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Abstract—This work proposes an energy-efficient power con-
trol approach that can operate in an online fashion even in high-
mobility scenarios. The proposed approach leverages an artificial
neural networks to estimate the optimal relationship between the
system propagation channels and the optimal power allocation
rule. The approach also relies on an improved branch-and-bound
algorithm that allows the offline generation of a large amount of
training data with affordable complexity. Numerical results show
the merits of the proposed approach, during both training and
testing phase.

Index Terms—Energy Efficiency, Deep Learning, Artificial
Neural Networks, Power Control, Interference Networks.

I. INTRODUCTION

Energy efficiency has emerged as a key performance in-
dicator of future mobile networks, with a requirement of a
2000x bit-per-Joule energy efficiency (EE) increase [1]. In
order to meet this requirement, energy-management must be
tackled jointly by several tools [2], one of which is energy-
efficient power control [3]. Nevertheless, maximizing the EE
in interference-limited networks is known to be an NP-hard
problem. Moreover, even available suboptimal optimization
methods are based on iterative methods that solve concave
or pseudo-concave relaxations of the energy-efficient problem.
This is still not practical for online implementations in high-
mobility systems where the channel coefficients vary rapidly,
thus causing a significant complexity and feedback overhead.

This work shows how deep learning techniques based on
artificial neural network (ANN) [4] can complement traditional
optimization-oriented design methodologies, leading to an
optimization technique that is able to provide a near-optimal
power allocation rule in closed-form. This enables to update
the optimal power allocation following the channel variations
in real-time. Available research contributions that propose
deep learning for the design of wireless networks have mainly
focused on the development of improved decoding structures
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[5], [6]. Instead, the issue of power control by deep learning
was discussed in [7], [8], where deep reinforcement learning
was proposed, and in [9], where a deep neural network is
used to emulate the weighted MMSE (WMMSE) algorithm.
All of these works consider the maximization of the system
sum-rate. Similarly, sum-rate maximization is also addressed in
[10], where it is proposed to train a neural network employing
the sum-rate as training cost function. A similar approach is
employed in [11] where transfer learning is used to train a
convolutional neural network. Specifically, the model is first
pre-trained as in [9] and then the cost function is exchanged
either for the weighted sum rate or the weighted sum energy
efficiency (WSEE). A gain over the WMMSE solution, which
maximizes the throughput, is observed but the results are not
benchmarked against any algorithm that maximizes the EE, nor
against the global optimum of the rate maximization problem.

In this paper we aim at developing power control algorithms
to maximize the system EE, which includes the sum-rate
maximization problem as a special case. Specifically, we focus
on the maximization of the system WSEE, which is considered
the most complex energy-efficient metric to maximize. Thus,
developing an ANN-based effective online method for WSEE
maximization appears as a very strong argument for the use of
this tool to solve generic EE maximization problems. Besides
the consideration of a different optimization metric, another
major novelty of this work is that the proposed method does
not train an ANN to emulate any given, suboptimal algorithm,
as previous works do. Instead, we are able to globally solve the
WSEE maximization problem with a novel branch-and-bound
(BB) method with moderate complexity. This allows us to
produce offline large training sets with limited complexity and
then train a deep ANN to learn the optimal power allocation
rule. The trained ANN is then able to predict with negligible
complexity the optimal power allocation also for channel
realizations that were not previously observed. In addition,
our approach does not require to fix any initialization power
vector, which is instead needed by previous implementations.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the uplink of a multi-cell interference network
in which L single antenna user equipments (UEs) are served by



M base station (BS), equipped with nR antennas at each BS.
After maximum ratio combining at the receiver, the achievable
rate enjoyed by user i at its BS a(i) is:
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is the channel from UE j to BS a(i), xj ∈ C the symbol
transmitted by UE j, and za(i) zero-mean circularly symmet-
rical complex Gaussian noise with power σ2

i , and B is the
communication bandwidth. Each UE is subject to an average
transmit power constraint, i.e., pj ≤ Pj where pj is the average
power of xj , and the BSs use matched filtering.

In this context, the EE of the link between UE i and its
intended BS is defined as the benefit-cost ratio in terms of
the link’s achievable rate and power consumption necessary to
operate the link, i.e.,

EEi =

B log
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)
µipi + Pc,i

(2)

where µi is the inefficiency of UE i’s power amplifier and Pc,i
is the total static power consumption of UE i and its associated
BS.

The aim of this work is to develop a near-optimal approach to
tackle the maximization of the WSEE, that is also fast enough
to be easily implemented online. The WSEE optimization
problem is stated as:

max
p

L∑
i=1

wi
log
(
1 + αipi

1+
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j 6=i βi,jpj

)
µipi + Pc,i

(3)

s. t.0 ≤ pi ≤ Pi, for all i = 1, 2, . . . , L, (4)

which falls within the category of sum-of-ratios problems,
that is NP-hard and considered the hardest class of fractional
problems to solve.

III. ANN-BASED POWER CONTROL

The proposed approach relies on the universal approxi-
mation property of ANNs [12], which states that the input-
output relationship of a feedforward neural network with with
fully-connected layers can emulate any continuous function.
Equipped with this result, it is possible to regard Problem (4)
as the map:

F : a = (αi, βi,j , Pi)i,j ∈ RL(L+1) 7→ p∗ ∈ RL, (5)

with p∗ the optimal power allocation corresponding to a.
Then, we can employ an ANN with fully-connected layers
to approximate (5). In the following we briefly describe the
ANN that will be employed.1

We consider a feedforward ANN which takes as input a
realization of the parameter vector a, and outputs an estimate p
of the corresponding optimal power allocation vector p∗. The
input and output layers are separated by K, fully-connected

1For an extensive explanation on the different neural network architectures,
we refer to [4].

hidden layers, wherein the k-th layer has Nk neurons. For all
k = 1, . . . ,K + 1, the neuron n of layer k computes

ζk(n) = fn,k
(
γTn,kζk−1 + δn,k

)
(6)

wherein ζk = (ζk(1), . . . , ζk(Nk+1)) is the Nk+1 × 1 output
vector of layer k, γn,k ∈ RNk−1 and δn,k ∈ R are neuron-
dependent weights and bias terms, respectively, while fn,k is
the activation function of neuron n in layer k.

Based on the universal function approximation property,
provided a sufficient number of neurons are deployed, the
weights and bias of the ANN can be adjusted so that the
input-output relationship of the ANN approximates arbitrarily
well the optimal power allocation rule. However, the universal
function approximation property does not specify how the
weights and bias terms should be set in order to achieve
a satisfactory approximation performance. To this end, a
supervised training procedure needs to be used, which requires a
training set containing examples of desired power allocation, i.e.
{(an,p∗n) |n = 1, . . . , NT }, wherein p∗n is the optimal power
allocation corresponding to an. Then, the training process
adjusts the weights and biases of the ANN in order to minimize
the loss between the actual and desired output, i.e. tackling
the problem:

min
Γ,δ

1

NT

NT∑
n=1

L(p̂n(Γ, δ),p
∗
n) (7)

with L(·,·) any suitable error measure between the actual
ANN output pn, and the desired output p∗n. Problem (7) is
tackled by state-of-the-art, off-the-shelf stochastic gradient
descent methods specifically designed for ANNs training [4].
Instead, it is important to observe that the training process
can be significantly simplified by reformulating the WSEE
maximization problem constraining all transmit powers to lie
in the interval [0, 1]. To elaborate, upon applying the variable
change pi → p̃iPi, for all i = 1, . . . , L, Problem (4) can be
equivalently stated as

max
p̃

L∑
i=1

wi

log

(
1 + α̃ip̃i

1+
∑

j 6=i β̃i,j p̃j

)
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(8)

s. t.0 ≤ p̃i ≤ 1, for all i = 1, 2, . . . , L, (9)

wherein α̃i = αiPi, β̃i = βiPi, µ̃i = µiPi, for all i = 1, . . . ,L.
This implies that the normalized training set to be used for
training purposes is ST = {(ãn, p̃∗n) |n = 1, . . . , NT } with
parameter vector ã = (α̃i, β̃i,j , Pi)i,j . The motivation to
consider such a reformulation is that for any value of the
maximum power vectors P1, . . . ,PL, the optimal solution of
(9) will always have transmit powers lying in the set [0,1].
Thus, in Problem (9) the dependence between the optimal
solution and the maximum power constraints is much weaker
than in Problem (4). This means that Problem (9) will exhibit
a simpler structure of the optimal solution as a function of the
input parameters a, among which we find the maximum power
constraints P1, . . . ,PL, which simplifies the task of learning
the optimal power allocation rule.

After the training procedure is complete, all weights and
biases of the ANN are fixed, which allows writing the ANN
input-output relationship in closed-form as the composition of
the affine combinations and activation functions of all neurons.



Thus, the trained ANN provides a closed-form approximation
of the map (5), whose accuracy can be adjusted by employing
a properly sized ANN that is accurately trained. Therefore, the
optimal power allocation can be tuned in real-time as a varies,
by simply using the derived closed-form map, without having
to solve Problem (4) anew.

A. Computational complexity

The complexity of the proposed ANN-based power allocation
method depends on two main tasks: (a) computing the power
allocation vector using the trained ANN; (b) building the
training set and processing it to train the ANN.

As for the first task, it requires performing
∑K+1
k=1 Nk−1Nk

real multiplications,2 and evaluating
∑K+1
k=1 Nk scalar activa-

tion functions fn,k, which poses a very limited computational
burden, especially considering that the activation functions are
all elementary functions that do not involve any numerical
integration or fixed point iteration.

Instead, the second task appears to be more complex.
However, we argue in the rest of this section that its complexity
does not significantly impact on the overall complexity of the
power allocation method. First of all, let us observe that most
of the complexity lies in the generation of the training set,
rather than in its processing during the training procedure.3

Instead, generating the training set requires globally solving
the NP-hard Problem (9) for NT different realizations of the
system parameter vector a. Nevertheless, this is still quite
affordable taking into account the following three main points:
• The training set can be generated offline. Thus, real-time

constraints do not apply and a much higher complexity
can be afforded.

• The training set can be updated at a much longer time-
scale compared with the channels coherence time.

• Despite the first two points, due to the fact that Problem (9)
is NP-hard, even its offline solution could be problematic
considering that reasonably-sized training set should have
hundreds of thousands of samples. For this reason, the
next section proposes a novel and improved BB method
that makes the offline solution of (9) fully affordable in a
reasonable amount of time.

Finally, we should also observe that the proposed method does
not require to set any initial power vector, as it would be
necessary if the ANN were used to learn a suboptimal power
allocation algorithm. As a result, our method reduces the size
of the map to estimate, lowering the input size from L(L+ 2)
to L(L + 1), which allows for a simpler training procedure
compared to other available approaches.

IV. GLOBALLY OPTIMAL POWER CONTROL

Due to space constraints, the proposed procedure is only
sketched in this section. The full details can be found in [13].

2The complexity related to additions is neglected as it is much smaller than
that required for multiplications.

3Recall that the training algorithm is conveniently performed by off-the-shelf
stochastic gradient descent algorithms, that are particularly efficient thanks
to the use of stochastic gradient descent methods and of the backpropagation
algorithm [4].

The approach employs a BB approach, in which the bound
is carefully selected to speed up convergence. Specifically,
we successively partition the set [0,P ] = [0,Pi]

L into L-
dimensional hyper-rectangles of the form

Mk = {p : r
(k)
i ≤ pi ≤ s(k)i ,∀ i = 1, . . . ,L} , [r(k),s(k)]. (10)

For each Mk, an upper-bound of the WSEE is obtained as:

max
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It is seen that the bound is obtained by maximizing the
individual EE of each user with respect to p over Mk. This
clearly provides a very accurate bound. In addition, such a
maximization entails a negligible computational complexity,
because EEi(pi,Mk) can be seen to be a strictly pseudo-
concave function of pi [3]. Thus, its global maximizer is
obtained by setting to zero its first-order derivative, which
yields

αi(µipi + Pc,i)

1 +
∑
j 6=i βi,jr

(k)
j + αipi

= µi ln

(
1 +

αipi

1 +
∑
j 6=i βi,jr

(k)
j

)
,

(12)
While Equation (12) can be solved numerically by any root
finding algorithm, e.g. with Newton-Raphson’s or Halley’s
method, we have observed that these methods might suffer
from numerical problems since d

dpi
EEi tends rapidly to zero

as pi →∞. Instead, a numerically more stable approach is to
observe that the unique solution of (12) is given by

p̃
(k)
i =

1

α̃i

 α̃i
µi
Pc,i − 1

W0

((
α̃i
µi
Pc,i − 1

)
e−1
) − 1

 , (13)

where α̃i = αi

1+
∑

j 6=i βi,jr
(k)
j

and W0(·) is the principal branch

of the Lambert W function.
Finally, equipped with (13), an adaptive BB procedure can

be devised, which, as confirmed by the numerical results in
Section V, exhibits a remarkable complexity-performance trade-
off.

V. NUMERICAL RESULTS

We consider the uplink of a wireless interference network
in which L = 4 single-antenna UEs are placed in a square
area with edge 2 km and communicate with 4 access points
placed at coordinates (0.5, 0.5) km, (0.5, 1.5) km, (1.5, 0.5) km,
(1.5, 1.5) km, equipped with nR = 2 antennas each. The path-
loss is modeled following [14], with carrier frequency 1.8 GHz
and power decay factor 4.5, while fast fading terms are modeled
as proper complex Gaussian random variates with unit variance.
The circuit power consumption and power amplifier inefficiency
terms are equal to Pc,i = 1W and µi = 4 for all i = 1, . . . ,L,
respectively. The noise power at each receiver is σ2 = FN0B,



wherein F = 3dB is the receiver noise figure, B = 180 kHz
is the communication bandwidth, and N0 = −174 dBm/Hz is
the noise spectral density. All users have the same maximum
transmit powers P1, . . . , PL = Pmax.

The proposed ANN-based solution of Problem (4) is im-
plemented through a feedforward ANN with K + 1 fully-
connected layers, having K = 5 hidden layers with 128, 64,
32, 16, 8 neurons, respectively. In order to generate the training
set, Problem (4) needs to be solved for different realizations
of the vector ã = (α̃i, β̃i,j , Pmax)i,j . When doing this, the
use of realistic numbers for the receive noise power and
propagation channels leads to coefficients {α̃i, β̃i,j}i,j with
quite a large magnitude. This is known to cause numerical
problems to the gradient-descent training algorithm. Classical
normalization approaches are infeasible in this scenario due to
the channel coefficients being unbounded. Instead, we reduce
their magnitude by a logarithmic transform of the parameter
vector ã. A similar problem occurs for the output powers, which
in some cases might be close to zero due to the normalization
by Pmax. The problem here is that the training algorithms
for the ANN treat very small numbers as zero leading to
numerical instabilities and, hence, bad training results for these
values. This issue is also resolved by expressing the output
powers in logarithmic scale. However, computing logarithms
for values close to zero might cause numerical problems in
itself. In order to avoid this issue, a suitable approach is to clip
logarithmic values approaching −∞ at −M for M > 0. In
our experiments, M = 20 worked well.4 Thus, the considered
normalized training set is

ST = {(log10 ãn,max{−20, log10 p̃
∗
n}) |n = 1, . . . , NT },

where all functions are applied element-wise to the vectors in
the training set.

Our experiments verify that the widely used class of
ReLU activation function performs well in this application.
Specifically, the first hidden layer has an exponential linear unit
(ELU) activation, to compensate for the logarithmic conversion
in the training set. This choice, together with the logarithmic
normalization of the data set, has proven itself essential for good
training performance. The following hidden layers alternate
ReLU and ELU activation functions, while the output layer
deploys a linear activation function. This choice of activation
functions has shown best training performance among several
evaluated configurations, including using only ReLU or only
ELU hidden layers. The choice of linear output layer seems
to contrast with the fact that the transmit powers need to
be constrained in the interval [0, 1]. However, enforcing this
constraint directly in the output activation function might
mislead the ANN. Indeed, it could lead to low training errors
simply thanks to the use of cut-off levels in the activation
function, instead of being the result of proper adjustment of
the hidden layer weights and biases.

A. Training Performance

The ANN is trained over 100 epochs with batches of
size 128 and shuffling of the training data before each
epoch. Initialization is performed by Keras [15] with default

4Note that, although using a logarithmic scale, the transmit powers are not
expressed in dBW, since the logarithmic values are not multiplied by 10. Thus
−M = −20, corresponds to -200 dBW.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epoch

M
ea

n
Sq

ua
re

d
E

rr
or

Training Loss
Validation Loss

Fig. 1. Training and validation loss.

parameters. Problem (7) is solved by the NAdam optimizer
with the squared error as loss function.5 The training set is
generated from 2,000 independent and identically distributed
(i.i.d.) realizations of UEs’ positions and propagation channels.
Each user is randomly placed in the service area and channels
are then generated according to the channel model described
above. Each UE i is associated to the access point towards
which it enjoys the strongest effective channel αi. For each
channel realization, we apply the BB algorithm outlined in
Section IV to solve (4) for Pmax = −30, . . . , 20 dB in 1 dB
steps with relative tolerance 0.01. This yields a training set
of 102,000 samples. Validation and test sets are generated in
the same way from 200 and 10,000 i.i.d. channel realizations,
respectively, resulting in 10,200 and 510,000 samples.

Considering training, validation, and test sets, 622,200 data
samples were generated, which required solving the NP-hard
problem (4) 622,200 times. Computing this data set took 8.4
CPU hours on Intel Haswell nodes with Xeon E5-2680 v3
CPUs running at 2.50 GHz. The mean and median times per
sample are 48.7 ms and 4.8 ms, respectively, which shows
the effectiveness of the proposed BB algorithm, and supports
the argument that offline generation of a training set for the
proposed ANN-based power control method is quite affordable.

The average training and validation losses for the final ANN,
averaged over 10 realizations of the network, are shown in
Fig. 1. It can be observed that both errors quickly approach a
very small value that is of the same order of magnitude as the
numerical tolerance of the training data. Moreover, neither of
the losses increases over time which leads to the conclusion
that the adopted training procedure fits the training data well,
without underfitting or overfitting.

B. Testing Performance

The average performance of the final ANN on the test set is
reported in Fig. 2. This test set is never used during training
and, thus, the ANN has no information about it except for
its statistical properties gathered from the training set (and,
possibly, the validation set due to hyperparameter tuning). It can
be seen from Fig. 2 that the gap to the optimal value is virtually
non-existent. This is confirmed by the relative approximation
error that has mean and median values of 0.0133 and 0.00739,
respectively. Note that using a test set based on 10,000 channel

5Source code and data sets are available from
https://github.com/bmatthiesen/deep-EE-opt.



−30 −20 −10 0 10 20
0

1

2

Pmax [dBW]

W
SE

E
[M

bi
t/J

ou
le

]
Optimal ANN SCA
SCAos Max. Power Best only

Fig. 2. Performance on the test set compared to the global optimal solution,
first-order optimal solutions, and fixed power allocations.

scenarios means that this performance is what is obtained by
using the trained ANN for 10,000 channel coherence times.
This confirms that the training phase needs to be performed
only sporadically, as argued in Section III-A.

In addition to near-optimal approximation performance
and low computational complexity, the proposed ANN-based
approach also outperforms several baseline approaches. Specif-
ically, we have included a comparison with the following
benchmarks:
• SCAos: A first-order optimal, gradient-descend based

method presented in [16]. For each value of Pmax, the
algorithm initializes the transmit power to pi = Pmax, for
all i = 1, . . . ,L.

• SCA: The same algorithm as before, but in this case
a double-initialization approach is used. Specifically, at
Pmax = −30 dBW once again maximum power initializa-
tion is used. However, for all values of Pmax > −30 dBW,
the algorithm is ran twice, once with the maximum power
initialization, and once initializing the transmit powers
with the optimal solution obtained for the previous Pmax
value. Then, the power allocation achieving the better
WSEE value is retained.

• Max. Power: All UEs transmit at maximum power, i.e.
pi = Pmax, for all i = 1, . . . ,L. This strategy is known
to perform well in interference networks for low Pmax
values.

• Best only: Only one UE is allowed to transmit, specifically
that with the best effective channel. This approach is
motivated for high Pmax values, as a naive way of nulling
out multi-user interference.

The results show that the proposed ANN-based approach
outperforms all benchmarks. Only the SCA approach performs
comparably to the proposed ANN-based approach. However,
as described above, this method relies on a sophisticated initial-
ization rule, which requires to solve the WSEE maximization
problem twice and for the complete range of Pmax values. This
is clearly not suitable for obtaining a "one-shot" solution, i.e.
when the WSEE needs to be maximized only for one specific

value of Pmax. Moreover, it requires some calibration depending
on the channel statistics since it performs well provided the
Pmax range is sufficiently far away from the WSEE saturation
region. Thus, the SCA approach from [16] has quite a higher
complexity than the ANN-based method, and performs slightly
worse. In conclusion, we can argue that the ANN approach is
much better suited to online power allocation than state-of-the-
art approaches.

VI. CONCLUSIONS

This work has proposed an online energy-efficient power
control method for high-mobility networks. It was shown that
an ANN can be used to solve challenging energy-efficient power
control problems, providing a closed-form expression that
approximates the relationship between the system propagation
channels and the optimal power allocation rule. Moreover, it
was shown that large training sets can be generated offline by
means of a newly proposed BB procedure, which significantly
reduces the complexity of the overall power control method.
Numerical results indicate that near-optimal performance can be
obtained, also when a slight mismatch exists between training
and testing conditions.
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