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Abstract—We derive a parameterization of positive definite
matrices using the Cholesky decomposition in combination with
hyperspherical coordinates. Based on the parameterization we de-
velop a simple and efficient method to randomly generate positive
definite matrices with constant or bounded trace according to a
uniform distribution. Further, we present an efficient impl emen-
tation using the inversion method and either rejection sampling
or transforming a beta distribution. The matrix parameteri zation
might be of independent interest, whereas the random sampling
algorithm finds applications in Monte-Carlo simulations, testing
of algorithms, and performance studies. With the help of an
abstract example we describe how the sampling method can be
used to approximate the optimum in a difficult, e.g. non-convex,
optimization problem for which no solution or efficient global
optimization algorithm is known. In this paper we consider real
as well as complex matrices.

Index Terms—Matrix parameterization, random covariance
matrix, random matrix generation, random positive definite
matrix, uniform distribution.

I. I NTRODUCTION

T HE purpose of this article is to derive an efficient method
to sample uniformly from the set of real or complexn×n

positive definite matrices with constant or bounded trace.
Motivation. Generating positive definite matrices (or equi-

valently covariance matrices) at random finds applicationsin
multivariate statistics, numerical analysis, or signal process-
ing. Examples include clustering and classification methods,
testing numerical algorithms (e.g. Cholesky factorization), and
studying the efficiency of data compression and decorrelation
algorithms [1], [2]. This work is mainly motivated by applica-
tions in the area of multiple antenna wireless communications
system design and optimization, which will be explained
below. However, other areas of application in signal processing
for communications are possible.

The transmit strategy in multiple antenna wireless systems
is described by a linear precoding matrix or its corresponding
transmit covariance matrix. It is necessarily positive (ornon-
negative) definite and the trace is bounded due to the transmit
power constraint [3]. In single-user multiple-input multiple-
output (MIMO) systems, the optimization problems are usually
convex programming problems and can be solved either by
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exploiting the optimality conditions or by algorithms which
adapt to the concrete problem structure.

In multiuser MIMO scenarios, however, the resulting pro-
gramming problems for system optimization are non-convex.
Examples are the MIMO broadcast channel with linear pre-
coding [4] and the MIMO interference channel [5], where one
is interested in the achievable rate region or the optimized
weighted sum rate [6]. The maximization of secrecy rates or
secret key rates in MIMO systems also leads to non-convex
programming problems [7].

At least a numerical approximation of the solution of these
problems can be obtained by evaluating the objective function
for a suitable set of positive (or nonnegative) definite matrices
that satisfy the trace constraint. This approximation can serve
not only as a performance measure but also as bound to be
compared with suboptimal and heuristic transmit strategies.
The method requires the number of considered matrices to be
sufficiently large and without being able to exploit additional
knowledge about the optimization problem, it is reasonableto
sample the matrices according to a uniform distribution. The
efficient generation of such a set of matrices is important in
this context.

Related work.Extensive research has been devoted to the
problem of randomly generating positive definite matrices
with 1’s on the diagonal, also known as correlation matrices.
Previous work in this area is mainly based on combining either
specified [8], [9], [10], [2] or random [1] eigenvalues with
random orthogonal matrices, multiplying random triangular
matrix factors [10], [1], or randomly generating so called
partial correlations [11], [12]. In principle one can buildon
randomly generated correlation matrices to randomly generate
covariance matrices. An approach of this type has been used
in [13] to randomly generate positive definite matrices with
bounded trace according to a uniform distribution. Even if
the existing methods show useful directions to consider also
the generation of complex covariance matrices, it is not
straightforward to directly extend these approaches and still
keep control over the resulting distribution.

Contribution and Outline.The main contribution of this
work is to derive an efficient method to sample uniformly
from the set of real as well as from the set of complex positive
definite matrices with either constant or with bounded trace.
We aim at a simple and elementary approach.

First, we derive in Section II-A a parameterization of real
positive definite matrices with unit trace using the Cholesky
decomposition in combination with hyperspherical coordi-
nates. The parameterization is quite natural and might be
of independent interest. It constitutes the foundation of the
whole approach and allows us to develop the results in a
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modular fashion: On the one hand it can be easily extended to
parameterize real matrices with variable trace. In particular the
extension to complex positive definite matrices is straightfor-
ward. On the other hand it enables us to find a simple, efficient,
and unified method to generate a uniform distribution on all
considered sets of matrices.

In Section II-B we derive in detail the parameter distribution
that leads to a uniform distribution on the set of real positive
definite matrices with constant trace. We provide in Section
II-C details of the implementation to generate the desired
distribution using either rejection sampling or transforming a
beta distribution.

Starting from the results of Section II we derive in Section
III a uniform distribution on the set of real positive definite ma-
trices with bounded trace by treating the trace as independent
multiplication parameter. An implementation of the derived
trace distribution using the inversion method is proposed.Note,
in [13] a uniform distribution on the same set of real matrices
is obtained by a special transformation of beta and Liouville
distributed random variables. However, another approach is
used there which is based on a completely different, not
intuitively accessible parameterization. Only the real case is
considered and no efficient implementation is provided.

Section IV is concerned with the derivation of a uniform
distribution on the set of complex positive definite matrices
with constant or bounded trace. Due to our approach the
derivations are largely identical to the real-valued case so that
we focus on the main steps and results. We point out the
differences and omit repeating details.

The developed sampling methods lead to an efficient MAT-
LAB -algorithm which is described by pseudo code and for
reproducibility [14] it is available for download at [15]. The
implementation allows to uniformly sample a number of
positive definite matrices, either based on rejection sampling
or on transforming a beta distribution, either with real or
complex entries, either with constant or with bounded trace.
The option of sampling matrices with fixed or with bounded
trace is useful for some applications in connection with our
motivating example.

A side effect of the performed analysis is that we obtain the
volumes of the sets for which a uniform distribution is derived.
Corresponding expressions are developed in the paper.

In Section V an example application is studied, where the
optimization of some non-convex function over the set of real
positive definite matrices with constant trace is considered.
It is shown how the required number of randomly generated
matrices is computed in order to obtain a solution close to the
global optimum with a predefined probability. The results show
clearly the advantage of the proposed approach compared to
other heuristic generation methods or a deterministic method.

Notation and Preliminaries.We denote the transpose of a
matrix A by A′, the conjugate transpose byA∗, the trace by
tr(A), and the determinant bydet(A). A real or complexn×n
matrix A is said to be positive definite, denoted byA ≻ 0, if

x∗Ax > 0 (1)

holds for all nonzerox ∈ C
n. If the strict inequality required in

(1) is weakened tox∗Ax ≥ 0, thenA is said to be nonnegative

definite (or positive semidefinite). We define

Rc := {A ∈ R
n×n : A ≻ 0, tr(A) = c}, R := R1, (2)

R(c,c] := {B ∈ R
n×n : B ≻ 0, c < tr(B) ≤ c}, (3)

i.e., the set of realn× n positive definite matrices with trace
equal to the constantc > 0, with unit trace, and with trace
in the interval(c, c] for constants0 ≤ c < c, respectively.
Accordingly, we define the following sets of complexn × n
positive definite matrices:

Cc := {A ∈ C
n×n : A ≻ 0, tr(A) = c}, C := C1, (4)

C(c,c] := {B ∈ C
n×n : B ≻ 0, c < tr(B) ≤ c}. (5)

Due to its symmetry, a matrixB ∈ R(c,c] has 1
2n(n + 1)

independent entries. Therefore, the setR(c,c] is a (12n(n+1))-
dimensional subset of the set of all realn×nmatrices, denoted
by Rn×n. Adding the constraint of a constant trace reduces
the number of independent matrix entries by one. Thus, the
setRc is a (12n(n+1)− 1)-dimensional subset ofRn×n. Let
ζ be a random variable with values inRn×n and assumeζ to
be defined on a probability space with probability measureP.
We say thatζ has a uniform distribution onR(c,c] if

P(ζ ∈ A) =
vol(A ∩R(c,c])

vol(R(c,c])
(6)

holds and thatζ has a uniform distribution onRc if

P(ζ ∈ A) =
vol(A ∩Rc)

vol(Rc)
(7)

holds for allA ⊂ Rn×n. In (6) vol(B) denotes the(12n(n+1))-
dimensional volume of an arbitrary setB ⊆ R(c,c] and in
(7) vol(B) denotes the(12n(n + 1) − 1)-dimensional volume
of an arbitrary setB ⊆ Rc. A uniform distribution on the
setsC(c,c] and Cc is defined in a similar way. Note that a
uniform distribution can be defined equivalently by a constant
probability density function (pdf), if a pdf exists for the
considered space.

Subsequently,Γ denotes the gamma function given by
Γ(x) =

∫∞
0 e−ttx−1 dt for x > 0 as defined in [16, 8.310.1].

Further, 1A(x) denotes the indicator function at pointx,
which is one ifx ∈ A and zero otherwise.ℜ(x) and ℑ(x)
represent the real and imaginary part of a complex number
x. Throughout this articlen is assumed to be an arbitrary but
fixed integer withn ≥ 2. Most of the quantities introduced or
derived are functions ofn. However, in order to keep notation
simple and because it is always clear from the context, we
abandon to express this dependency explicitly.

Definitions and theorems employed in this article that are
standard knowledge in analysis or linear algebra and which
can be found in any standard textbook on the topic (see e. g.
[17] and [18]) are referred to as ’well-known’ and explicit
references will be omitted.

II. REAL MATRICES WITH UNIT OR CONSTANT TRACE

Consider the setsR andRc of realn× n positive definite
matrices with unit and with constant trace, respectively, as
defined in (2). In this section, we are concerned with the
derivation of a uniform distribution on these sets. Observethat
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once we have a uniform distribution onR, we obtain a uniform
distribution onRc by the linear one-to-one correspondence
A 7→ cA. Therefore, we can restrict the derivations in this
section to matrices with unit trace.

A. Parameterization

It is well-known thatA is a real positive definite matrix if
and only if there exists a unique real upper triangular matrix
U with positive diagonal entries such that

A = U ′U (8)

holds. This is called the Cholesky decomposition ofA.
LetA ∈ R and consider its Cholesky decomposition, where

the entries of the matrixU are named as follows

U =




x1 x2 x4 · · · x (n−1)n
2 +1

0 x3 x5 · · · x (n−1)n
2 +2

0 0 x6 · · · x (n−1)n
2 +3

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · xn(n+1)

2



. (9)

By matrix multiplication and due to the trace constraint ofA
we obtain

tr(A) = tr (U ′U) =

1
2n(n+1)∑

k=1

x2k = 1, (10)

which is simply the Frobenius norm of the matrixU . If we
rewrite the upper triangular part of the matrixU as a vector
x = (x1, x2, x3, . . . , x 1

2n(n+1)), then it follows from (10) that
all valid vectorsx correspond to points on the unit sphere in
the 1

2n (n+ 1)-dimensional Euclidean space. This observation
suggests to use the well-known hyperspherical coordinates
to parameterize the vectorx, which indeed turns out to be
convenient for generating a uniform distribution onR.

The use of hyperspherical coordinates for a vectorx =
(x1, x2, . . . , x 1

2n(n+1)) satisfying the last equality of (10)
yields

xk =

{
cosϕk

∏k−1
l=1 sinϕl if k = 1, 2, . . . , 12n (n+ 1)− 1,

∏k−1
l=1 sinϕl if k = 1

2n (n+ 1) ,
(11)

with

ϕl ∈
{
[0, π] if l = 1, 2, . . . , 12n (n+ 1)− 2,

[0, 2π) if l = 1
2n (n+ 1)− 1.

(12)

With this parameterization the componentsxk correspon-
ding to diagonal entries of the matrixU are nonnegative if
and only if the intervals specified in (12) are modified to

ϕl ∈
{
[0, π2 ] if l = 1

2 i (i+ 1) , i = 1, . . . , n− 1,

[0, π] else.
(13)

Reducing the parameter ranges this way does not reduce the
range of the componentsxk corresponding to off-diagonal
entries of U . Further, recall that due to the properties of
the Cholesky decomposition, we need to parameterize only
matricesU with positive diagonal entries. This is achieved if

and only if the closed intervals in (13) are changed to open
intervals. These observations all follow with (11) and obvious
properties of the sine and cosine function.

We are now able to write the entries of the matrixA ∈ R as
functions of the parametersϕl, l = 1, 2, . . . , 12n(n+1)−1. To
simplify the subsequent presentation, let us define the mapping

γ : R → γ(R) =: R̃ ⊂ R
1
2n(n+1)−1

A = (aij)
n
i,j=1 7→ a = (a11, a12, a22, . . . , an−1n),

(14)

which converts the upper triangular part of the matrixA into a
vector, leaving out the last diagonal entryann. This is similar
to applying the vech-operator, which is common in matrix
calculus. Due to its symmetry and the unit trace, the matrix
A is completely determined by the vectora = γ(A). In fact,
the functionγ simply extracts the independent entries of the
matrix A. Sinceγ is a linear one-to-one correspondence it
follows that once we have a uniform distribution oñR, we
obtain a uniform distribution onR by the inverse mapping
γ−1. Consequently, in this section we can restrict ourselves to
derive a method to sample uniformly from the setR̃.

For this purpose let us define the mapping

g : I → R̃
ϕ =(

ϕ1, ϕ2, . . ., ϕn(n+1)
2 −1

) 7→
a =

(a11, a12, a22, . . . , an−1n)

(15)

based on the hyperspherical parameterization from above,
where the domainI is defined by

I := I1 × I2 × . . .× In(n+1)
2 −1

, ϕl ∈ Il,

Il =
{
(0, π2 ) if l = 1

2 i (i+ 1) , i = 1, 2, . . . , n− 1,

(0, π) else.

(16)

The componentsaij in (15) are given through (8) and (9) by

aij =

i∑

m=1

x (i−1)i
2 +m

x (j−1)j
2 +m

, i ≤ j, (17)

and with (11) we obtain the component functions

aii(ϕ) =

i∑

m=1

[( 1
2 (i−1)i+m−1∏

l=1

sin2 ϕl

)
cos2 ϕ (i−1)i

2 +m

]
(18)

for i = 1, . . . , n− 1 and

aij(ϕ) =

i∑

m=1

[( 1
2 (i−1)i+m−1∏

l=1

sin2 ϕl

)( 1
2 (j−1)j+m−1∏

l= 1
2 (i−1)i+m

sinϕl

)

· cosϕ (i−1)i
2 +m

cosϕ (j−1)j
2 +m

]
(19)

for i < j.
Note, that the functiong is a one-to-one correspondence,

which follows from the uniqueness of the matrixU in the
Cholesky decomposition (8) and from the well-known fact that
the hyperspherical coordinate transformation is a one-to-one
mapping for the considered open parameter intervals. Thus,the
compositionγ−1 ◦ g is a one-to-one correspondence between
I andR.
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Remark.The mappingγ−1 ◦ g can also be employed to
parameterize nonnegative definite matrices with unit trace.
We only have to change the domain of the functiong by
substituting the open intervals in (16) by the corresponding
closed intervals, i.e., substitutingI by its closed version,
denoted byI. Then the parameter ranges are given by (13) and
a singular matrixA is the image of a point on the boundary of
I. The reason why we have to modify the domain ofg is that
the diagonal elements of the matrixU in the decomposition
(8) are nonnegative in the nonnegative definite case. Further
note that as a consequence, the functiong is not a one-to-one
correspondence anymore. The reason is twofold. On the one
hand, the matrixU in the decomposition (8) is not necessarily
unique for nonnegative definite matrices. On the other hand,
the hyperspherical coordinate transformation is no longera
one-to-one mapping.

B. Parameter distribution

Let ξ be a real(12n (n+ 1)−1)-dimensional random vector.
Furthermore, letg be a function mapping the set of real
(12n (n+ 1) − 1)-dimensional vectors into itself. We define
g on the setI by (15), (18) and (19) withI given by (16).
OutsideI we setg equal to the zero vector. Thenη := g(ξ) is
a random vector with the same dimension asξ. If the values
of ξ are almost surely inI, then the values ofη are almost
surely ing(I) = R̃, with R̃ defined in (14).

Our goal is to find the distribution ofξ such thatη is
uniformly distributed onR̃, i.e., the pdf ofη shall be

fη(a) = cη 1R̃(a), a ∈ R
1
2n(n+1)−1, (20)

wherecη is a constant makingfη a pdf. Due to the simplicity
of fη, we immediately obtain the pdf ofξ by applying the
well-known integral transformation formula. The pdf ofξ is
then given by

fξ(ϕ) = cη | detJg(ϕ)|1I(ϕ),

ϕ =
(
ϕ1, ϕ2, . . . , ϕn(n+1)

2 −1

)
∈ R

1
2n(n+1)−1,

(21)

whereJg denotes the Jacobian matrix of the functiong. Note
that indeed all conditions to apply the transformation formula
are satisfied: The setsI and R̃ are open sets. The function
g is a one-to-one correspondence betweenI andR̃, which is
discussed in Section II-A and it is continuous, which can be
seen from (18) and (19). Furthermore, from (23)–(25) below
we see that the Jacobian determinant has no zero onI.

The calculation of the Jacobian determinant is significantly
simplified by the fact that the component functionaij only
depends onϕ1, ϕ2, . . . , ϕ 1

2 (j−1)j+i, as can be seen from (18)
and (19). It follows that the derivative ofaij with respect to
ϕl is zero for alll > 1

2 (j − 1) j + i, which results in a lower
triangular Jacobian matrix

Jg =




∂a11
∂ϕ1

0 0 · · · 0
∂a12
∂ϕ1

∂a12
∂ϕ2

0 · · · 0
∂a22
∂ϕ1

∂a22
∂ϕ2

∂a22
∂ϕ3

· · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂an−1n

∂ϕ1

∂an−1n

∂ϕ2

∂an−1n

∂ϕ3
· · · ∂an−1n

∂ϕn(n+1)
2

−1




. (22)

The Jacobian determinant is then simply the product of the
diagonal entries ofJg, i.e.,

detJg =
∂a11
∂ϕ1

∂a12
∂ϕ2

· · · · ∂an−1n

∂ϕn(n+1)
2 −1

=
n−1∏

i=1

n∏

j=i

∂aij
∂ϕ (j−1)j

2 +i

=

(
n−1∏

i=1

∂aii
∂ϕ i(i+1)

2

)(
n−1∏

i=1

n∏

j=i+1

∂aij
∂ϕ (j−1)j

2 +i

)
. (23)

With (18) and (19) we can calculate the required derivatives,
which results in

∂aii
∂ϕ i(i+1)

2

(ϕ) =

− 2 cosϕ i(i+1)
2

sinϕ i(i+1)
2

( 1
2 i(i+1)−1∏

l=1

sin2 ϕl

)
1I(ϕ) (24)

for i = 1, . . . , n− 1, and

∂aij
∂ϕ (j−1)j

2 +i

(ϕ) =

− cosϕ i(i+1)
2

( 1
2 i(i+1)−1∏

l=1

sin2 ϕl

)( 1
2 (j−1)j+i∏

l= 1
2 i(i+1)

sinϕl

)
1I(ϕ)

(25)

for i < j. Finally taking the absolute value of the Jacobian
determinant, we obtain with (21) the pdf ofξ

fξ(ϕ) =

cη

[
n−1∏

i=1

2 cosϕ i(i+1)
2

sinϕ i(i+1)
2

( 1
2 i(i+1)−1∏

l=1

sin2 ϕl

)]

·
[
n−1∏

i=1

n∏

j=i+1

cosϕ i(i+1)
2

( 1
2 i(i+1)−1∏

l=1

sin2 ϕl

)

·
( 1

2 (j−1)j+i∏

l= 1
2 i(i+1)

sinϕl

)]
1I(ϕ). (26)

Let ξl, l = 1, 2, . . . , 12n(n + 1) − 1, be the components of
the real random vectorξ and letfξl be the pdf ofξl. Then,
after some rearrangements, we obtain from (26)

fξ(ϕ) =

1
2n(n+1)−1∏

l=1

fξl(ϕl), (27)

wherefξl is given by

fξl(ϕl) = cl cos
pl(ϕl) sin

ql(ϕl)1Il
(ϕl), ϕl ∈ R, (28)

with Il specified in (16). For the exponentspl andql we have

pl =






(n+ 1)− i if l = 1
2 i (i+ 1) ,

i = 1, 2, . . . , n− 1,

0 else,

(29)

and
ql = n2 − κl n− λl, (30)
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where

κl = i − 1, λl = i+ 1 +m (31)

if l = 1
2 i(i+ 1) +m, i = 1, 2, . . . , n− 1, m = 0, 1, . . . , i.

Please refer to Appendix A for a derivation of (29)–(31).
The normalizing constantcl in (28), which makesfξl a pdf,

can be obtained using [16, 3.621.5 and 8.384.1]

cl =





2
Γ
(

pl+1

2 +
ql+1

2

)

Γ
(

pl+1

2

)
Γ
(

ql+1

2

) if l = 1
2 i (i+ 1) ,

i = 1, 2, . . . , n− 1,

1√
π

Γ
(

ql+1

2 + 1
2

)

Γ
(

ql+1

2

) else.

(32)

For convenience of the reader, the constants specified in (29)–
(32) and the resulting pdfsfξl are evaluated forn = 2, 3, 4 in
Appendix B, Table II.

From (27) follows that the random vectorξ has stochasti-
cally independent componentsξl. Thus, to generate the desired
distribution of ξ is equivalent to independently generate the
distributions ofξl, which are specified by the pdfs in (28).
This is actually the main advantage of the proposed matrix
parameterization.

Remarks.(i) To obtain a uniform distribution on the set of
nonnegative definite matrices with unit trace, we just have to
replaceI in (21) by its closed version, denoted byI. This
is equivalent to replacing the open intervalsIl in (28) by the
corresponding closed intervals. Even though the functiong is
not invertible onI (see Remark in Section II-A), this result
can be obtained also by the integral transformation formula,
since the(12n(n + 1) − 1)-dimensional volume ofI \ I is
zero. However, note that the resulting probability of the set of
singular matrices is zero.

(ii) The constantcη in (20) is equal to the reciprocal of the
(12n(n+1)− 1)-dimensional volume of the set̃R. Comparing
(26) with (27) and (28) yields

vol(R̃) = c−1
η = 2n−1

1
2n(n+1)−1∏

l=1

c−1
l

= π
1
4n(n−1)

∏n
k=2 Γ

(
k+1
2

)

Γ
(n(n+1)

2

) .

(33)

For the last equality we have used (32) and a simplification
given in [13, Def. 5]. This result might be of independent
interest.

C. Implementation

As before, letR be given by (2),γ by (14) andg by
(15)–(19). Then according to the derivations in Sections II-A
and II-B we obtain a uniform distribution onR by applying
the transformationγ−1 ◦ g to the real random vectorξ =
(ξ1, ξ2, . . . , ξ 1

2n(n+1)−1). The componentsξl of the vectorξ
are stochastically independent, each having pdffξl as specified
in (28)–(32). Thus, to implement this method on a computer
we have to generate random numbers drawn from1

2n(n+1)−1
distributions independently, each with pdffξl .

There are several methods to generate random numbers with
a desired distribution on the basis of efficient random number

generators available in standard software like MATLAB or
R. For example, we can generate a distribution by applying
the inverse of its cumulative distribution function (cdf) to a
uniform distribution on the interval(0, 1). This is well-known
as the inversion method described in [19, Ch. II.2]. With [16,
2.511] it is not difficult to obtain the cdf forfξl . However,
for most exponents in (28) the cdf can only be inverted
numerically, which is not efficient. Subsequently, we propose
two efficient methods, each having its advantages.

Rejection sampling.First, we develop the well-known rejec-
tion method described in [19, Ch. II.3] or [20, Ch. 3.4.1]. To
apply this method to generate a distribution with pdffξl , we
have to find a so called instrumental distribution, say with pdf
fφl

, for which an efficient generation method exists and for
which the inequality

fξl(t) ≤ νl fφl
(t), t ∈ R, (34)

holds, whereνl > 1 is a constant. Ifνl is close to1 this method
is efficient. In fact, the expected portion of samples that are
rejected during the generation process is given by(1− 1/νl).

In the considered case, the normal distribution is a suitable
candidate to serve as instrumental distribution. Letφl be a
random variable with normal distribution, i.e., with pdf

fφl
(t) =

1√
2πσ2

l

exp

(
− (t− µl)

2

2σ2
l

)
, t ∈ R, (35)

whereµl ∈ R and σ2
l > 0 are the expectation and variance

parameters, respectively. The advantage of this approach is that
very efficient algorithms are available in all commonly used
numerical computing environments to generate normally dis-
tributed random numbers. In addition, with proper parameters
µl andσ2

l the constantνl can be chosen close to 1.
Indeed, forl = 1, 2, . . . , 12n(n+ 1)− 1 we set

µl =






arctan
√

ql
pl

if l = 1
2 i (i+ 1) ,

i = 1, 2, . . . , n− 1,
π
2 else,

(36)

and

σ2
l =

1
(√
pl +

√
ql
)2 , (37)

where pl and ql are the exponents of the cosine and sine
function in (28). Then we chooseνl in (34) to be equal to

νl =
√
2πσ2

l

cl
dl
, (38)

wherecl is the constant specified in (32) anddl is given by

dl =





(
1+ql/pl

) pl
2

(
1+pl/ql

)
−

ql
2

if l = 1
2 i (i+ 1) ,

i = 1, 2, . . . , n− 1,

1 else.

(39)

Observe that the different cases in (36) and (39) are equivalent
to the casespl = 0 andpl > 0.

Both functionsfξl andνlfφl
have a unique maximum and

with µl as in (36) the maxima are at the same position.
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Choosingνl as in (38) their value is also identical. Together
with this property the inequality

d2 ln fξl
dt2

(t) ≤ d2 ln fφl

dt2
(t), t ∈ R, (40)

implies (34), which follows from the monotonicity of the
logarithm, the fundamental theorem of calculus, and the mono-
tonicity of the integral. The smallest possibleσ2

l such that (40)
still holds is then given by (37). This can be seen from the
following facts: First, the RHS of (40) is equal to−1/σ2

l

for all t ∈ R. Second, the maximum of the LHS is equal to
−(

√
pl +

√
ql)

2, which is obtained as the value of the LHS
at the zero of its derivative. Note that the calculations have to
be performed separately for the casespl = 0 andpl > 0.

For illustration,fξl andνlfφl
are compared in Appendix C,

Fig. 1 for the marked parameter sets of Table II. Fig. 1 (a) and
(b) show two examples forpl = 0, i.e., wherefξl is symmetric.
Increasingql from 2 to 8 reduces the expected portion of
rejected samples form about11% to 3%. This portion further
decreases asql increases. Ifpl > 0 and pl 6= ql, then fξl
is asymmetric as can be seen in Fig. 1 (c) and (d). We ob-
serve that the asymmetry increases with increasing difference
betweenpl and ql. Fig. 1 (c) and (d) illustrate characteristic
examples, where the expected portion of rejection lies between
8% and10%.

Transformation of beta distribution.As an alternative, we
can generate the distribution of the random variableξl directly
from a beta distribution by applying an appropriate transfor-
mation. The efficiency of this method relies on the efficient
generation of beta distributed random numbers.

Let ψl be a random variable with beta distribution, i.e., with
pdf

fψl
(t) = cψl

tαq−1(1− t)αp−1
1(0,1)(t), t ∈ R, (41)

whereαp, αq > 0 are shape parameters andcψl
=

Γ(αq+αp)
Γ(αq)Γ(αp)

is a normalizing constant. Consider the mapping

θ : (0, 1) →
(
0, π2

)
,

y 7→ arcsin
√
y.

(42)

It is a continuous one-to-one correspondence between two
open intervals and its inverseθ−1 has derivative

dθ−1

dy
(y) = 2 sin y cos y, y ∈ (0, π2

)
, (43)

which is a positive function. Thus we can calculate the pdf
of the random variableθ(ψl) using the integral transformation
formula. For the sake of completeness we extendθ outside
(0, 1) by 0. The pdf ofθ(ψl) is then given by

fθ(ψl)(y) = fψl

(
θ−1(y)

)dθ−1

dy
(y) (44)

= 2 cψl
cos2αp−1(y) sin2αq−1(y)1(0,π2 )(y), y ∈ R. (45)

For l = 1
2 i (i+ 1), i = 1, 2, . . . , n − 1, the exponentpl is

positive due to (29). For this caseθ(ψl) andξl have the same
distribution if we putαp = 1

2 (pl + 1) andαq = 1
2 (ql + 1),

which follows immediately from comparing (45) with (16),
(28), and (32).

It remains to treat the casepl = 0. We observe that the
random variableπ − θ(ψl) has pdf

fθ(ψl)(π − y), y ∈ R. (46)

If βl is a random variable with Bernoulli distribution and if
the probabilities ofβl = 0 and βl = 1 are equal, then the
random variable

(1 − βl)θ(ψl) + βl(π − θ(ψl)) (47)

has pdf

1
2fθ(ψl)(y) +

1
2fθ(ψl)(π − y), y ∈ R, (48)

givenβl andψl are stochastically independent. Combining (45)
and (48) and comparing this to (16), (28), and (32), yields for
the casepl = 0, that the random variable in (47) has the same
distribution asξl, if we put αp = 1

2 andαq = 1
2 (ql + 1).

The complete method to sample uniformly from the set of
real n × n positive definite matrices with unit (or constant)
trace is summarized in Appendix D in Algorithm 1, 2, and
3 as pseudo code listing. The algorithm illustrates the basic
approach developed so far. For the sake of accessibility it is
presented in a way close to the derivations. However, further
improvements are possible. In particular the calculation of
some constants can be omitted.

Matlab implementation.An optimized version of the algo-
rithm has been implemented in MATLAB , which is provided
for download at [15]. The method based on rejection sampling
as well as the method based on transforming a beta distribution
has been made available. The former algorithm works with
standard MATLAB , whereas for the latter the Statistics Toolbox
is required, since the beta distribution is obtained from two
gamma distributions. According to [19, p. 431] it is very
competitive to utilize a gamma distribution, in particularfor
the parameter constellations required, since gamma generators
are very efficient.

Both generation methods show similar performance. How-
ever, comparing the algorithms based on a MATLAB implemen-
tation can only be a rough estimate. The numerical stability
of the implementation has been tested and verified for matrix
dimensions up ton = 25. The verification was accomplished
by comparing the empirical cdfs of the parameters with
their theoretical cdfs. A sample size of 100 000 was used
for obtaining the empirical cdfs. The theoretical cdfs were
calculated by numerically integrating (28). For higher matrix
dimensions the numerical stability has not been tested.

Finally we want to give a rough estimate of the compu-
tational time of the MATLAB implementation: On a desktop
computer with Intel Core i5 (2x3.33GHz) processor, 4 GB
memory, and Windows 7 (64bit) operating system, it requires
less than half a second to generate 5000 real10× 10 matrices
with unit trace.

III. R EAL MATRICES WITH BOUNDED TRACE

Consider the setsR andR(c,c] of realn×n positive definite
matrices with unit and with bounded trace, respectively, as
defined in (2) and (3). In this section we are concerned with
the derivation of a uniform distribution onR(c,c]. We will
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show the following result: The product distribution of a certain
distribution on the interval(c, c] and a uniform distribution on
R is transformed into a uniform distribution onR(c,c] by the
one-to-one correspondence(t, A) 7→ t A.

A. Parameterization

Let us define the mapping

γ : R(c,c] → γ(R(c,c]) =: R̃(c,c] ⊂ R
1
2n(n+1)

B = (bij)
n
i,j=1 7→ b = (b11, b12, b22, . . . , bnn),

(49)

which converts the upper triangular part of the matrixB,
i.e., its independent entries, into a vector. We can restrict
subsequent derivations to the setR̃(c,c], sinceγ is a linear one-
to-one correspondence that preserves the uniform distribution.

We parameterize the elements ofR̃(c,c] by the mapping

h : (c, c]× R̃ → R̃(c,c]

(t, a) = (t, a11, a12, a22, . . . , an−1n) 7→
b = (b11, b12, b22, . . . , bnn)

= t
(
a11, a12, a22, . . . , an−1n, 1−

∑n−1
i=1 aii

)
,

(50)

with R̃ as specified in (14). That means we use the trace as
multiplication parameter. The functionh satisfies all condi-
tions to be applied in connection with the integral transfor-
mation formula: The sets(c, c)× R̃ andR̃(c,c) are open sets
and the(12n(n+1))-dimensional volume of the sets{c}× R̃
and R̃(c,c] \ R̃(c,c) is zero. The functionh is a continuous
one-to-one correspondence with inverse

h−1 : R̃(c,c] → (c, c]× R̃
b 7→ (t, a)

=
(∑n

i=1bii
)−1
((∑n

i=1bii
)2
, b11, b12, b22, . . . , bn−1n

)
.

(51)

It is a simple task to calculate the Jacobian matrix ofh−1

and after some routine column manipulations we obtain the
Jacobian determinant

det Jh−1(b) = (−1)n−1
(∑n

i=1bii
)− 1

2n(n+1)+1
, (52)

which has obviously no zero oñR(c,c].

B. Parameter distribution

Let η be the random vector considered in Section II-B,
which has a uniform distribution oñR. Let τ be a real random
variable, where its values represent a positive matrix trace.
Assumeτ is stochastically independent ofη and has pdffτ .
Then the joint pdf ofτ andη is given by

f(τ,η)(t, a) = fτ (t)
1

vol(R̃)
1R̃(a),

(t, a) ∈ R×R
1
2n(n+1)−1,

(53)

wherevol(R̃) is given in (33). If we extend the domain of
the functionh in (50) toR

1
2n(n+1) and set its values equal to

the zero vector outside(c, c] × R̃, then we can define the
real (12n(n + 1))-dimensional random vectorζ := h(τ, η).

Applying the integral transformation formula we obtain the
pdf fζ of ζ from the pdf of(τ, η). Using (51)–(53) yields

fζ(b) = f(τ,η)
(
h−1(b)

)
| detJh−1(b)|

= 1

vol(R̃)

fτ
(∑n

i=1bii
)

(∑n
i=1bii

) 1
2n(n+1)−1

1R̃
(
a(b)

)
(54)

for all b ∈ R̃(c,c] andfζ(b) = 0 otherwise. If we definefτ by

fτ (t) = cτ t
1
2n(n+1)−1

1(c,c](t), t ∈ R, (55)

then from (54) immediately follows

fζ(b) = cτ
1

vol(R̃)
1R̃(c,c]

(b), b ∈ R
1
2n(n+1). (56)

Thus, forfτ as in (55) andτ andη being stochastically inde-
pendent the pdffζ is constant onR̃(c,c] and zero otherwise,
i.e., ζ has the desired uniform distribution oñR(c,c].

Remark.It might be of interest to calculate the(12n(n+1))-
dimensional volume of the set̃R(c,c]. From (56) we obtain

vol(R̃(c,c]) = c−1
τ vol(R̃)

=
c

1
2n(n+1) − c

1
2n(n+1)

1
2n(n+ 1)

vol(R̃),
(57)

wherevol(R̃) is given in (33) and the last equality follows
from the fact that the constantcτ normalizesfτ to be a pdf.

C. Implementation

As derived in the previous Sections III-A and III-B we
obtain a uniform distribution onR(c,c] by applying the transfor-
mationγ−1 ◦h to the real random vector(τ, η). The functions
γ and h are defined in (49) and (50), the random vector
η is uniformly distributed onR̃, and the random variable
τ has pdf fτ given in (55). In Section II-C we already
derived a method to generate the uniform distribution ofη.
Therefore and becauseτ andη are stochastically independent,
we only have to find a method to generate the distribution of
τ . This task is accomplished easily using the inversion method
described in [19, Ch. II.2].

Let Fτ be the cdf ofτ , which we obtain from (55) by a
simple integration. The inverse ofFτ on the interval(c, c] is
then given by

F−1
τ (u) =

[(
c

1
2n(n+1) − c

1
2n(n+1)

)
u

+ c
1
2n(n+1)

] 2
n(n+1)

, u ∈ (0, 1].
(58)

Applying F−1
τ to a uniform distribution on the interval(0, 1]

yields the desired distribution with pdffτ .
The complete method to sample uniformly from the set of

realn×n positive definite matrices with bounded trace is sum-
marized in Appendix D, Algorithm 4 as pseudo code listing.
This algorithm is included in the MATLAB implementation,
which is provided for download at [15].
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IV. COMPLEX MATRICES

Consider the setsC, Cc, and C(c,c] of complex n × n
positive definite matrices with unit, constant, and bounded
trace, respectively, as defined in (4) and (5). In this section we
are concerned with the derivation of a uniform distributionon
these sets. The approach is largely identical to the real-valued
case, described in detail in Sections II and III. Therefore,it
is sufficient to summarize only the main steps and results.
However, the complex case is important too and it is necessary
to point out the fine differences of the parameterization and
of the parameter distribution.

First, we describe the generation of a uniform distribution
on C, which can be transformed into a uniform distribution on
Cc by the linear one-to-one correspondenceA 7→ cA. Then
we construct a uniform distribution onC(c,c] from the product
distribution of a certain distribution on the interval(c, c] and a
uniform distribution onC using the one-to-one correspondence
(t, A) 7→ t A.

A. Unit or constant trace

Parameterization.First, we give a suitable parameterization
of the matrices contained inC following the derivations in
Section II-A.

It is well-known thatA is a complex positive definite matrix
if and only if there exists a unique complex upper triangular
matrix U with real positive diagonal entries such that

A = U∗U (59)

holds. This is called the Cholesky decomposition ofA.
Let A ∈ C and consider its Cholesky decomposition, where

the entries of the matrixU are named as follows

U =




x1 x2+x3 x5+x6 · · · x(n−1)2+1+x(n−1)2+2

0 x4 x7+x8 · · · x(n−1)2+3+x(n−1)2+4

0 0 x9 · · · x(n−1)2+5+x(n−1)2+6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · xn2



.

(60)

Since

tr(A) = tr (U∗U) =

n2∑

k=1

x2k = 1 (61)

holds by matrix multiplication and due to the unit trace of
A, we can parameterize the componentsxk, k = 1, 2, . . . , n2,
using hyperspherical coordinates

xk =

{
cosϕk

∏k−1
l=1 sinϕl if k = 1, 2, . . . , n2 − 1,

∏k−1
l=1 sinϕl if k = n2.

(62)

Following the same arguments as in Section II-A, the ranges
Il of the parametersϕl, l = 1, 2, . . . , n2 − 1, are given by

Il =
{
(0, π2 ) if l = i2, i = 1, 2, . . . , n− 1,

(0, π) else.
(63)

Parameter distribution.We consider the mapping

γ : C → γ(C) =: C̃ ⊂ R
n2−1

A = (aij)
n
i,j=1 7→

(
a11,ℜ(a12),ℑ(a12), a22, . . . ,ℜ(an−1n),ℑ(an−1n)

)
,

(64)

which converts the upper triangular part of matrixA into a
real vector, leaving out the last diagonal entryann. Note that
the diagonal of a complex positive definite matrix has always
real positive entries. In fact, the functionγ simply extracts the
independent entries of the matrixA. It is a linear one-to-one
correspondence that preserves a uniform distribution, allowing
us to restrict the derivations to the setC̃.

Furthermore, we consider the mapping

g : I1 × I2 × . . .In2−1 =: I → C̃
(ϕ1, ϕ2, . . . , ϕn2−1) 7→(

a11,ℜ(a12),ℑ(a12), a22, . . . ,ℜ(an−1n),ℑ(an−1n)
)
,

(65)

defined by (59), (60), (62), and (63). It can be easily verified
that the relevant properties ofg to derive a uniform distribution
on C̃ are identical to those of the mapping defined in (15)–(19).
In particular, its Jacobian matrix is a lower triangular matrix
so that its determinant is the product of the diagonal entries.
Thus, the parameter distribution can be obtained in a similar
manner as for the real case. See Section II-B for details.

Let ξl, l = 1, 2, . . . , n2 − 1, be stochastically independent
real random variables whose values represent the parameters
ϕl, l = 1, 2, . . . , n2−1. Let the pdffξl of the random variable
ξl be given by

fξl(ϕl) = cl cos
pl(ϕl) sin

ql(ϕl)1Il
(ϕl), ϕl ∈ R, (66)

with Il as specified in (63). Further, let the exponentspl and
ql be given by

pl =

{
2 (n− i) + 1 if l = i2, i = 1, 2, . . . , n− 1,

0 else,
(67)

and
ql = n2 + κl n− λl, (68)

where

κl = n− i− 1, λl = (i − 1)n+ 1 +m (69)

if l = i2 +m, i = 1, 2, . . . , n− 1, m = 0, 1, . . . , 2i.

The normalizing constantcl in (66) is necessarily given by

cl =





2
Γ
(

pl+1

2 +
ql+1

2

)

Γ
(

pl+1

2

)
Γ
(

ql+1

2

) if l = i2,
i = 1, 2, . . . , n− 1,

1√
π

Γ
(

ql+1

2 + 1
2

)

Γ
(

ql+1

2

) else.

(70)

Then with calculations similar to those in Section II-B, it
can be derived that applying the transformationγ−1 ◦ g
to the random vector(ξ1, ξ2, . . . , ξn2−1) yields a uniform
distribution onC. For convenience of the reader, the constants
specified in (67)–(70) and the resulting pdfsfξl are evaluated
in Appendix B, Table III forn = 2, 3, 4.

Implementation.The parameter distribution derived in this
subsection has the same form as for the corresponding real
case considered in Section II. Thus, the algorithm to sample
uniformly from the set of complexn × n positive definite
matrices with unit (or constant) trace is basically identical to
one developed in Section II-C. Only some constants have to
be adapted accordingly.
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The MATLAB implementation provided for download at
[15] includes also the algorithm to generate complex matrices
based on the results presented above. The numerical stability
of the complex part of the implementation has been tested and
verified for matrix dimensions up ton = 25 using the same
method as for the real case. For higher matrix dimensions the
numerical stability has not been tested.

To give a rough estimate of the computational time of the
MATLAB implementation we have generated 5000 complex
10×10 matrices with unit trace. Under the conditions specified
at the end of Section II-C this requires less than a second.

Remark.It might be of interest to evaluate the(n2 − 1)-
dimensional volume of the set̃C. Calculations similar to those
in Remark (ii) of Section II-B yield together with (70)

vol(C̃) = 2n−1
n2−1∏

l=1

c−1
l = π

1
2n(n−1)

∏n
k=2(k − 1)!

(n2 − 1)!
. (71)

B. Bounded trace

Starting from a uniform distribution onC to generate a
uniform distribution onC(c,c] we have to follow the same
steps as in Section III. Except for some natural modifications
the calculations are identical to the corresponding real case.
Therefore we formulate only the final results and comment on
the differences.

Let η be a real(n2 − 1)-dimensional random vector with a
uniform distribution onC̃, whereC̃ is defined in (64). Letτ
be a real random variable, stochastically independent ofη and
with pdf fτ , where

fτ (t) = cτ t
n2−1

1(c,c](t), t ∈ R. (72)

Further consider the mappings

γ : C(c,c] → γ(C(c,c]) =: C̃(c,c] ⊂ R
n2

(bij)
n
i,j=1 7→ b = (b11,ℜ(b12),ℑ(b12), b22, . . . , bnn),

(73)

and

h : (c, c]× C̃ → C̃(c,c]
(t, a11,ℜ(a12),ℑ(a12), a22, . . . ,ℜ(an−1n),ℑ(an−1n)) 7→
t
(
a11,ℜ(a12),ℑ(a12), a22, . . .

. . . ,ℜ(an−1n),ℑ(an−1n), 1−
∑n−1

i=1 aii
)
.

(74)
Then applying the transformationγ−1◦h to the random vector
(τ, η) yields a uniform distribution onC(c,c].

The result is mainly based on the stochastic independence
of τ andη and the special form of the Jacobian determinant
of the inverse mappingh−1, which is given by

detJh−1(b) = (−1)n−1
(∑n

i=1bii
)−n2+1

. (75)

To implement the method, we use the algorithm of the
previous Section IV-A to generate the uniform distribution
of the random vectorη. The inversion method is suitable to
generate the distribution of the random variableτ . We just
have to apply the functionF−1

τ with

F−1
τ (u) =

[(
cn

2 − cn
2)
u+ cn

2
] 1

n2

, u ∈ (0, 1], (76)

to a uniform distribution on the interval(0, 1]. The complete
algorithm to sample uniformly from the set of complexn×n
positive definite matrices with bounded trace is included inthe
MATLAB implementation provided for download at [15].

Remark.The n2-dimensional volume of the set̃C(c,c] is
given by

vol(C̃(c,c]) = c−1
τ vol(C̃) = (cn

2 − cn
2

)

n2
vol(C̃), (77)

where vol(C̃) is given in (71) and the last equality follows
from the fact that the constantcτ normalizesfτ to be a pdf.

V. EXAMPLE OF APPLICATION

Let f be a continuous real-valued function on the set of
real n × n matrices and letRc be the set of realn × n
nonnegative definite matrices with trace equal toc. Assume
we want to optimize (minimize or maximize) the functionf
over the setRc. Further, assume the optimization problem
cannot be solved analytically and the properties of the function
f are such that there is no standard algorithm available to
solve it numerically. Then, one way to ’estimate’ the optimal
value of f in a certain sense is to use the random sampling
algorithm developed in the previous sections. In the following,
we describe and evaluate this approach. The purpose of the
section is to explain the basic principle in a more abstract
way rather than analyzing a detailed example.

First, observe that the optimization problem is equivalent
to optimizing the functionf̃ = f ◦ γ−1 over the setR∼

c :=
γ(Rc) ⊂ R

1
2n(n+1)−1, where the functionγ is defined as

in (14) with R replaced byRc. In fact, this simply means
we reformulate the optimization problem in terms of the
independent matrix entries. Note that we haveR∼

c = cg(I),
where the functiong is defined as in (15)–(19) withI replaced
by its closed versionI.

Let aopt ∈ R∼

c be a vector optimizing the functioñf
and let Eopt be a neighborhood ofaopt. Assume that we
employ the uniform sampling algorithm from Section II-C to
randomly select a vector from the setR∼

c . Due to the uniform
distribution, the probability, sayρ, that the generated vector
lies in Eopt is given by

ρ =
r vol

(
Eopt)

vol
(
R∼

c

) with r =
vol
(
Eopt ∩R∼

c

)

vol
(
Eopt

) , (78)

wherevol(A) denotes the(12n(n+1)−1)-dimensional volume
of the setA ⊂ R

1
2n(n+1)−1. The factorr ∈ [0, 1] represents

the portion ofEopt, which intersects withR∼

c . If we use the
sampling algorithm to generateM vectors independently, then
the probability, sayδ, that at least one of these vectors lies in
Eopt is given by

δ = 1− (1− ρ)M . (79)

If we solve this equation forM and round up to the next
integer, we obtain

⌈M⌉ = ⌈log(1−ρ)(1− δ)⌉, (80)

which gives us the minimum number of vectors we have to
generate such that the probability, that at least one of the
generated vectors lies inEopt, is at leastδ.
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Using the integral transformation formula, we obtain

vol
(
R∼

c

)
= c

1
2n(n+1)−1 vol(R̃), (81)

wherevol(R̃) is given in (33).
To explicitly calculate (78), let us consider an example,

where we specify the neighborhoodEopt of the vectoraopt
to be a ball with respect to the Euclidean distance with center
aopt and radiusǫ > 0, i. e.,

Eopt = {a ∈ R
1
2n(n+1)−1 : ‖a− aopt‖2

≤ ǫ}. (82)

That means, we defineEopt such that the Euclidean distance
between a vector inEopt and the vectoraopt is at mostǫ. If f̃
is Lipschitz continuous and has the Lipschitz constantK with
respect to the Euclidean distance, then the following inequality
holds for alla ∈ Eopt

|f̃(a)− f̃(aopt)| ≤ Kǫ. (83)

Note that the norm in (82) can be any other norm depending
on what is suitable for the considered application.

For Eopt being the ball defined in (82) we obtain with [16,
4.632.2]

vol(Eopt) =
π

1
2

(
1
2n(n+1)−1

)

Γ
(

1
2

(
1
2n(n+ 1) + 1

)) ǫ
1
2n(n+1)−1. (84)

Using (81), (33), and (84) to evaluate (78) yields

ρ = π
n
2 −1 Γ

(n(n+1)
4

)
∏n
k=2 Γ

(
k+1
2

)
(
2ǫ
c

) 1
2n(n+1)−1

r, (85)

where we have used [16, 8.335.1] to simplify the expressions.
To consider a numerical example, letǫc = 0.1 and r = 1,

i. e., Eopt ⊂ R∼

c . In Table I the resulting values of⌈M⌉
are listed forn = 2, 3, 4. Let us pick the marked parameter

⌈M⌉
n

2 3 4

δ
0.95 74 2 339 91 421

0.99 113 3 596 140 537

TABLE I
NUMBER ⌈M⌉ FOR BALL-SHAPED NEIGHBORHOODEopt ,

r = 1, ǫ
c
= 0.1, AND n = 2, 3, 4.

constellation in Table I to explain the results: Assume the
task is to optimize the real-valued functionf over the set
of real 3 × 3 nonnegative definite matrices with unit trace.
We equivalently consider optimizing the functioñf over the
setR∼

1 as described at the beginning of this section and we
assumef̃ has Lipschitz constantK. Let us independently
generate 2339 vectors of the setR∼

1 using the uniform
sampling algorithm developed in Section II-C. Then with a
probability of at least 95% the Euclidean distance between
at least one of these vectors and a vector optimizingf̃ is at
most 0.1. Taking now the optimum of the functioñf on the
sampled set of vectors yields a value, which differs from the
true optimum by at most0.1K with a probability of at least
95%. The values of Table I show that this method can be very
efficient.

The condition in our numerical example is that the Eu-
clidean distance between an optimal vector and the boundary
of R∼

1 is at least 0.1, i.e.r = 1. Generally, we do not know
if Eopt ⊂ R∼

c holds. Given the boundary ofR∼

c is sufficiently
smooth and the radius ofEopt is sufficiently small, thenr = 1

2
is a suitable assumption to estimate the probabilityρ.

The above considerations can be adapted in an obvious
way to optimization problems with respect to real nonnegative
definite matrices with bounded trace or complex nonnegative
definite matrices with constant or bounded trace using the
results from Sections III and IV.

Remark.One might ask, what is the advantage of randomly
selecting vectors from the setR∼

c or, equivalently, matrices
form the setRc. Alternatively, we could use the parameter-
ization derived in Section II-A and select matrices fromRc

by stepping through the set of parameters deterministically
according to an equidistant grid. Since the set of parameter
values is an(12n(n+1)−1)-fold Cartesian product of intervals,
this can be accomplished easily. However, this way we step
through the corresponding set of matrices in a highly irregular
manner. In contrast, with the proposed random method, we
select the matrices according to a uniform distribution. Without
being able to exploit any additional knowledge about the
optimization problem, sampling the constraint set uniformly
seems to be the better approach.

VI. CONCLUSIONS

In many application areas, some non-convex function is
optimized over the set of positive definite matrices with
trace constraint. A numerical approximation of the optimal
solution can be obtained by evaluating the objective function
for a set of uniformly distributed matrices with carefully
chosen cardinality. In this paper, we have derived an efficient
method to randomly generate matrices according to a uniform
distribution on the constraint set for the real as well as the
complex case. We expect that there are many applications
of the derived algorithm to compute an approximation of the
optimal solution.

APPENDIX A
DERIVATION OF EXPONENTS IN PARAMETER PDFS

(REAL CASE)

To derive the exponentspl andql as given in (29)–(31) we
first rewrite (26) as

fξ(ϕ) =

cη2
n−1

[
n−1∏

i=1

(
cosϕ i(i+1)

2

)n−i+1
]

·
[
n−1∏

i=2

1
2 i(i+1)−1∏

l=1

(
sin2 ϕl

)n−i+1
]

·
[
n−1∏

i=1

sinϕ i(i+1)
2

n∏

j=i+1

( 1
2 (j−1)j+i∏

l= 1
2 i(i+1)

sinϕl

)]
1I(ϕ),

(86)
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where we have separated thecos, sin2 and sin terms. From
this version, we obtain for the exponentspl andql in (28) the
following sum representation:

pl =

n−1∑

i=1

(n− i+ 1)1{ i(i+1)
2

}(l), (87)

ql =

n−1∑

i=2

2(n− i+ 1)1{
1,2,..., i(i+1)

2 −1
}(l)

︸ ︷︷ ︸
q
[1]
l

+

n−1∑

i=1

[
1{ i(i+1)

2

}(l) +
n∑

j=i+1

1{ i(i+1)
2 , i(i+1)

2 +1,..., (j−1)j
2 +i

}(l)
]

︸ ︷︷ ︸
q
[2]
l

.

(88)

Equation (87) is obviously equivalent to (29). Writing out the
sums of indicator functions in (88) and then collecting terms
yield

q
[1]
l = 2

n−i∑

k=2

k = n2 − (2i− 1)n+ i(i− 1)− 2,

q
[2]
l = i(n− i)−m+ 1 (89)

if l = 1
2 i(i+ 1) +m, i = 1, 2, . . . , n− 1, m = 0, 1, . . . , i.

Adding q[1]l andq[2]l in (89) yields the final form ofql as given
in (30) and (31).

APPENDIX B
EVALUATION OF CONSTANTS AND PARAMETER PDFS

In Table II the parameter pdfs for the real case given in (28)
and the involved constants specified in (29)–(32) are evaluated
for n = 2, 3, 4. In Table III the parameter pdfs for the complex
case given in (66) and the involved constants specified in (67)–
(70) are evaluated forn = 2, 3, 4. The indicator functions are
omitted in both cases. They are equal to1(0,π/2) if the pdf
has the formcl cospl sinql and they are equal to1(0,π) if the
pdf has the formcl sin

ql .

APPENDIX C
PARAMETER PDFS VS. SCALED NORMAL PDFS

In Fig. 1 the parameter pdfs defined in (28) are compared to
scaled normal pdfs with expectation and variance parameters
given by (36) and (37) and scaling factorνl given by (38).
The values forpl, ql and cl are taken from Table II for the
marked parameter sets (n = 4, l = 1, 4, 6, 8).

APPENDIX D
ALGORITHMS

(REAL CASE)

In Algorithm 1, 2, and 3 the pseudo code of the basic
method to sample uniformly from the set of realn×n positive
definite matrices with constant trace is listed.

In Algorithm 4 the pseudo code of the extended algorithm
to sample uniformly from the set of realn×n positive definite
matrices with bounded trace is listed.

0

0.2

0.4

0.6

0.8

0 π/2 π

(a) p8 = 0, q8 = 2, ν8 = 1.1284

0

0.4

0.8

1.2

0 π/2 π

(b) p4 = 0, q4 = 8, ν4 = 1.0317

0

0.4

0.8

1.2

1.6

0 π/4 π/2

(c) p6 = 2, q6 = 4, ν6 = 1.1079

0

1

2

3

0 π/4 π/2

(d) p1 = 4, q1 = 14, ν1 = 1.0830

fξl(x) νlfφl
(x)

Fig. 1. Parameter pdfs vs. corresponding scaled normal pdfsfor marked
parameter sets from Table II(n = 4, l = 1, 4, 6, 8).

Algorithm 1 GenerateM matrices from the setRc defined in (2) according
to a uniform distribution.

1: for i = 1 to M do ⊲ generateM matricesA1, A2, . . . , AM ∈ Rc

2: for l = 1 to 1
2
n(n+ 1)− 1 do

3: Generateϕl with Algorithm 2 or 3.
4: end for
5: With ϕ1, . . . , ϕn(n+1)

2
−1

compute x= (x1, . . . , xn(n+1)
2

) from

(11).
6: With vectorx generate matrixU from (9).
7: Ai ← cU ′U
8: end for

Algorithm 2 Generate a sampleϕl according to a distribution with pdffξl
defined in (28) (rejection method).

1: Computepl, ql, cl, Il from (29)–(32), (16). ⊲ setup constants
2: With pl, ql, cl computeµl, σ2

l
, νl from (36)–(39).

3: repeat ⊲ rejection method
4: u← uni(0, 1) ⊲ sample uniformly from (0,1)
5: ϕl ← normal(µl, σ

2
l
) ⊲ sample from normal distribution

6: until uνlfφl
(ϕl) < fξl(ϕl) ⊲ fξl and fφl

as in (28), (35)

Algorithm 3 Generate a sampleϕl according to a distribution with pdffξl
defined in (28) (beta distribution method).

1: Computepl, ql from (29)–(31). ⊲ setup constants

2: y ← beta
( ql+1

2
, pl+1

2

)

⊲ sample from beta distribution
3: if pl = 0 then
4: b← bernoulli( 1

2
) ⊲ sample from Bernoulli distribution

5: else
6: b← 0
7: end if
8: ϕl ← (1− b)y + b(π − y)

Algorithm 4 GenerateM matrices from the setR(c,c] defined in (3)
according to a uniform distribution.

1: With Algorithm 1 generateM matricesA1, A2, . . . , AM ∈ R.

2: for i = 1 to M do ⊲ generateM matricesB1, B2, . . . , BM ∈ R(c,c]

3: u← uni(0, 1) ⊲ sample uniformly from (0,1)
4: t← F−1

τ (u) ⊲ F−1
τ as in (58)

5: Bi ← tAi

6: end for



12 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012 (PREPRINT)

TABLE II
CONSTANTS AND PARAMETER PDFS(REAL CASE) FORn = 2,3,4 .

n l pl κl λl ql cl fξl (ϕl)/cl

2 1 2 0 2 2 16
π

sin2 ϕ1 cos2 ϕ1

2 0 0 3 1 1
2

sinϕ2

3 1 3 0 2 7 40 sin7 ϕ1 cos3 ϕ1

2 0 0 3 6 16
5π

sin6 ϕ2

3 2 1 3 3 15
2

sin3 ϕ3 cos2 ϕ3

4 0 1 4 2 2
π

sin2 ϕ4

5 0 1 5 1 1
2

sinϕ5

4 1 4 0 2 14 131072
143π

sin14 ϕ1 cos4 ϕ1

2 0 0 3 13 3003
2048

sin13 ϕ2

3 3 1 3 9 60 sin9 ϕ3 cos3 ϕ3

4 0 1 4 8 128
35π

sin8 ϕ4

5 0 1 5 7 35
32

sin7 ϕ5

6 2 2 4 4 32
π

sin4 ϕ6 cos2 ϕ6

7 0 2 5 3 3
4

sin3 ϕ7

8 0 2 6 2 2
π

sin2 ϕ8

9 0 2 7 1 1
2

sinϕ9

An efficient MATLAB implementation of all algorithms
is available for download at [15], which also includes the
algorithms to sample uniformly from the set of complexn×n
positive definite matrices with constant or bounded trace.
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