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ABSTRACT
Energy efficient resource allocation in interference networks is a
challenging global optimization problem. The main issue is that
the computational complexity grows exponentially in the number of
variables. In general, resource allocation in interference networks
requires optimizing jointly over achievable rates and transmit pow-
ers. However, close scrutiny reveals that the non-convexity stems
mostly from the powers while the problem is linear in the rates.
Conventional global optimization frameworks treat all variables as
non-convex and require complicated, problem specific decomposi-
tion approaches to exploit the convexity in some variables. Another
issue specific to energy-efficient resource allocation is that these
frameworks are unable to deal directly with fractional objectives.
The usual approach is to use Dinkelbach’s algorithm which requires
the solution of a sequence of auxiliary global optimization prob-
lems. This increases the computational complexity significantly. To
overcome these challenges, we develop an algorithm that inherently
treats fractional objectives and differentiates between convex and
non-convex variables, preserving the polynomial complexity in the
number of convex variables. The numerical results show a speed-up
of almost four orders of magnitude over Dinkelbach’s algorithm for
global fractional programs.

Index Terms— Global optimization, Resource allocation, En-
ergy Efficiency, Interference Networks

1. INTRODUCTION

The global energy efficiency is the most widely used metric to mea-
sure the network energy efficiency, a key performance metric in 5G
and beyond networks [1, 2]. It is defined as the benefit-cost ratio of
the total network throughput and the associated power consumption,
i.e., GEE =

∑
k Rk

φT p+Pc
, where Rk is the achievable rate of link k, p

are the transmission powers necessary to achieve these rates, φ ≥ 1
are the power amplifier inefficiencies andPc is the total circuit power
necessary to operate the network. The corresponding resource allo-
cation problem in many Gaussian interference networks is

max
p,R

∑
k Rk

φTp+ Pc

s. t. aTi R ≤ log

(
1 +

bTi p

cTi p+ σi

)
, i = 1, . . . , n

R ≥ 0, p ∈ [0,P ]

(P1)
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for positive vectors ai, bi, ci ≥ 0, i = 1, . . . , n. This is a challeng-
ing global optimization problem due the fractional objective and the
non-convex right-hand sides of the constraints. Hence, in general,
the computational complexity of solving this problem grows expo-
nentially in the number of variables [3]. A close inspection, however,
reveals that the non-convexity of (P1) stems only from the powers p,
since, for fixed p, (P1) is linear inR.

The most popular solution approaches for global resource allo-
cation problems are monotonic optimization [4] and DC program-
ming [5]. Both frameworks treat all variables as global variables
which results in unnecessary high computational complexity if, like
(P1), the problem at hand is convex in some variables. Moreover,
the fractional objective of (P1) can not be handled directly by these
frameworks. Instead, Dinkelbach’s algorithm [6,7] is used where the
original problem is transformed into an auxiliary problem, which is
then solved several times with one of these frameworks [8]. How-
ever, this approach has the drawbacks that convergence to the op-
timal solution is only guaranteed if the auxiliary problem is solved
exactly, that the stopping criterion is unrelated to the distance of the
obtained approximate optimal value to the true optimum, and that the
auxiliary problem needs to be solved several times. Especially, the
last issue further increases computational complexity significantly.

Instead, in this paper we develop a novel algorithm that com-
pletely avoids these issues. Specifically, it preserves the polynomial
computational complexity in the convex variables and inherently
supports fractional objectives without the need of a Dinkelbach-like
outer algorithm. It also avoids another often neglected issue with
conventional global optimization approaches that originates from
(ε, η)-approximate feasibility. Every numerical optimization proce-
dure has to be stopped at some point which is expected to be close
enough to the optimal solution. This point should at least be approx-
imately feasible and provide an objective value sufficiently close to
the true optimal value. Mathematically, a point x̄ is accepted as the
solution of the continuous optimization problem

max{f(x)|x ∈ [a, b], gi(x) ≤ 0, i = 1, . . . ,m} (P2)

if it satisfies, for some ε, η > 0, gi(x̄) ≤ ε for all i = 1, . . . ,m and
f(x̄) ≥ f(x) − η for all feasible x. This approach tends towards
the optimal solution as ε, η → 0 and, thus, x̄(ε) should be close to
the optimal solution for some sufficiently small ε < ε0. However,
in general this ε0 is unknown and hard to determine. The effects of
choosing ε > ε0 too large range from convergence issues to creating
new (isolated) feasible points that might have much higher objective
value than the true optimum and, thus, lead to completely wrong
results [9–11].

These issues are remedied by the essential feasibility concept
that is implemented by the successive incumbent transcending (SIT)
scheme [10]. The core idea behind ε-essential feasibility is to shrink



the feasible set by an infinitesimal amount and, thus, to eliminate ev-
ery isolated feasible point that might lead to convergence problems
and numerically unstable solutions. The SIT scheme then solves a
sequence of feasibility problems with a branch and bound (BB) pro-
cedure. This results in a numerically much stabler procedure than
could be obtained using classical monotonic or DC programming
algorithms. Moreover, the SIT approach always provides a good
feasible solution even if stopped prematurely. Instead, conventional
algorithms usually outer approximate the solution rendering inter-
mediate solutions almost useless (because they are infeasbile).

