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Abstract—Communication in networks is subject to the funda-
mental limits of reliable communication. This limits not only the
maximum transmission rate but also the energy efficiency (EE).
The goal of this paper is to assess the absolute limits of energy-
efficient communication in Gaussian interference channels. In
all interference regimes with known sum-capacity, this limit is
achievable by point-to-point (PTP) codes. However, in contrast
to the sum-capacity, we argue that rate splitting is strictly less
energy-efficient than PTP codes in these regimes due to its higher
decoding complexity. The only interference regime with unknown
sum-capacity is the case with moderate interference. We show
numerically that PTP codes are not always sufficient to maximize
the EE since rate splitting offers better EE in some moderate
interference scenarios. Computing these EEs requires the globally
optimal solution of several challenging non-convex optimization
problems. For this purpose, we apply the novel mixed monotonic
programming framework that allows a more efficient solution of
these problems than state-of-the-art approaches like monotonic
fractional programming.

Index Terms—Resource allocation, energy efficiency, global
optimization, interference channel, rate splitting

I. INTRODUCTION

Energy efficiency (EE) is a main objective in the design of
modern communication networks [1]. A key building block
of these networks are Gaussian interference channels (GICs)
[2]. Their analysis provides deep insights into (wireless)
network design while still being reasonably tractable. Despite
four decades of research, the complete characterization of
its capacity region, i.e., the fundamental limits of reliable
communication, remains an open problem. Focusing only
on the sum-rate (or throughput), the situation is much more
satisfying with sum-capacity results being available for most
interference regimes. This sum-capacity plays a prominent role
in maximizing the global energy efficiency (GEE), the goal of
this paper.

Recently, rate splitting has been shown to increase spectral
and energy efficiency in practical wireless networks [3], [4].
The concept is much older though, being one main ingredient
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of the famous Han-Kobayashi (HK) coding scheme [5] for the
interference channel. Its advantage over simpler point-to-point
(PTP) codes is that decoders are not forced to decide between
completely treating an interfering message as noise or decoding
it. Instead, HK coding, and especially the rate splitting part,
softly bridges the gap between both interference mitigation
approaches by allowing to decode interfering messages partially
and treat the remaining part as noise. It leads to the largest
known achievable rate region for the interference channel and is
within one bit per user of the GIC’s capacity region [6]. It also
achieves the sum-capacity in all cases with established sum-
capacity. However, PTP codes are also sum-capacity achieving
in these cases, and, due to their lower decoding complexity,
decoding them requires less energy than HK codes while
achieving the same throughput. Thus, HK coding can not
achieve the same GEE as PTP codes if the employed PTP
code achieves the sum-capacity. In the moderate interference
regime though, the only interference regime without known
sum-capacity and an important scenario for multi-cell wireless
networks, HK coding might provide a benefit over PTP codes.

We are interested in maximizing the GEE of the GIC. This
requires the globally optimal solution of several challenging
non-convex optimization problems. For this purpose, we intro-
duce a novel approach that allows a more efficient solution of
these problems than state-of-the-art approaches like monotonic
fractional programming [7]. In the next section, we formally
introduce the system model and review relevant capacity results.
Then, we discuss GEE maximization in the GIC and explore
the connection of the GEE to the sum-capacity. In Section IV,
we introduce the mixed monotonic programming framework
and apply it to the optimization problems posed in Section III.
We conclude this paper by presenting numerical results that
demonstrate EE gains due to HK coding in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a complex GIC in standard form [2]

y1 = x1 + a2x2 + z1, y2 = a1x1 + x2 + z2, (1)

where, for i = 1, 2, ai is the complex-valued channel crosstalk
coefficient, zi is independent and identically distributed (i.i.d.)
zero-mean circularly symmetric complex Gaussian noise with



unit power, and the transmitted signal xi is subject to an average
power constraint Pi.

The capacity region of this channel when constrained to
capacity-achieving PTP codes1 is the union of the achievable
rate regions with proper Gaussian codebooks and where each
receiver either uses joint decoding (JD) or treating interference
as noise (TIN) [8, Thm. 2]. Define

R1,TIN(p) =

{
R : 0 ≤ R1 ≤ C

(
P1

1 + |a2|2P2

)}
(2)

and
R1,JD(p) =

{
R :

0 ≤ R1 ≤ C(P1) ,

R1 +R2 ≤ C
(
P1 + |a2|2P2

)} , (3)

where C(x) = log2(1 + x). Then, the PTP capacity region of
the GIC is

Cptp =
⋃

d∈{TIN,JD}2

2⋂
i=1

Ri,di(P ). (4)

This is also the capacity region under the constraint of random
codebook ensembles and coded time sharing [9].

Instead, the largest rate region achievable when constrained
to random code ensembles, rate splitting, superposition coding,
and coded time sharing is the HK region [9]. Each transmit-
ter splits its message into common and private parts. The
common message is decoded by both receivers, while the
private message is only decoded by the intended receiver and
considered as noise by the other. Optimizing this region is
hard due to its complicated structure, and the optimal input
distribution remains an open problem to date. However, proper
Gaussian codebooks without coded time sharing are common
assumptions and achieve the sum-capacity of the GIC in all
cases with established sum-capacity. The achievable sum-rate
under these assumptions is [10]

C

(
p̃1

1 + |a2|2p̃2

)
+C

(
p̃2

1 + |a1|2p̃1

)
+

min

{
C

(
(p1 − p̃1) + |a2|2(p2 − p̃2)

1 + p̃1 + |a2|2p̃2

)
,

C

(
|a1|2(p1 − p̃1) + (p2 − p̃2)

1 + |a1|2p̃1 + p̃2

)
,

C

(
|a1|2(p1 − p̃1)

1 + |a1|2p̃1 + p̃2

)
+C

(
|a2|2(p2 − p̃2)

1 + p̃1 + |a2|2p̃2

)
,

C

(
p1 − p̃1

1 + p̃1 + |a2|2p̃2

)
+C

(
p2 − p̃2

1 + |a1|2p̃1 + p̃2

) }
,

(5)

where pi ∈ [0, Pi] is the total transmit power of user i and
p̃i ∈ [0, pi] is the power allocated to the private message.

Unconstrained capacity results depend mainly on the channel
conditions. Most notably, if |a1|2 ≥ 1 and |a2|2 ≥ 1, the
channel is said to have strong interference and the capacity
region is

0 ≤ Ri ≤ C(Pi), i = 1, 2 (6a)

R1 +R2 ≤ min{C(P1 + |a2|2P2), C(|a1|2P1 + P2)} (6b)

which is achieved by proper Gaussian codewords and jointly
decoding x1 and x2 at each receiver [11], [12]. The sum-
capacity, i.e., the maximal sum-rate R1 +R2 at which reliable
communication is possible, is readily obtained from (6) as

CΣ = min{C(P1) + C(P2),C(P1 + |a2|2P2),C(|a1|2P1 + P2)}.
(7)

1A code is said to be a capacity-achieving PTP code if it achieves the
capacity of the Gaussian PTP channel [8, Sect. III].

Apart from the strong interference case, only the sum-
capacity is known. The channel has mixed interference if only
one receiver observes strong interference, i.e., |a1|2 ≥ 1 and
0 < |a2|2 ≤ 1 or 0 < |a1|2 ≤ 1 and |a2|2 ≥ 1. The sum-
capacity for the first case (with |a1|2 ≥ 1) is

CΣ = min

{
C(|a1|2P1 + P2),C(P2) + C

(
P1

1 + |a2|2P2

)}
. (8)

It is achieved by proper Gaussian codewords, jointly decoding
x1 and x2 at receiver 2, and treating x2 as noise at receiver 1.
Likewise, the second case is obtained by exchanging the indices
in (8) [12], [13]. For |a1|2 < 1 and |a2|2 < 1, the channel has
weak interference. This regime is subdivided by the condition

|a1|(1 + |a2|2P2) + |a2|(1 + |a1|2P1) ≤ 1. (9)

If it holds, the interference is noisy and the sum-capacity is

CΣ = C

(
P1

1 + |a2|2P2

)
+C

(
P2

1 + |a1|2P1

)
, (10)

achieved by proper Gaussian inputs and TIN [12]–[15]. Other-
wise, the interference is said to be moderate and no capacity
results are available. Thus, from a throughput perspective, the
moderate interference regime is the only one in which HK
coding might offer a benefit over PTP codes.

III. GLOBAL ENERGY EFFICIENCY

The GEE of a communication network is defined as the
benefit-cost ratio of the total network throughput and the total
power necessary to operate the network [16], i.e., for a network
with two transmitters,

GEE =W
R1 +R2

µTp+ Pc

[
bit

Joule

]
, (11)

where R1, R2 ≥ 0 are the achievable rates for reliable
communication, p = (p1, p2) are the transmit powers necessary
to achieve these rates, W is the bandwidth, µ are the power
amplifier inefficiencies, and Pc is the total static power con-
sumption of the network. Energy-efficient resource allocation
strives to maximize the GEE, i.e., solve the problem

max
p,R

R1 +R2

µTp+ Pc
s. t. R ∈ R(p), p ∈ P (P1)

where R(p) is the achievable rate region of the chosen coding
scheme, and P are the power constraints. For PTP codes, these
are P = [0,P ] = {x : 0 ≤ xi ≤ Pi,∀i}, while for HK coding
P = {(p1, p2, p̃1, p̃2) ∈ R4

≥0 : pi ≤ Pi, p̃i ≤ pi, for i = 1, 2}
and µ = (µ1, µ2, 0, 0)T .

Problem (P1) is a non-convex optimization problem that
poses two challenges. First, the fractional objective is a non-
concave function. Fortunately, fractional programming theory
[17] is one of the best developed fields of global optimization,
and several solution approaches are at hand. The possibly most
popular one is Dinkelbach’s Algorithm [18] that solves (P1) as
a sequence of auxiliary programs. Given that the objective has
concave numerator and convex denominator, these auxiliary
problems have a concave objective. The other issue is due
to the non-convex rate expressions characterizing R(p) when
interfering messages are treated as noise. For example, the
right-hand side of (2) is easily verified to be non-concave.

Any optimization problem can be decomposed into an outer
and an inner problem by first optimizing over some variables
and then over the others. Thus, problem (P1) is equivalent



to maxp∈P maxR∈R(p)
R1+R2

µTp+Pc
and, since the objective’s

denominator is independent of R,

max
p∈P

maxR∈R(p) R1 +R2

µTp+ Pc
= max
p∈P

RΣ(p)

µTp+ Pc
. (P2)

The numerator of (P2) is the sum-rate which is limited above
by the sum-capacity CΣ. Thus, for constant Pc, the maximum
achievable GEE is the solution of (P2) with RΣ = CΣ.

Recall from Section II that the sum-capacity is known for
all interference regimes except moderate interference. In all
cases, it is achievable by PTP codes, which require less complex
decoding than HK codes. More complex decoding also requires
more energy and, thus, Pc is likely to increase for HK coding.
Thus, in cases where both PTP codes and HK coding achieve
the sum-capacity, HK coding has a lower GEE than PTP codes.
However, for moderate interference, where the sum-capacity is
unknown, HK coding might offer a benefit despite its increased
decoding complexity. One of the aims of this paper is to verify
whether such GEE gains due to HK coding can indeed occur.

The capacity region of GICs constrained to capacity-
achieving PTP codes is given in (4) as Cptp. Then, the maximum
achievable GEE when constrained to capacity-achieving PTP
codes is the solution of (P1) with R = Cptp. Because
supx∈

⋃
iDi

f(x) = maxi supx∈Di
f(x), we can split (P1)

into four individual optimization problems, each equivalent to
(P1) with R = R1,d1

∩ R2,d2
for all different combinations

of d1, d2 ∈ {TIN, JD}. These rate regions are exactly the
achievable rate regions of the sum-capacity achieving schemes
in the four other interference regimes, and, hence, the solution
of (P1)|R=Cptp

is the maximum of the achievable GEEs in the
four other interference regimes.2 After computing the absolute
GEE limit of PTP codes using the algorithms proposed in
the following, we can be sure that any gain observed by rate
splitting is definitely not achievable by these codes.

A. Strong Interference
In contrast to the other interference regimes, the sum-capacity

CΣ(p) of the GIC with strong interference is a concave
function and, thus, (P2) can be solved as a sequence of convex
optimization problems with Dinkelbach’s Algorithm. In each
iteration, the auxiliary problem

max
t,p∈[0,P ]

t− λ
(
µTp+ Pc

)
s. t. t ≤ C(p1) + C(p2), t ≤ C(p1 + |a2|2p2),

t ≤ C(|a1|2p1 + p2).

(P3)

is solved. The algorithm is stated in Algorithm 1. Please refer
to [16], [18] for details on Dinkelbach’s Algorithm. Since
Dinkelbach’s Algorithm has superlinear convergence [17], (P3)
is solved very efficiently by Algorithm 1 in combination with
a state-of-the-art convex optimization software.

IV. MIXED MONOTONIC PROGRAMMING

Consider (P2) with the various non-convex sum-rates dis-
cussed in Section II. These are all of the form∑

i

C

(
aT
i p

1 + bTi p

)
, (12)

2These are strong, noisy, and two cases of mixed interference.

Algorithm 1 Maximum GEE of GIC with Strong Interference
Initialize η > 0, i = 0, p0 ∈ [0,P ]
repeat

i← i+ 1

λi ← CΣ(pi−1)

µT pi−1+Pc
with CΣ as in (7)

pi ← Solution of (P3) with λ = λi

until CΣ(pi)− λi(µTpi + Pc) ≤ η
return pi as the optimal solution

with ai, bi ≥ 0, except for the occasional pointwise minimum
which we neglect for the moment to ease the exposition.
The most popular approach to solve this global optimization
problem is to employ the monotonic optimization framework
[19], where the main idea is to exploit the monotonicity
structure found in many functions. Functions with mixed
monotonicity properties are converted to a difference of
monotonically increasing functions g(x) − h(x) where g, h
are increasing functions in x, i.e., x′ ≥ x ⇒ g(x′) ≥ g(x).
For example, (12) written as a difference of increasing (DI)
functions is C

(
(ai + bi)

Tpi
)
− C

(
bTi pi

)
.

However, fractional objectives as in (P2) are not easily
converted into DI functions. The standard approach to these
problems is to combine Dinkelbach’s Algorithm with mono-
tonic optimization [7]. This method has the drawbacks that a
highly complex auxiliary problem needs to be solved repeatedly
with high numerical accuracy to guarantee convergence and that
there is no direct relation between the stopping criterion and the
distance of the obtained solution to the true optimum. Instead,
we propose a more direct branch and bound (BB) approach
for functions with mixed monotonic structure that also applies
to fractional objectives and has much faster convergence than
monotonic optimization.3

Consider the optimization problem

max
x∈F

f(x) (P4)

with continuous objective f : Rn 7→ R and convex feasible set
F ⊂ [

¯
x, x̄]. Assume there exists a function F such that

F (x,x) = f(x) (13)

and

x ≤ x′ ⇒ F (x,y) ≤ F (x′,y) (14a)

y ≥ y′ ⇒ F (x,y) ≥ F (x,y′) (14b)

for all x,y ∈ [
¯
x, x̄] ⊂ Rn. A function satisfying (14) is said

to be a mixed monotonic (MM) function and the optimization
problem (P4) is called a mixed monotonic programming (MMP)
problem if its objective has a MM representation. For example,
a MM representation of (12) is

∑
i C
(
aT

i x

1+bTi y

)
.

A MMP problem can be solved by a rectangular BB
algorithm. Such an algorithm successively partitions the feasible
set F into boxes by a bisection of ratio 1

2 . That is, given a

3The faster convergence of MMP can be verified by showing that the bounds
obtained by MMP are always tighter than those of monotonic programming
for functions of the form (12).



box M = [r, s], the partition sets that replace this box are the
subrectangles

M− = {x : rj ≤ xj ≤ vj , ri ≤ xi ≤ si (i 6= j)}
M+ = {x : vj ≤ xj ≤ sj , ri ≤ xi ≤ si (i 6= j)}

(15)

where j ∈ arg maxj sj − rj is a longest side of M and vj =
sj+rj

2 defines the hyperplane along which M is divided. The
bisection is started from an initial box [

¯
x, x̄] that contains the

feasbile set F . For each box M, the algorithm computes an
upper bound β(M) for the objective values inM. It terminates
if the upper bound of a box is close to the objective value of
some previously found feasible point. The mixed monotonic
structure of the objective function facilitates computation of
the upper bound β(M). From (14), we have

max
x∈M∩F

f(x)
(13)
= max
x∈[r,s]∩F

F (x,x)
(14a)
≤ max

x∈[r,s]
F (s,x)

(14b)
= F (s, r),

and, thus, β(M) = F (s, r). The complete algorithm is stated
in Algorithm 2. Its convergence is established below.

Proposition 1: For every ε > 0, Algorithm 2 converges in
a finite number of iterations to a point with objective value
within an ε-region of the globally optimal value of (P4).

Proof: By virtue of [19, Prop. 6.1], Algorithm 2 is
convergent if the subdivision is exhaustive and bounding is
consistent. For problem (P4), we say that bounding is consistent
with branching if

F (s, r)−max{f(x) : x ∈ [r, s] ∩ F} → 0 (16)

as ‖s− r‖ → 0. Let x̃ be the maximizer of f(x) over [r, s]∩
F . Also, as ‖s− r‖ → 0, x̃ is the common limit of r and s and
x̃ ∈ F due to line 7 in Algorithm 2. Thus, F (s, r)− f(x̃)→
F (x̃, x̃)−f(x̃) = 0. Finally, the bisection in (15) is exhaustive
[19, Cor. 6.2], and, thus,

∥∥sk − rk∥∥→ 0 as k →∞.

Algorithm 2 Mixed Monotonic Programming
1: Initialize R0 = {[

¯
x, x̄]}, γ = −∞, k = 0, ε > 0

2: repeat
3: Select [rk, sk] ∈ arg max{F (s, r) | [r, s] ∈ Rk}
4: Select jk ∈ arg maxj s

k
j − rkj

5: Compute Pk = {Mk
−,Mk

+} as in (15) with vjk =
sj+rj

2
6: for all [r, s] ∈Pk do
7: if [r, s] ∩ F 6= ∅ and F (s, r) > γ + ε then
8: Add [r, s] to Sk

9: Find x ∈ F ∩ [r, s]
10: if f(x) > γ then
11: x̄← x
12: γ ← f(x)
13: end if
14: end if
15: end for
16: Rk+1 ← Sk ∪Rk \ {[rk, sk]}
17: k ← k + 1
18: until Rk = ∅
19: return x̄ as the optimal solution

A. Application to GICs

We now apply Algorithm 2 to the solution of (P2) for all
interference regimes except the strong interference case, which
is already solved by Algorithm 1. First, identify F = P and
observe that for all coding schemes except HK coding, every
box M generated by Algorithm 2 is M ⊂ P . Thus, the
first condition in line 7 is always satisfied and the feasibility

problem in line 9 is trivial. Instead, for HK coding let the
optimization variables be ordered as x = (p, p̃). Then, for a
box [r, s]× [r̃, s̃], the first condition in line 7 is equivalent to
checking s ≥ r̃, and a solution to the feasibility problem in
line 9 is (s, r̃).

The objective function in all interference cases is f(p) =
RΣ(p)
µTp+Pc

with RΣ(p) being one of the sum-rates/-capacities
defined in Section II. Let FΣ(x,y) be a MM representation
of RΣ(p). Then, a suitable MM representation of f(p) is
F (x,y) = FΣ(x,y)

µTy+Pc
. Thus, all that is required to solve the

GEE maximization problem with Algorithm 2 is an MM
representation for the achievable sum-rates. These are

FΣ(x,y) = min

{
C(|a1|2x1 + x2),C(x2) + C

(
x1

1 + |a2|2y2

)}
for mixed interference,

FΣ(x,y) = C

(
x1

1 + |a2|2y2

)
+C

(
x2

1 + |a1|2y1

)
for noisy interference, and

FΣ(x,y) = C

(
x̃1

1 + |a2|2ỹ2

)
+C

(
x̃2

1 + |a1|2ỹ1

)
+

min

{
C

(
(x1 − ỹ1) + |a2|2(x2 − ỹ2)

1 + ỹ1 + |a2|2ỹ2

)
,

C

(
|a1|2(x1 − ỹ1) + (x2 − ỹ2)

1 + |a1|2ỹ1 + ỹ2

)
,

C

(
|a1|2(x1 − ỹ1)

1 + |a1|2ỹ1 + ỹ2

)
+C

(
|a2|2(x2 − ỹ2)

1 + ỹ1 + |a2|2ỹ2

)
,

C

(
x1 − ỹ1

1 + ỹ1 + |a2|2ỹ2

)
+C

(
x2 − ỹ2

1 + |a1|2ỹ1 + ỹ2

) }
for HK coding. In all cases, verifying (14) is straightforward.

V. NUMERICAL EVALUATION

We consider a wireless interference network in which two
single-antenna senders are placed randomly with uniform distri-
bution in a 1 km×2 km rectangular area and communicate with
two single-antenna receivers placed at coordinates (−0.5, 0) km
and (0.5, 0) km. The path-loss is modeled according to [20],
with power decay factor 3.5 and carrier frequency 1.8 GHz,
while small-scale fading effects are modeled as i.i.d. proper
Gaussian random variates. The communication bandwidth
is 180 kHz and the noise spectral density is -174 dBm/Hz.
Each receiver has a 3 dB noise figure and a power amplifier
inefficiency µ = 4. Static power consumption is Pc = 1 W
and all senders have the same maximum transmit power Pmax.

Two different scenarios are considered: One where the trans-
mitters are dropped in the whole area and always associated
with the same receiver, and one where each transmitter is
placed such that it is geographically closer to its respective
receiver. The latter resembles an uplink multi-cell scenario
where the receivers represent base stations. Table I shows the
empirical probability of the resulting channel being in a specific
interference regime. It is noteworthy that, while with arbitrary
user placement the distribution is approximately uniform,4 the

4From this point of view, the moderate and noisy interference regimes
should be considered together since the differentiation between these two
depends on the transmit power.



TABLE I
EMPIRICAL PROBABILITY OF INTERFERENCE REGIMES

Pmax Strong Mixed Weak
Moderate Noisy

Arbitrary
0 dBm

34.8 % 31.5 %
11.0 % 22.7 %

15 dBm 21.6 % 12.1 %
30 dBm 32.3 % 1.4 %

Multi Cell
0 dBm

0.3 % 9.3 %
11.3 % 79.1 %

15 dBm 44.1 % 46.3 %
30 dBm 85.3 % 5.1 %

0 5 10 15 20 25 30

0

1

2

Pmax [dBm]

E
E

[M
bi

t/J
ou

le
]

Arbitrary Mixed
Multi-Cell Weak
Strong

Fig. 1. GEE of GIC with arbitrary and multi-cell user placement. Averaged
over 1,000+ i.i.d. channel realizations.

weak interference regime clearly dominates for the multi-cell
scenario. Especially for realistic transmit powers, moderate
interference clearly dominates. Thus, the only interference
regime where rate splitting might provide a benefit over PTP
codes is definitely non-negligible.

Numerical results for both user placements obtained by
Algorithms 1 and 2 with tolerance ε = 0.01 are displayed in
Fig. 1. In addition, the GEEs for the individual interference
regimes are shown. It can be observed that weak interference
achieves the highest GEE, followed by mixed interference
and strong interference. As could be expected from Table I,
the multi-cell scenario achieves a similar GEE as weak
interference, and the arbitrary scenario is approximately in
the middle of the three interference regimes. The slightly
better performance of the multi-cell scenario compared to
the weak interference regime is due to statistical effects from
not completely overlapping sets of channel realizations.

The maximum GEE in the moderate interference regime is
unknown. In all other regimes, it is achieved by PTP codes. To
study whether this is also the case under moderate interference,
we compare the maximum GEE achievable with PTP codes
with the GEE of HK coding with proper Gaussian codebooks
without coded time sharing. In 9 out of 5,390 analyzed channel
realizations that fall within the moderate interference regime,
HK coding achieves a numerically significant gain when
ignoring the different circuit power consumptions Pc. This
implies that there can still be gains if Pc is modeled as being
higher for HK than for PTP as long as the difference in Pc is
not too large. The maximal observed gain over PTP codes is
0.11 bit/J/Hz (4.44 %) which amounts to 19.71 kbit/J. Having

observed that HK coding can be beneficial in terms of EE,
it should be studied in future research whether more general
HK coding with coded time sharing and codebooks other than
proper Gaussian can bring higher gains and/or gains in a larger
number of channel realizations.

VI. CONCLUSIONS

We have shown that Gaussian PTP codes are the most energy-
efficient in the GIC except for moderate interference, where HK
coding can achieve a higher GEE. The numerical assessment
is facilitated by mixed monotonic programming, a novel global
optimization framework that is easily applicable to a wide class
of functions and has faster convergence than state-of-the-art
solutions based on monotonic optimization. This framework
is also suitable to assess possible gains of more general HK
coding, which is left for future work.
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