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Abstract—We derive a parameterization of positive definite exploiting the optimality conditions or by algorithms whic
matrices using the Cholesky decomposition in combination ith  adapt to the concrete problem structure.

hyperspherical coordinates. Based on the parameterizatiowe de- In multiuser MIMO scenarios, however, the resulting pro-

velop a simple and efficient method to randomly generate posve . L

definite matrices with constant or bounded trace accordingd a gramming problems for system optimization ar_e nqn-convex.
uniform distribution. Further, we present an efficient impl emen- EXxamples are the MIMO broadcast channel with linear pre-
tation using the inversion method and either rejection samfing  coding [4] and the MIMO interference channel [5], where one
or transforming a beta distribution. The matrix parameteri zation s interested in the achievable rate region or the optimized
might be of independent interest, whereas the random samply  \ejghted sum rate [6]. The maximization of secrecy rates or

algorithm finds applications in Monte-Carlo simulations, testing t k tes in MIMO t Iso leads t
of algorithms, and performance studies. With the help of an secret key rates in Systems also leads 1o non-convex

abstract example we describe how the sampling method can be Programming problems [7].
used to approximate the optimum in a difficult, e.g. non-conex, At least a numerical approximation of the solution of these

optimization problem for which no solution or efficient global  problems can be obtained by evaluating the objective fancti
optimization algorithm is known. In this paper we consider real for a suitable set of positive (or nonnegative) definite fnaf
as well as complex matrices. . . . . .
that satisfy the trace constraint. This approximation cames
Index Terms—Matrix parameterization, random covariance not only as a performance measure but also as bound to be
matrix, random matrix generation, random positive definite compared with suboptimal and heuristic transmit strategie
matrix, uniform distribution. . . .
The method requires the number of considered matrices to be
sufficiently large and without being able to exploit additib
. INTRODUCTION knowledge about the optimization problem, it is reason&ble
aample the matrices according to a uniform distributione Th

HE purpose of this article is to derive an efficient method._,. . . . o .
efficient generation of such a set of matrices is important in

to sample uniformly from the set of real or complex n .
" . . . this context.
positive definite matrices with constant or bounded trace. .
- ; " - . . Related work Extensive research has been devoted to the
Motivation. Generating positive definite matrices (or equi-

valently covariance matrices) at random finds applications pr_oble,m of randp mly generating positive deﬂn!te matn_ces
multivariate statistics, numerical analysis, or signabqess- with 1’s on the diagonal, also known as correlation matrices

ing. Examples include clustering and classification methoolfrewous work in this area is mainly based on combining eithe

testing numerical algorithms (e.g. Cholesky factorizati@and specified [8], 3], [10], [2.] or randpm .[1] elgenvalugs with
. - ) random orthogonal matrices, multiplying random triangula

studying the efficiency of data compression and decormiatlmatrix factors [10], [1], or randomly generating so called

algorithms [1], [2]. This work is mainly motivated by appic T y 9 9

tions in the area of multiple antenna wireless communiuatioIoartlal correlations [11], [12].' In prm_uple one can buih
. L . . . {]andomly generated correlation matrices to randomly geaer
system design and optimization, which will be explaine

T . covariance matrices. An approach of this type has been used
below. However, other areas of application in signal preices . . . : .
o . in [13] to randomly generate positive definite matrices with
for communications are possible.

) ' . , bounded trace according to a uniform distribution. Even if
The transmit strategy in multiple antenna wireless systems

: . . . : . .the existing methods show useful directions to considey als
is described by a linear precoding matrix or its correspogdi . : : L
. d : : ; " the generation of complex covariance matrices, it is not

transmit covariance matrix. It is necessarily positive ifon- . ; .

. - . straightforward to directly extend these approaches aifid st
negative) definite and the trace is bounded due to the transpi . A

. ) S . keep control over the resulting distribution.

power constraint [3]. In single-user multiple-input mplé-

output (MIMO) systems, the optimization problems are ugual Contribution and Outline.The main contribution of this

. . ork is to derive an efficient method to sample uniformly
convex programming problems and can be solved either ¥¥X o
rom the set of real as well as from the set of complex positive
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modular fashion: On the one hand it can be easily extendeddfinite (or positive semidefinite). We define
parameterize real matrices with variable trace. In palicthe o nxn B o
extension to complex positive definite matrices is strdaght Re={AeR ) f =0, tr(d) =c}, R:=Ri, (2
ward. On the other hand it enables us to find a simple, efficient Rieq = {B € R"*": B> 0, ¢ <tr(B) <7}, 3)

and unified method to generate a uniform distribution on gl ' the set of reah x n positive definite matrices with trace

considered sets of matrices. _ _ . equal to the constant > 0, with unit trace, and with trace
In Section 1I-B we derive in detail the parameter distribati ., ihe interval (c, @ for constants) < ¢ < @, respectively.

thaF I_eads to.a unifgrm distribution on the set qf regl pmeiti_ Accordingly, we define the following sets of complexx n
definite rr_watnces W|t_h constant t_race. We provide in SeC_t'CHbsitive definite matrices:

[I-C details of the implementation to generate the desired

distribution using either rejection sampling or transforgia Cor={AcC”":A~0,tr(A)=c}, C:=C1, (4
beta distribution. Ciee ={B€C™" B0, c<tr(B) <z} (5)

Starting from the results of Section Il we derive in Section T )

Il a uniform distribution on the set of real positive defiina-  DU€ 10 its symmetry, a matrid € R(cq haslén(n +1)
trices with bounded trace by treating the trace as independ&'dependent entries. Therefore, the Bet 7 is a(5n(n+1))-
multiplication parameter. An implementation of the dedvedimensional subset of the set of all reat» matrices, denoted
trace distribution using the inversion method is propostede, PY R™*". Adding the constraint of a constant trace reduces
in [13] a uniform distribution on the same set of real masicd® numberlof independent matrix entries by one. Thus, the
is obtained by a special transformation of beta and Lioavilf€tRc IS @(5n(n + 1) —1)-dimensional subset dk"*". Let
distributed random variables. However, another approach¢jPe & random variable with values Rr**" and assume to
used there which is based on a completely different, nB¢ defined on a probability space with probability meadeire
intuitively accessible parameterization. Only the readecis e say that has a uniform distribution o (. ) if

considered and no efficient implementation is provided. vol(ANR(cq)

Section IV is concerned with the derivation of a uniform P(eA) = W:j (6)
distribution on the set of complex positive definite matsice (cc)
with constant or bounded trace. Due to our approach thelds and that has a uniform distribution ofR. if
derivations are largely identical to the real-valued cas¢hat vol(ANR.)
we focus on the main steps and results. We point out the P(CeA) = W ()
differences and omit repeating details.