Related work & Contributions: The SIT approach was devel-
oped by Hoang Tuy in [9–11]. We extend this algorithm to fractional
objectives, multiple constraints, and differentiate between convex
and non-convex variable such that the polynomial complexity in the
number of convex variables is preserved.

Energy-efficient resource allocation is usually done under or-
thogonality assumptions where the non-convexity already is within
the objective, e.g., [8, 12, 13]. Instead, in [14, 15] we consider
throughput optimal resource allocation for multi user decoding. In
this work, we extend the SIT based approach from [15] to energy
efficiency maximization without the need of Dinkelbach’s iterative
algorithm [6, 7].

Notation & Preliminaries: A vector x ∈ Rn with components
(x1, . . . , xn) is said to dominate another vector y ∈ Rn, i.e., y ≤
x, if yi ≤ xi for all i = 1, . . . , n. For a ≤ b, the set [a, b] =
{x |a ≤ x ≤ b} is called a box. A function f : Rn≥0 7→ R

is increasing if f(x′) ≤ f(x) whenever x′ ≤ x, and decreas-
ing if −f is increasing. A common minimizer (maximizer) of the
functions f1(x), . . . , fn(x) over the set X is any x∗ that satisfies
x∗ ∈ ⋂ni=1 arg minx∈X fi(x) (x∗ ∈ ⋂ni=1 arg maxx∈X fi(x)).
Consider, for example, the optimization problem (P2). Its optimal
solution is x∗ and the optimal value is v(P2) = f(x∗).

A set G ⊆ Rn≥0 is said to be normal if for 0 ≤ x′ ≤ x, x ∈ G
⇒ x′ ∈ G, and normal in a box [a, b] if the previous implication
only holds for a ≤ x′ ≤ x ≤ b. A setH ⊆ Rn≥0 is called conormal
if x + Rn≥0 ⊆ H whenever x ∈ H, and conormal in a box [a, b]
if for b ≥ x′ ≥ x ≥ a, x ∈ H ⇒ x′ ∈ H [11, Sec. 11.1.1].
Let A ⊆ Rn. Then, A is robust if it satisfies F∗ = cl(intF)
where cl and int denote the closure and interior, respectively. This is
equivalent to saying thatA has no isolated points, i.e., a single point
at the center of a ball containing no other feasible points. Finally,
diamA is the diameter of A, i.e., the maximum distance between
two points in A; and Ax̃ = {y|(x̃,y) ∈ D} is called the x̃-section
of A.

2. PROBLEM STATEMENT

We can recast (P1) into the global optimization problem max
(x,ξ)∈X×Ξ

f+(x, ξ)

f−(x, ξ)

s. t. g+
i (x, ξ)− g−i (x) ≤ 0, i = 1, . . . ,m

(P3)

with convex variables ξ and non-convex variables x. The equiva-
lence to problem (P1) is easily established by identifyingR as ξ and
p as x, X = [0,∞) and Ξ = [0,P ], f+(p,R) :=

∑
k Rk and

f−(p,R) := φTp+ Pc, and

g+
i (p,R) := aTi R+ log

(
cTi p+ σi

)
g−i (p) := log

((
bTi + cTi

)
p+ σi

)
.

(1)

The goal of this paper is to design a numerically stable BB
procedure to solve (P3) with polynomial complexity in ξ and ex-
ponential complexity in x. In general, we require (P3) to satisfy
the following technical conditions. The set Ξ is a closed convex
set and the functions {g−i (x)} have a common maximizer over ev-
ery box [

¯
x, x̄] ⊆ M0 with M0 being a rectangular set enclosing

X . The functions f−(x, ξ), g+
i (x, ξ), i = 1, . . . ,m, are lower

semi-continuous (l.s.c.), and f+(x, ξ), g−i (x), i = 1, . . . ,m, are
upper semi-continuous. Without loss of generality, f−(x, ξ) > 0.
Further, let each function of (x, ξ) be separable in the sense that
h(x, ξ) = hx(x) + hξ(ξ). Let the functions γf−ξ (ξ) − f+

ξ (ξ),
g+

1,ξ(ξ), . . . , g+
m,ξ(ξ) be convex in ξ for all γ (to be defined later),

and let γf−x (x) − f+
x (x), g+

1,x(x), . . . , g+
m,x(x) have a common

minimizer over X ∩M for every boxM⊆M0 and all γ. Finally,
let the function γf−x (x)− f+

x (x) be either increasing for all γ with
X being a closed normal set in some box, or decreasing for all γ
with X being a closed conormal set in some box.

Several conditions on the objective depend on the constant γ
which will hold the current best known value in the developed algo-
rithm. Observe that the only relevant property of γ is its sign and
whether it may change during the algorithm. For example, the func-
tion γf−ξ (ξ)− f+

ξ (ξ) is convex if f+
ξ (ξ) is concave and γf−ξ (ξ) is

convex. This is the case if γ ≥ 0 and f−ξ (ξ) is convex or if γ ≤ 0

and f−ξ (ξ) is concave. Thus, in most cases we should ensure that the
sign of γ is constant. In general, γ may take values between some
γ0 and v(P3) + η for some small η > 0. The lower end of the
range γ0 is either the objective value of (P3) for some preliminary
known nonisolated feasible point (x, ξ) or an arbitrary value satis-
fying γ0 ≤ f+(x,ξ)

f−(x,ξ)
for all feasible (x, ξ). This implies, e.g., that γ

is non-negative if f+(x, ξ) is non-negative. Otherwise, it might be
necessary to find a nonisolated feasible point such that f+(x, ξ) ≥ 0
or transform the problem.

3. ROBUST GLOBAL RESOURCE ALLOCATION

In [15] and the current paper, we employ the SIT approach [11,
Sect. 7.5.1] for the first time to solve a resource allocation problem in
wireless communications and obtain an essential (ε, η)-optimal so-
lution of (P3). That is, a solution that satisfies f+(x∗,ξ∗)

f−(x∗,ξ∗) + η ≥
f+(x,ξ)

f−(x,ξ)
for some ε, η > 0 and all (x, ξ) ∈ X × Ξ such that

g+
i (x, ξ) − g−i (x) ≤ −ε, i = 1, . . . ,m. Clearly, for ε, η → 0

an essential (ε, η)-optimal solution is a nonisolated feasible point
which is optimal. The core problem in the SIT scheme is, given
a real number γ, to check whether (P3) has a nonisolated feasible
solution (x, ξ) satisfying f(x, ξ) ≥ γ, or, else, establish that no
such ε-essential feasible (x, ξ) exists. Given that this subproblem
is solved within finitely many steps, the algorithm converges to the
global optimal solution in a finite number of steps.

Consider the optimization problem
min

(x,ξ)∈X×Ξ
max

i=1,2,...,m

(
g+
i (x, ξ)− g−i (x)

)
s. t.

f+(x, ξ)

f−(x, ξ)
≥ γ

(P4)

where we exchanged objective and constraints of (P3). Observe that
the constraint is equivalent to γf−(x, ξ) − f+(x, ξ) ≤ 0 since
f−(x, ξ) > 0 by assumption. The following proposition establishes
that the feasibility problem in the SIT scheme is equivalent to solving
(P4).



Proposition 1 (adapted from [11, Prop. 7.13]). For every ε > 0, the
ε-essential optimal value of (P3) is less than γ if the optimal value
of (P4) is greater than −ε.

In contrast to (P3), the feasible set of (P4) is robust and it can
be solved efficiently using an adaptive BB procedure [11, Prop. 6.2].
This is formally established in the following lemma.

Lemma 1. The feasible set of (P4) is robust, i.e., it does not contain
any isolated points.

Proof. Let D be the feasible set of (P4), i.e., D = {x ∈ X , ξ ∈
Ξ : fξ(ξ) + fx(x) ≤ 0} with fξ(ξ) = γf−ξ (ξ) − f+

ξ (ξ) and
fx(x) = γf−x (x)−f+

x (x). By assumption, fξ(ξ) is an l.s.c. convex
and fx(x) an l.s.c. increasing (decreasing) function. Further, X is
normal (conormal) within a box and Ξ is convex. Observe that D
is a convex set in ξ since for fixed x, fx(x) is a constant, f̃ξ(ξ) =

fξ(ξ) + const. is a convex function, and {ξ : f̃ξ(ξ) ≤ 0} is a
closed convex set [16, Thms. 4.6 & 7.1]. By the same argument,
f̃x(x) is an increasing (decreasing) function and {x : f̃x(x) ≤
0} is a closed normal (conormal) set [11, Prop. 11.2]. Thus, D is
normal (conormal) in a box in x. Neither closed convex nor closed
(co-)normal sets have any isolated feasible points [10]. Since D is
either convex or (co-)normal in each coordinate the proposition is
proven.

3.1. A Branch and Bound Procedure to Solve (P4)

The BB procedure should only branch over the global variables x.
It successively partitions the x-dimensions of D into boxes {Mi}.
For each box Mi, a lower bound β(Mi) for (P4) with additional
constraint x ∈ Mi is computed. This bound relies on the following
proposition.

Proposition 2 ([15, Proposition 2]). Let x̄∗M be a common maxi-
mizer of {g−i (x)}i=1,...,m over the boxM. Then, (P4)’s objective
is lower bounded overM by

max
i=1,2,...,m

{
g+
i (x, ξ)− g−i (x̄∗M)

}
(2)

This bound is tight at x̄∗M.

Thus, a lower bound for (P4) is the solution of
min
x,ξ

max
i=1,2,...,m

{
g+
i,ξ(ξ) + g+

i,x(x)− g−i (x̄∗Mi
)
}

s. t. γf−ξ (ξ)− f+
ξ (ξ) + γf−x (x)− f+

x (x) ≤ 0

ξ ∈ Ξ, x ