

PR
NS

)
(32)

where (29) and (30) follow from the chain rule of mutual
information, and (31) is because

(Mk,Mq(k),Ml(k), Y
i−1
q(k) )−XR,i − Yq(k),i

form a Markov chain.
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