The developed sampling methods lead to an efficiearm holds for allA  R™. In (6) vol(B) denotes thé;n(n+1))-
LaB-algorithm which is described by pseudo code and féfimensional volume of an arbitrary s& C R and in
reproducibility [14] it is available for download at [15]h& (7) vol(B) denotes thezn(n + 1) — 1)-dimensional volume
implementation allows to uniformly sample a number off an arbitrary sets € R.. A uniform distribution on the
positive definite matrices, either based on rejection sagpl S€!SC(cq andCc is defined in a similar way. Note that a
or on transforming a beta distribution, either with real drniform distribution can be defined equivalently by a consta
complex entries, either with constant or with bounded trad¥obability density function (pdf), if a pdf exists for the
The option of sampling matrices with fixed or with boundegonsidered space. . _
trace is useful for some applications in connection with our Subsequentlyl’ denotes the gamma function given by
motivating example. [(z) = [, e "~ dt for = > 0 as defined in [16, 8.310.1].

A side effect of the performed analysis is that we obtain tfed"ther, 1.4(z) denotes the indicator function at point,
volumes of the sets for which a uniform distribution is dedy Which is one ifz € A and zero otherwiseR(z) and 3(z)
Corresponding expressions are developed in the paper.  répresent the real and imaginary part of a complex number

In Section V an example application is studied, where tHe Thfoughout .th|s article: is assumed to pg an arbitrary but
optimization of some non-convex function over the set of refixed integer withn > 2. Most of the quantities introduced or
positive definite matrices with constant trace is considerélerived are functions of. However, in order to keep notation
It is shown how the required number of randomly generat&inple and because it is always clear from the context, we
matrices is computed in order to obtain a solution close ¢o tRPandon to express this dependency explicitly.
global optimum with a predefined probability. The resultsygh ~ Definitions and theorems employed in this article that are
clearly the advantage of the proposed approach compare&fﬁ‘ﬁdard knovx_/ledge in analysis or linear algebra _and which
other heuristic generation methods or a deterministic orkth @n be found in any standard textbook on the topic (see e.g.

Notation and PreliminarieswWe denote the transpose of d17] and [18]) are referred to as 'well-known’ and explicit
matrix A by A’, the conjugate transpose by, the trace by references will be omitted.
tr(A), and the determinant hiet(A). A real or complexa xn
matrix A is said to be positive definite, denoted Hy- 0, if Il. REAL MATRICES WITH UNIT OR CONSTANT TRACE

Az >0 1) Consider the set® andR. of realn x n positive definite

matrices with unit and with constant trace, respectivey, a

holds for all nonzera: € C". If the strict inequality required in defined in (2). In this section, we are concerned with the
(1) is weakened ta*A x > 0, thenA is said to be nonnegative derivation of a uniform distribution on these sets. Obsénad
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once we have a uniform distribution @, we obtain a uniform and only if the closed intervals in (13) are changed to open
distribution onR. by the linear one-to-one correspondenciatervals. These observations all follow with (11) and aws
A — c A. Therefore, we can restrict the derivations in thiproperties of the sine and cosine function.

section to matrices with unit trace. We are now able to write the entries of the matfixc R as
functions of the parametets, I = 1,2, ..., %n(n—i— 1)—1.To

A. Parameterization simplify the subsequent presentation, let us define the mgpp
It is well-known thatA is a real positive definite matrix if v:R = y(R)=:R C RzntD-1 (14)

and only if there exists a unique real upper triangular matri 4

. L ) = (aij)ij=1 = a= (a1, a12,a22,...,0n-1n),
U with positive diagonal entries such that = e

which converts the upper triangular part of the mattiinto a
A=U'U (8) vector, leaving out the last diagonal entry,. This is similar
to applying the vech-operator, which is common in matrix
Iculus. Due to its symmetry and the unit trace, the matrix
is completely determined by the vecter= v(A). In fact,
the functiony simply extracts the independent entries of the

holds. This is called the Cholesky decompositiondof
Let A € R and consider its Cholesky decomposition, Wher%a
the entries of the matriX/ are named as follows

T1 T2 g 0 Ty matrix A. Since~ is a linear one-to-one correspondence it
0 23 @5~ Toum follows that once we have a uniform distribution Gty we
U=10 0 @ T-un - (9) obtain a uniform distribution ok by the inverse mapping
2 v~1. Consequently, in this section we can restrict ourselves to
00 0 i g derive a method to sample uniformly from the et
n(nt1) . . .
For this purpose let us define the mapping
By matrix multiplication and due to the trace constraintbf ~
we obtain 9:1—=R
Ln(n+1) Y= . a= (15)
tr(A) =tr (U'U) = Z =1, (10) (90179027---790%_1) (a11,a12, a2, .., Gn-1n)

based on the hyperspherical parameterization from above,
which is simply the Frobenius norm of the matiix If we \yhere the domair is defined by

rewrite the upper triangular part of the matiik as a vector

o = (21,72, 73,...,%1,(,41)), then it follows from (10) that I=hxIx...XInnsn_y, w1 €L,

all valid vectorsz correspond to points on the unit sphere in e P . (16)
the 1n (n + 1)-dimensional Euclidean space. This observationz, = {(O’ 3) i l=3i(i+1),i=12...,n-1,
suggests to use the well-known hyperspherical coordinates (0,7) else

to parameterize the vectar, which indeed turns out to betpe components,; in (15) are given through (8) and (9) by
convenient for generating a uniform distribution @ '

The use of hyperspherical coordinates for a vectore

%

(%1,22,...,¥1,(n41)) Salisfying the last equality of (10) dij = Zl TG0y TGS TS 17)

yields _ = _
o1 and with (11) we obtain the component functions

cosy [[,—; sing; if k:1,2,...,%n(n+1)—1, _ (1)1

"o 15, sin if k=2Inn+1) - 2 2 18

=1 2] 5 ; 1) ai;i(p) = Z H sin” i | cos” pe-ni (18)
m=1 =1
with fori=1,...,n—1 and

0,7 ifi=12....,in(n+1)-2 e v e
e [ ] 2 ( (12) i 1(i—1)i+m—1 L, 3(7—1)j+m—1 .
[0,27) if I=4n(n+1)—1. aij(p) = H sin” H sin ¢

. . . . =1 =1 —1i-1)i
With this parameterization the components correspon- " =20 Dikm
ding to diagonal entries of the matriX are nonnegative if
and only if the intervals specified in (12) are modified to

(pe{[o,g] if l=2%i(i+1), i=1,...,n—1, fori < j.
l

$COSP i, COS cp%_km] (19)

(13) Note, that the functiory is a one-to-one correspondence,

which follows from the uniqueness of the matirix in the
Reducing the parameter ranges this way does not reduce @mlesky decomposition (8) and from the well-known fact tha
range of the components;, corresponding to off-diagonal the hyperspherical coordinate transformation is a onent®-
entries of U. Further, recall that due to the properties omapping for the considered open parameter intervals. Thes,
the Cholesky decomposition, we need to parameterize oglympositiony~! o g is a one-to-one correspondence between
matricesU with positive diagonal entries. This is achieved iZ andR.

[0,7] else
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Remark.The mappingy~! o ¢ can also be employed toThe Jacobian determinant is then simply the product of the
parameterize nonnegative definite matrices with unit trackagonal entries of/,, i.e.,
We only have to change the domain of the functigrby
substituting the open intervals in (16) by the correspogdin det J, =
closed intervals, i.e., substituting by its closed version,

Oai1 Oayz o O0an_1n
01 0o &Pn(n;l)_l

denoted byZ. Then the parameter ranges are given by (13) and n_l n da;;

a singular matrix4 is the image of a point on the boundary of = H H 8@717

7. The reason why we have to modify the domairyd$ that i=1 =i T U+

the diagonal elements of the matrix in the decomposition " 9ay nlon day;

(8) are nonnegative in the nonnegative definite case. Rurthe =\ 1 9% 10y 1_[1 ‘111 m . (23)
r= 3z =1 j=1 =t

note that as a consequence, the functiaa not a one-to-one
correspondence anymore. The reason is twofold. On the dieh (18) and (19) we can calculate the required derivatives
hand, the matriXy in the decomposition (8) is not necessarilyvhich results in

unique for nonnegative definite matrices. On the other hand, gq,;

the hyperspherical coordinate transformation is no loreger 00 10en) v) =

one-to-one mapping. B Li(it1)—1

B. Parameter distribution

Let ¢ be a real(3n (n 4 1) —1)-dimensional random vectorsor i — 15— 1 and
Furthermore, letg be a function mapping the set of real T '
(3n(n+ 1) — 1)-dimensional vectors into itself. We define aij Q) =
g on the setZ by (15), (18) and (19) witiZ given by (16). asﬁ%ﬂ-

OutsideZ we setg equal to the zero vector. Then:= g(¢) is Ti(i+1)—1 L(—1)j+i

a random vector with the same dimensionéasf the values _ » ) .

of ¢ are almost surely i, then the values ofy are almost R < 11;[1 - le) <111:[_+1) o le) 1z()
surely ing(Z) = R, with R defined in (14). e

sin? <pl> 1z(¢) (24)
=1

— 2COS(,01:(¢+1) Sin(pi(wrl) <
2 2

25
Our goal is to find the distribution of such thaty is (25)
uniformly distributed orR, i.e., the pdf ofy shall be for i < j. Finally taking the absolute value of the Jacobian
N o1 determinant, we obtain with (21) the pdf &6f
fo(a) = cy15(a), a€RemHD-L (20)
wherec, is a constant makingj, a pdf. Due to the simplicity felp) = L
of f,, we immediately obtain the pdf of by applying the n-l . D=1 )
well-known integral transformation formula. The pdf &fis ~ n H 2cos @ity SN Yian S @
then given by =1 =1
. d " J 1 n—1 n %i(iJFl)*l
fe(p) = ey [ det Jy(p)] I(S"l)v (21) . l H H COS P s(i+1) < H sin? ‘Pl)
= (1,02, Pnmtn_,) € Rz"(ntD-1 i=1 j=i+1 =1
—3 L(j=1)j+i
whereJ, denotes the Jacobian matrix of the functiprNote _ ’ JHJ sin 12(p). (26)
that indeed all conditions to apply the transformation folan I i) 7L L
=35(

are satisfied: The set and R are open sets. The function
g is a one-to-one correspondence betw&emnd R, which is Let &,0=1,2,...,4n(n + 1) — 1, be the components of
discussed in Section II-A and it is continuous, which can ltee real random vectaf and let f;, be the pdf of;. Then,
seen from (18) and (19). Furthermore, from (23)—(25) belogfter some rearrangements, we obtain from (26)
we see that the Jacobian determinant has no zerp. on

The calculation of the Jacobian determinant is signifigantl
simplified by the fact that the component functiapy only feoy =TI fale, (27)
depends orpy, @2, .. ., P1(j_1)j+ir @S CaN be seen from (18) o =1
and (19). It follows that the derivative af;; with respect to Where fe, is given by

i 15 _ i i i .
piiszeroforall > 4 (j 1)+ which resuls in 1Wer  z(0,) —  cos” () sin® () 1z (). 1 € B (28)

sn(n+1)—1

with Z; specified in (16). For the exponentsandgq; we have

dan 0 0 0
T (n+1)—i if I1=2Li(i+1)
o1 ops 0 0 - ’
L= %2 g2 g o 0 22) " els@;laz.-.,n—l, (29)
0an—1n Oapn—1n Oan—_1in 9an—_1n and

F3] F3] f3] T D@ nin _ 2
o1 P2 3 Putin q=n"—Kn-—X\, (30)
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where generators available in standard software likexTAB or

R. For example, we can generate a distribution by applying

the inverse of its cumulative distribution function (cdf &

if 1=3i(i+1)+m,i=12,...,n~1,m=0,1....i. yniform distribution on the interval0, 1). This is well-known

Please refer to Appendix A for a derivation of (29)—(31). @S the inversion method described in [19, Ch.II.2]. With,[16
The normalizing constany in (28), which makeg, a pdf, 2.511] it is not difficult to obtain the cdf forfe,. However,

Ki=i—1, i=i1+1+m (31)

can be obtained using [16, 3.621.5 and 8.384.1] for most exponents in (28) the cdf can only be inverted
numerically, which is not efficient. Subsequently, we prepo
r(E ) if I=2Li(i+1) two efficient methods, each having its advantages.
F(”T“)F(C”T“) i — i 9 n’_ 1 Rejection samplind=irst, we develop the well-known rejec-
a = p(a44) STy ' (32)  tion method described in [19, Ch.11.3] or [20, Ch.3.4.1]. To
ﬁ % else apply this method to generate a distribution with gff, we
F(T) have to find a so called instrumental distribution, say witli p

For convenience of the reader, the constants specified )& (28;,, for which an efficient generation method exists and for
(32) and the resulting pdfg, are evaluated for = 2,3,4 in  which the inequality
Appendix B, Table II.

From (27) follows that the random vectérhas stochasti- fa(t) < fo(t), teR, (34)

cglly_ ind.epender.]t componer&s Thus, to generate the desirecholds, wherey; > 1is a constant. If; is close tol this method
distribution of £ is equivalent to independently generate thg efficient. In fact, the expected portion of samples that ar

dis_triputions of¢&, Which are specified by the pdfs in (28)r_e'ected during the generation process is giver(by: 1/u).
This is actually the main advantage of the proposed matrix|, yhq considered case, the normal distribution is a suétabl
candidate to serve as instrumental distribution. betbe a

parameterization.
Remarks(i) To obtain a uniform distribution on the set Ofrandom variable with normal distribution, i.e., with pdf
t — 2
exp (— M), teR, (35)

nonnegative definite matrices with unit trace, we just have t

replaceZ in (21) by its closed version, denoted Hy This

is equivalent to replacing the open intervdisin (28) by the Tou(t) = 2no2 207

corresponding closed intervals. Even though the funcids :

not invertible onZ (see Remark in Section 11-A), this resultvhere; € R ando} > 0 are the expectation and variance
can be obtained also by the integral transformation formuRgrameters, respectively. The advantage of this appreahbht
since the(in(n + 1) — 1)-dimensional volume of \ Z is Very efficient algorithms are available in all commonly used
zero. However, note that the resulting probability of theafe numerical computing environments to generate normally dis

singular matrices is zero. tributed random numbers. In addition, with proper paramsete
(ii) The constant,, in (20) is equal to the reciprocal of the/ andoj the constant, Cfm be chosen close to 1.
(3n(n+1) —1)-dimensional volume of the s&. Comparing ~ Indeed, forl = 1,2,..., gn(n +1) — 1 we set
26) with (27) and (28) yields
(26) (27) (28)y arctan\/‘lz it 1=1i(i+1),
3n(n+1)—1 - - = "
vol(R) = ¢, =2""! H ¢! = i=1.2. n—1,
- (33) 2 else
n k
_ o T DY) and 2 1
I (2l oL -
2 (VP + var)

For the last equality we have used (32) and a simplification . )
given in [13, Def.5]. This result might be of independentherep; and ¢, are the exponents of the cosine and sine

interest. function in (28). Then we choose in (34) to be equal to
: = /ore2
C. Implementation v = /270 0 (38)

As before, letR be given by (2),y by (14) andg by

(15)—(19). Then according to the derivations in SectiopA Il wherec, is the constant specified in (32) ardis given by

and II-B we obtain a uniform distribution oR by applying (qu/pl)% _

the transformationy~! o ¢ to the real random vectof = — 7 if l=2i(i+1),

(&1:€, -+ €1n(ns1)—1). The components; of the vectoré dy = 4§ (v+ei/a) i=1,2...n—1 (39)
are stochastically independent, each havingfpdés specified 1 else

in (28)—(32). Thus, to implement this method on a computer
we have to generate random numbers drawn fiortn+1)—1 Observe that the different cases in (36) and (39) are equival
distributions independently, each with pgif . to the casep; = 0 andp; > 0.
There are several methods to generate random numbers witBoth functionsf;, andv, f4, have a unique maximum and
a desired distribution on the basis of efficient random numbeith 1; as in (36) the maxima are at the same position.
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Choosingy; as in (38) their value is also identical. Together It remains to treat the cage = 0. We observe that the

with this property the inequality random variabler — 6(v;) has pdf
d?In fe, d?In fy Socon (™ — 1) eR (46)
< l 0(1) Y), Y .
e (t) < Ve (t), teR, (40)

o . . If 5, is a random variable with Bernoulli distribution and if
implies (34), which follows from the monotonicity of thethe probabilities of3, — 0 and 3 — 1 are equal, then the
logarithm, the fundamental theorem of calculus, and the(mori’andom variable

tonicity of the integral. The smallest possibig such that (40)
still holds is then given by (37). This can be seen from the (1= 8)0(th) + Bi(m — 0(¢r)) (47)
following facts: First, the RHS of (40) is equal tel/o? has odf

for all ¢ € R. Second, the maximum of the LHS is equal to P

—(p1 + 1/ql)2_, which is obtained as the value of the LHS L fown W) + $fown(m—1y), yER, (48)
at the zero of its derivative. Note that the calculationsehiav ) ] o
be performed separately for the cages= 0 andp; > 0. given3; andy; are stochastically independent. Combining (45)

For illustration, fe, and, f,, are compared in Appendix C,and (48) and comparing this to (16), (28), and (32), yields fo
Fig. 1 for the marked parameter sets of Table II. Fig. 1 (a) afige case: = 0, that the random \1/ar|able n (f'7) has the same
(b) show two examples fan, = 0, i.e., wherefe, is symmetric. distribution asg;, if we puta;, = 5 anda, = 3(@+1).
Increasingg, from 2 to 8 reduces the expected portion of '€ complete method to sample uniformly from the set of
rejected samples form abouit% to 3%. This portion further '@l 7 x n positive definite matrices with unit (or constant)
decreases ag increases. lfp; > 0 andp; # ¢, then f, trace is summarized in Appendix D in Algorithm 1, 2, and
is asymmetric as can be seen in Fig.1(c) and (d). We ohas pseudo code listing. The algorithm illustrates thedoasi
serve that the asymmetry increases with increasing diftere @PProach developed so far. For the sake of accessibility it i
betweenp, and ¢;. Fig.1(c) and (d) illustrate characteristio_':’resented in a way closg to the denyatlons. However, _furthe
examples, where the expected portion of rejection lies éetw improvements are possible. In particular the calculatién o
8% and 10%. some constants can be omitted.

Transformation of beta distributiomAs an alternative, we _Matlab implementationAn optimized version of the algo-
can generate the distribution of the random varigbldirectly "thm has been implemented in AVILAB, which is provided

from a beta distribution by applying an appropriate transfd®r download at [15]. The method based on rejection sampling
mation. The efficiency of this method relies on the efficiertS Well as the method based on transforming a beta distibuti
generation of beta distributed random numbers. has been made available. The former algorithm works with

Let 4, be a random variable with beta distribution, i.e., wititandard MTLAB, whereas for the latter the Statistics Toolbox
pdf is required, since the beta distribution is obtained froro tw
gamma distributions. According to [19, p.431] it is very

fu @) =yt (1 =t)* " 1o 1(t), t€R, (41) competitive to utilize a gamma distribution, in particufar
the parameter constellations required, since gamma gengra

I
whereay,, o > 0 are shape parameters ang = 7”5;:(’)’;?;3) are very efficient.
is a normalizing constant. Consider the mapping Both generation methods show similar performance. How-
0:(0,1) > (07 %)’ ever, comparing the algorithms based on atMaB implemen-

. (42) tation can only be a rough estimate. The numerical stability
y — arcsin/y. . . o .

of the implementation has been tested and verified for matrix
It is a continuous one-to-one correspondence between tdimnensions up ta, = 25. The verification was accomplished

open intervals and its inverge! has derivative by comparing the empirical cdfs of the parameters with
d0-1 their theoretical cdfs. A sample size of 100000 was used
= 2siny cos (0,2 43) for obtaining the empirical cdfs. The theoretical cdfs were
W ycosy, y . 3) f btaini h irical cdfs. The th ical cdf
Y

calculated by numerically integrating (28). For higher rixat
which is a positive function. Thus we can calculate the pdfimensions the numerical stability has not been tested.

of the random variablé(v);) using the integral transformation Finally we want to give a rough estimate of the compu-
formula. For the sake of completeness we exténautside tational time of the MTLAB implementation: On a desktop

(0,1) by 0. The pdf off(v) is then given by computer with Intel Core i5 (23.33GHz) processor, 4GB
401 memory, and Windows 7 (64bit) operating system, it requires
Foen (@) = fu (071 (y)) d—(y) (44) Ie.ss tha_m half a second to generate 5000 réal 10 matrices
Y with unit trace.

= 2y, cos? () sin®* T (y) L(o,5)(y), y ER.  (45)
For | — %i(i—i—l), i =1,2,...,n — 1, the exponenp, is Ill. REAL MATRICES WITH BOUNDED TRACE

positive due to (29). For this casgi);) and¢; have the same  Consider the setR andR . ¢ of realn xn positive definite
distribution if we puta, = %(pl +1)ande, = %(ql + 1), matrices with unit and with bounded trace, respectively, as
which follows immediately from comparing (45) with (16)defined in (2) and (3). In this section we are concerned with
(28), and (32). the derivation of a uniform distribution ofR (. 5. We will
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show the following result: The product distribution of ateém Applying the integral transformation formula we obtain the
distribution on the intervalc, €] and a uniform distribution on pdf f. of ¢ from the pdf of(r, n). Using (51)—(53) yields
R is transformed into a uniform distribution dR. 5 by the

one-to-one correspondentie A) — ¢ A. fe®) = fzmy (K1) | det Ty (b))
_ 1 fT (Z?:lb“) b 54
L T Vl(R) j—=n Tn(nt1)—1 7 (a(®)) (54)
A. Parameterization (X0 bii) 2

Let us define the mappin ~
PPing forall b € R and f¢(b) = 0 otherwise. If we defingf, by

: . In(n+1)
v R(C,E] — W(R(CE]) =: R(C,E] c R2 (n+
) I N 49 _ In(n+1)—1
B= (bij)?’jzl = b= (b11,b12,b22, ..., bn), (49) [-(t) = crt? (1) Ticq (t), teR, (55)

which converts the upper triangular part of the matfx then from (54) immediately follows

i.e., its independent entries, into a vector. We can restric .

subsequent derivations to the &, ), sincey is a linear one- fe(b) = Crﬁ@ﬂﬁ(m (b), beR="C"FD. (56)
to-one correspondence that preserves the uniform digisibu

We parametenze the e|ements’@f&’c by the mapp|ng Thus, fOI’fT as in (55) andr and aneing StOChaStically inde-
- pendent the pdff; is constant oriR . and zero otherwise,

h:(c,g] x R — ﬁ(g,a i.e., ¢ has the desired uniform distribution dnél(ga.
(t,a) = (t,a11, 012,022, . . ., Gp_1n) — Remarklt might be of interest to calculate tién(n+1))-
b= (b11,b12,b22,...,bnn) (50) " dimensional volume of the S® (.. From (56) we obtain
n—1 ~ ~
= t(au, 12,422, - -, Ap—1n, 1 — Zi:l a“-), vol(R(gﬂ) _ c_lvol(R)
with R as specified in (14). That means we use the trace as ghn(nt1) _ cdn(ntl) _ (57)
multiplication parameter. The functioh satisfies all condi- = L+ D) vol(R),
2

tions to be applied in connection with the integral transfor
mation formula: The set&, ) x R and R(C ) are open sets
and tbe(%n(njr 1))-dimensional volume of the se{g} x R
and R.q) \ R(e) is zero. The functiom is a continuous
one-to-one correspondence with inverse

~ C. Implementation

W' Rieq — (¢, x R
bes (ta) (51) As derived in the previous Sections IlI-A and IlI-B we
. obtain a uniform distribution o . 5 by applying the transfor-
= (X0 i) ((Z?:lbu‘) , 011,012,022, .+, b—1n). mationy~'oh to the real random vectdr, ). The functions
~ and h are defined in (49) and (50), the random vector
It is a simple task to calculate the Jacobian matrixhof is uniformly distributed onR, and the random variable
and after some routine column manipulations we obtain the p55 pdf £, given in (55). In Section 1I-C we already
Jacobian determinant derived a method to generate the uniform distributionof
_ n—1(xn —in(n+1)+1 Therefore and becauseandn are stochastically independent,
det Jp-+(b) = (=1) (Zizlbii) ’ (52) we only have to find a method to generate the distribution of
which has obviously no zero Oﬁ(c 3 7. This task is accomplished easily using the inversion netho
- described in [19, Ch.I.2].
o Let F; be the cdf ofr, which we obtain from (55) by a
B. Parameter distribution simple integration. The inverse @, on the interval(c,c] is
Let n be the random vector considered in Section II-Bhen given by
which has a uniform distribution oR. Let r be a real random

where vol(R ) is given in (33) and the last equality follows
from the fact that the constant normalizesf. to be a pdf.

variable, where its values represent a positive matrixetrac Fol(u) = {(één(nﬂ) - C%n(%l)) U
Assumer is stochastically independent gfand has pdff;. ) - (58)
Then the joint pdf ofr and is given by +95”("+1)} . ue(0,1].

fam(ta) = ff(t)ﬁ(ﬁ)]lﬁ(a)v (53) Applying F-! to a uniform distribution on the intervaD, 1]
(t,a) € R x Rz"(+D-1 yields the desired distribution with pdff..

B The complete method to sample uniformly from the set of
wherevol(R) is given in (33). If we extend the domain ofrealn x n positive definite matrices with bounded trace is sum-
the functionh in (50) to ]R%"(”“)Nand set its values equal tomarized in Appendix D, Algorithm 4 as pseudo code listing.
the zero vector outsidéc,c] x R, then we can define theThis algorithm is included in the MrLAs implementation,
real (%n(n + 1))-dimensional random vectaf := h(r,n). which is provided for download at [15].
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IV. COMPLEX MATRICES which converts the upper triangular part of matrixinto a

Consider the set&, C., and C(.g Of complexn x n real vector, leaving out the last diagonal endry,. Note that
positive definite matrices with unit, constant, and boundé@e diagonal of a complex positive definite matrix has always
trace, respectively, as defined in (4) and (5). In this seatie  'eal positive entries. In fact, the functionsimply extracts the
are concerned with the derivation of a uniform distributn independent entries of the matrik It is a linear one-to-one
these sets. The approach is largely identical to the rdakda Correspondence that preserves a uniform distributioawrig
case, described in detail in Sections Il and Ill. Therefdre, US to restrict the derivations to the s&t
is sufficient to summarize only the main steps and resultsFurthermore, we consider the mapping

Howe_ver, the com_plex case is important too and it is necgssar G T xTyx ... Ty =T — c

to point out the fine differences of the parameterization and 65

of the parameter distribution. (P12, 2 1) = (65)
First, we describe the generation of a uniform distribution (a11, R(a12), S(a12), asz, . .., R(an—1n), S(an—1s)),

onC, which can be transformed into a uniform distribution ofy4fineq by (59), (60), (62), and (63). It can be easily verified
Ce by the linear o_ne-to-o_ne_ cor_respondem:e—> cA. Then that the relevant properties gfto derive a uniform distribution
we construct a unlfor_m d_|str_|but_|on e el f_rom the_product onC are identical to those of the mapping defined in (15)—(19).
distribution of a certain distribution on the intervalc] and a |, particular, its Jacobian matrix is a lower triangular mat

uniform distribution orC using the one-to-one correspondencg0 that its determinant is the product of the diagonal esitrie

(t,4) = t A, Thus, the parameter distribution can be obtained in a simila
manner as for the real case. See Section II-B for details.
Let &, 1 =1,2,...,n%2 — 1, be stochastically independent
ParameterizationFirst, we give a suitable parameterizatiofea| random variables whose values represent the parameter
of the matrices contained i@ following the derivations in o, ;=12 ... n2—1. Letthe pdffe, of the random variable
It is well-known thatA is a complex positive definite matrix
if and only if there exists a unique complex upper triangular  fe, (¢1) = ¢ cos” (1) sin? ()17, (¢1), @1 € R,  (66)
matrix U with real positive diagonal entries such that

A. Unit or constant trace

with Z; as specified in (63). Further, let the exponemtsind

A=U"U (59) ¢ be given by
holds. This is called t_he Qholesky decomposition{k?f 2(n—i)+1 if 1= i=1,2,...,n—1,
Let A € C and consider its Cholesky decomposition, where Pt = 0 else (67)
the entries of the matri¥/ are named as follows
T1 To+jrs Ts+ITe r T(n-1)241TIT(n—1)2+2 and )
0 Ty Tr+Jr8 0 T(n—1)243TIT(n—1)2+4 q=n"+Krn-—N\, (68)
U = 0 0 Ty cee x(n—1)2+5+.]x(n—1)2+6 where
0 0 0o .- T2 ki=n—i—1, N=@G—-Dn+1+m (69)
60 it i =4mi=12....n—1,m=0,1,...,2.
Since
n? The normalizing constant; in (66) is necessarily given by
tr(A) = tr (U*U) = Zl‘% =1 (61) F(L“+ql+1)
k=1 22 I f | =42,
holds by matrix multiplication and due to the unit trace of ., — 2 2 i=12...,n=1 (70
A, we can parameterize the componenisk = 1,2,...,n2, 1 r(‘”;w%) else
using hyperspherical coordinates NG F(%)
COS Pk, Hf;ll sing; if k=1,2,...,n* -1, Then with calculations similar to those in Section II-B, it
Tk = s k2 (62) can be derived that applying the transformatign' o g
1=1 S - to the random vectol¢y,&s, ..., &,2_1) yields a uniform

Following the same arguments as in Section II-A, the ranggRstribution onC. For convenience of the reader, the constants
7, of the parameterg;, | = 1,2,...,n* — 1, are given by specified in (67)—(70) and the resulting pdfs are evaluated

{(O 5 l=i2,i=1,2,...,n—1 in Appendix B, Table Il forn = 2, 3, 4.

I = 2 ’ ey ’ (63) ImplementationThe parameter distribution derived in this
(0,m)  else subsection has the same form as for the corresponding real
Parameter distributionWe consider the mapping case considered in Section Il. Thus, the algorithm to sample

) 5 n2-1 uniformly from the set of complex x n positive definite
7:C=9(0) _n CCcR matrices with unit (or constant) trace is basically ideaitio

A = (aij)ij=1 = (64)  one developed in Section II-C. Only some constants have to
(a11, R(a12), S(a12), azz, . ., R(an-1n), S(an-1n)), be adapted accordingly.



MITTELBACH et al. SAMPLING UNIFORMLY FROM THE SET OF POSITIVE DEFINITE MATRTES (PREPRINT) 9

The MAaTLAB implementation provided for download atto a uniform distribution on the intervdD, 1]. The complete
[15] includes also the algorithm to generate complex magricalgorithm to sample uniformly from the set of complex n
based on the results presented above. The numerical stabpisitive definite matrices with bounded trace is includetha
of the complex part of the implementation has been tested avdhTLAB implementation provided for download at [15].
verified for matrix dimensions up te = 25 using the same  Remark.The n2-dimensional volume of the sal . q is
method as for the real case. For higher matrix dimensions thigen by
numerical stability has not been tested. n? p2

To give a rough estimate of the computational time of the vol(év(gyg]) = ¢ vol(C) = (C;f) vol(C), (77)
MATLAB implementation we have generated 5000 complex _ "

10 x 10 matrices with unit trace. Under the conditions specifieghere vol(C) is given in (71) and the last equality follows
at the end of Section II-C this requires less than a second.from the fact that the constant normalizesf. to be a pdf.

Remark.It might be of interest to evaluate th@? — 1)-
dimensional volume of the sét Calculations similar to those V. EXAMPLE OF APPLICATION
in Remark (ii) of Section 1I-B yield together with (70) Let f be a continuous real-valued function on the set of
2y T ) real n x n matrices and letR, be the set of reah x n

Pt n—1 —1 1oine1y L reg (B — 1)! nonnegative definite matrices with trace equaktoAssume
vol(C) =2 H G =m =y ]Eng —1)! (71) we want to optimize (minimize or maximize) the functigh
=t over the setR.. Further, assume the optimization problem
cannot be solved analytically and the properties of thetfanc
f are such that there is no standard algorithm available to

Starting from a uniform distribution o€ to generate a splve it numerically. Then, one way to 'estimate’ the optima
uniform distribution onC(. we have to follow the sameajye of f in a certain sense is to use the random sampling
steps as in Section Il. Except for some natural modificationgorithm developed in the previous sections. In the foiimyy
the calculations are identical to the corresponding reakcaye describe and evaluate this approach. The purpose of the
Therefore we formulate only the final results and comment @gction is to explain the basic principle in a more abstract
the differences. way rather than analyzing a detailed example.

Let 7 be a real(n® — 1)-dimensional random vector with a  First, observe that the optimization problem is equivalent
uniform distribution onC, whereC is defined in (64). Let-  to optimizing the functionf = f o v~! over the sefR, :=
be a real random variable, stochastically independentarfd v(Re) C Rz"(n+1)=1 where the functiony is defined as
with pdf f-, where in (14) with R replaced byR.. In fact, this simply means

o n21 we reformulate the optimization problem in terms of the
fr(t) = et " eqlt), teR. (72) independent matrix entries. Note that we h&g = cg(Z),
Further consider the mappings where the functiomy is defined as in (15)—(19) with replaced
~ 2 by its closed versiofT.
7 :Ceq = V(Cq) = Ceq) € R” (73)  Letan € R; be a vector optimizing the functiorf
(bij)ij=1 = b= (b11,R(b12), I(b12), b2z, - - -, bnn), and let &,,. be a neighborhood ofi.,;. Assume that we
employ the uniform sampling algorithm from Section 1I-C to

B. Bounded trace

and —
SO randomly select a vector from the sef . Due to the uniform
h:(c,e] xC = Ce distribution, the probability, say, that the generated vector
(t, aii, §R(a12), %(042), agg, ..., %(an,ln), C\\s(an,ln)) — lies in gopt is given by
t(au, R(a12), S(a12), aze, - . - - rvol(&,pt) with 7 — Vol(&,pt N ﬁ:) (78)
ey %(an,ln), C\\s(an,ln), 1-— Z?;lla“-) . p VOl(ﬁ;) VOl(gopt) ’
(74) , :

Then applying the transformation* o to the random vector Wherevol(A) denotes thén(n+1)—1)-dimensional volume
(,7) yields a uniform distribution oI, . of the setA ¢ Rz"(»*1-1, The factorr € [0, 1] represents

The result is mainly based on the stochastic independei@g Portion oféqe, which intersects witfiR_ . If we use the

of 7 and# and the special form of the Jacobian determinaf@mPpling algorithm to generafd vectors independently, then
of the inverse mapping !, which is given by the probability, say, that at least one of these vectors lies in

211 Eopt IS given by
det Jp—1 (b) = (_1)7171(2?:1171'1') : (75) §=1-— (1 _ p)M. (79)

To implement the method, we use the algorithm of thg \ye solve this equation for/ and round up to the next
previous Section IV-A to generate the uniform d|str|but|ori‘hte(‘:]er we obtain

of the random vector). The inversion method is suitable to

generate the distribution of the random variableWe just [M] = [log(1_,)(1 = 9)], (80)
have to apply the functiod;* with which gives us the minimum number of vectors we have to
. generate such that the probability, that at least one of the

— —n2 /n/2 n2 n . . .
Fri(u) = [(C —c")utc } , ue (0,1, (76 generated vectors lies iy, is at leasb.
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Using the integral transformation formula, we obtain The condition in our numerical example is that the Eu-
S\ ln(ntl)—1 ~ clidean distance between an optimal vector and the boundary
vol(R¢) = = vol(R), (BL) of R; is at least 0.1, i.er = 1. Generally, we do not know

wherevol(R) is given in (33). if Ept C R holds. Given the boundary 62 is sufficiently
To explicitly calculate (78), let us consider an exampléMooth and the radius &t is sufficiently small, them = 3
where we specify the neighborhodd, of the vectora,,, 'S @ suitable assumption to estimate the probability

to be a ball with respect to the Euclidean distance with cente The above considerations can be adapted in an obvious

aop and radiuse > 0, i.e., way to optimization problems with respect to real nonnegati
) definite matrices with bounded trace or complex nonnegative
Eopt = {a € R2""TD71 1 [lg — g, < e} (82) definite matrices with constant or bounded trace using the

éesults from Sections Il and IV.

Remark.One might ask, what is the advantage of randomly
selecting vectors from the s®_ or, equivalently, matrices
form the setR.. Alternatively, we could use the parameter-
ization derived in Section II-A and select matrices frém
B } by stepping through the set of parameters determinisgicall
|f(a) — flaops)| < Ke. (83) according to an equidistant grid. Since the set of parameter
values is ar{in(n+1)—1)-fold Cartesian product of intervals,

s can be accomplished easily. However, this way we step
through the corresponding set of matrices in a highly irtagu
manner. In contrast, with the proposed random method, we

That means, we defing,,; such that the Euclidean distanc
between a vector i8,,, and the vecton, is at moste. If f
is Lipschitz continuous and has the Lipschitz consfanyith
respect to the Euclidean distance, then the following iaétyu
holds for alla € Eqpt

Note that the norm in (82) can be any other norm dependi
on what is suitable for the considered application.
For &+ being the ball defined in (82) we obtain with [16

4.632.2] select the matrices according to a uniform distributionthéut
ﬂ_%(%n(n-ﬁ—l)—l) ) being able to exploit any additional knowledge about the
vol(Eopt) = exn("tD=1 " (84) optimization problem, sampling the constraint set unifigrm
F(%(%”(” +1)+ 1)) seems to be the better approach.

Using (81), (33), and (84) to evaluate (78) yields
n(n+1) VI. CONCLUSIONS
aoy D) o0y ntntn—1
p=m2 7(—6)2 T (85) In many application areas, some non-convex function is
[T, (kL) * e ) many app e . :
k=2 2 o ~ optimized over the set of positive definite matrices with
where we have used [16, 8.335.1] to simplify the expressiofgice constraint. A numerical approximation of the optimal
To consider a numerical example, let= 0.1 andr = 1, solution can be obtained by evaluating the objective famcti
i.e., &pt C R, . In Table | the resulting values of M| for a set of uniformly distributed matrices with carefully
are listed forn = 2,3,4. Let us pick the marked parametethosen cardinality. In this paper, we have derived an efficie

method to randomly generate matrices according to a uniform

[M] ) . distribution on the constraint set for the real as well as the
‘ ‘ complex case. We expect that there are many applications
of the derived algorithm to compute an approximation of the
s [0.95] 74 2339| | 91421 Soiiviaieaaint g9 p pp
0.99 113 3596 | 140537 p -
TABLE |
NUMBER [M] FOR BALL-SHAPED NEIGHBORHOOR  opt, APPENDIXA

=1,£=0.1,ANDn = 2,3,4.
" ¢ " DERIVATION OF EXPONENTS IN PARAMETER PDFS

o ) (REAL CASE)
constellation in Table | to explain the results: Assume the

task is to optimize the real-valued functioh over the set _ 10 derive the exponenis andg; as given in (29)—(31) we
of real 3 x 3 nonnegative definite matrices with unit tracdirst rewrite (26) as

We equivalently consider optimizing the functighover the .

setR; as described at the beginning of this section and Wég(@) N

assumef has Lipschitz constank’. Let us independently o gn—1 ”1:[1 (COS N )nﬂ'ﬂ

generate 2339 vectors of the s&] using the uniform K bl e

sampling algorithm developed in Section II-C. Then with a - 11 Li(it1)—1

probability of at least 95% the Euclidean distance between [ . g\t

at least one of these vectors and a vector optimizing at | I1 (Sm ‘Pl) ]

most 0.1. Taking now the optimum of the functighon the = = T

sampled set of vectors yields a value, which differs from the [t . 2 20 D7+ .

true optimum by at mosi.1 K with a probability of at least | 1 S iy H 11_[ singy | [ 1z(p),
i= 1=1%i(i+1)

95%. The values of Table | show that this method can be very - g=itl
efficient. (86)
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where we have separated thes, sin® andsin terms. From [Ta@ PP — ‘
this version, we obtain for the exponeptsandq; in (28) the 08 10
following sum representation: '
0.6 0.8 /N
n—1 0.4 \ / \
pr = Z (n —i+ 1) ]l{ i(it1) } (Z)a (87) 0.2 . 0.4
i1 2 o B < e o
0 /2 ™ 0 /2 ™
n—-1 (@) ps =0, gs =2, vs = 1.1284 (0) ps =0, g = 8, va = 1.0317
Q= Z 2(n—z—|—1)]1{172,___71»(1;1)_1}(1) 16 3
i=2 12 : 5 ~
(1] 0.8 \ [
4 / ‘ 1 o Xy
771_1 n 0.4 7 \\\ \\
+ Z |:]l{i(i2+1)}(l) +‘Z ]l{i(i2+1)7i(i;rl)+17.“’(j;l)]‘ +i}(l) . 0 0/ /s i/ 0 0 /s ;,/2
=1 j=itl © P =2, go = 4, 15 = 1.1079 (@) p1 =4 a1 = 14, 1 = 1.0830

[2]
g Fig. 1. Parameter pdfs vs. corresponding scaled normal fedfsnarked
(88) parameter sets from Table (h = 4,1 = 1,4, 6, 8).

Equation (87) is obviously equivalent to (29). Writing ohet

sums of indicator functions in (88) and then collecting terrrmgorithm T Gorneraioll Tratices fromhe sai
C

defined in (2) according

yield to a uniform distribution.
L n—i 1: for i =1to M do > generateM matricesAi, Az, ..., Ay € Re
ql[]ZQZkZTR_(zi_1)n+i(i_1)_2, 22 for =110 in(n+1)—1do
3: Generatep; with Algorithm 2 or 3.
k=2 ) 4: end for
ql[ = iln—4i)—m+1 (89) 5 With ¢,.. Pl compute z = (z1,. .. ,1‘n<n2+1>) from
(11).

. 1 . B .

it = 51(1+1)+m, i=1,2....n=-1,m=0,1,....1 6 With vectorz generate matribXU from (9).
. . . i . A u'u

Adding ql[l] andql[Q] in (89) yields the final form of; as given g. enqg fof ¢

in (30) and (31).

APPENDIXB Algorithm 2 Generate a samplg; according to a distribution with pdfe,
EVALUATION OF CONSTANTS AND PARAMETER PDFS defined in (28) (rejection method).
In Table Il the parameter pdfs for the real case given in (28§f Sv?twpmem’ @ ,ngrh IG tgom (%9)_(?r2c>)ﬁq(%§<)§) 39) > setup constants
. L . : , q1, C , 07,V — .
and the involved constants specified in (29)—(32) are etedua Pu di. <1 COMPUIEHL, o7, 11
forn = 2,3,4. In Table Il the parameter pdfs for the complex3: repeat b rejection method
case given in (66) and the involved constants specified (674 v« wi(0,1) > sample uniformly from (0,1)
70 | d fon — 2.3.4. The indi f . 5: ¢y« normal (s, 07) > sample from normal distribution
( ) are eva uated fon = 2, 3,4. The indicator u_nctlons are 6. until uuyfy, (1) < fe, (91) > fe, and f,, as in(28), (35)
omitted in both cases. They are equalltg /) if the pdf
has the form; cos?* sin” and they are equal td g ) if the
pdf has the form; sin?. Algorithm 3 Generate a samplg; according to a distribution with pdf,
defined in (28) (beta distribution method).
APPENDIXC 1: Computep;, ¢; from (29)—(31). > setup constants
PARAMETER PDFS VS SCALED NORMAL PDFS ot
. . . .y + beta (L= BT > le from beta distributi
In Fig. 1 the parameter pdfs defined in (28) are compared &) # ” :COat%eﬁ ) sample from beta dsirbufion
scaled normal pdfs with expectation and variance parasietet: b « bernoulli(3) &> sample from Bernoulli distribution
given by (36) and (37) and scaling factor given by (38). 5 else
6: b+ 0
The values forp;, ¢; and¢; are taken from Table Il for the 7. onq i
marked parameter sets &€ 4, [ = 1,4, 6, 8). 8y «— (1 —=b)y +b(mr —y)
APPENDIXD
ALGORITHMS Algorithm 4 Generate M matrices from the seR(.z defined in (3)

according to a uniform distribution.

(REAL CASE)

In Algorithm 1, 2, and 3 the pseudo code of the basid: With Algorithm 1 generatel/ matricesAs, Az, ..., Ay € R.
method to sample uniformly from the set of reak n positive  2: for i =110 M do > generaters matrices By, Bs, ..., Bar € Rieq
definite matrices with constant trace is listed. 3w+ uni(0,1) > sample uniformly from (0,1)

In Algorithm 4 the pseudo code of the extended algorithnf: %“{_FQ A(_“) > F! asin (58)
to sample uniformly from the set of realx n positive definite g end for '
matrices with bounded trace is listed.
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TABLE II TABLE Il
CONSTANTS AND PARAMETER PDFYREAL CASE) FORn = 2,3,4 . CONSTANTS AND PARAMETER PDFCOMPLEX CASE) FORn = 2,3,4.
no Ll ks N a | a || fe(e)/a no Ll s N a | a || fe (e)/a
2 2 0 % sin? 1 cos? 1 2 1 3 0 1 3 12 sin® 1 cos3 1
0 0 % sin @2 2 % sin? p2
3|l o 3 1 L in o
3 1 3 0 2 7 40 sin” 1 cos® 1 2 Stes
2 0 0 3 6 L sin® g 3 15 1 1 11| 336 sin®™ 1 cos® 1
32 1 3 3| sin® 3 cos? p3 20 1 2 10| 28 | sin'%¢p
4 0o 1 4 2 2 sin? @4 3o 1 3 9 bl sin? o3
5 0 1 5 1 % sin @5 4 3 0 4 5 24 sin® ©a cos? 4
510 0 5 4 2 sin® @5
4 4 0 2 14 % sin'? 1 cos? 1 3 ) v
o ) 6l0o o0 6 3 3 sin® g
2 0 0 3 13| 208 | 4inldypy 4
. 710 o 7 2 2 sin? o7
3 3 1 3 9 60 sin® @3 cos? 3 -
8|lo o 8 1 1 sin pg
128 8 2
0 1 4 8 om SIN® 4
s |lo 1 5 7 3 sin” s 4 1|7 2 1 23| 10920 || sin®3¢;cos” oy
. 524288 1022
IEI 2 2 4 4 % sin? g cos? g 2 0 2 2 22| gSiton SI=" @2
969969 :n21
7 0 2 5 3 % sin® g7 3 0 2 3 21| 5595k sin“" @3
15 5
0 5 5 5 2 sin? s 4 5 1 5 15 720 sin'® 4 cos® 4
T 50 1 6 14| 248 | sinltoy
9 0o 2 7 1 5 sin g BOOg s
6 0 1 7 13 5048 sin* g
7000 1 8 12| 22 | sinlZer
L. 3 . A 693 11
An efficient MATLAB implementation of all algorithms g0 1t 8 1 En Sl s
. . . . a7 3
is available for download at [15], which also includes the 943 0 9 7] 40 sin’ pg cos” o
algorithms to sample uniformly from the set of complex n 100 0 10 6 8 sin® 190
positive definite matrices with constant or bounded trace. 1111 0 o 11 5 1 sin® 11
12|10 0 12 4 = sin? 12
13 0 0 13 3 3 sin®
ACKNOWLEDGMENT 1 o
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Transforming a beta distribution to generate a distribbutio 5l o o 15 1 1 sin o1
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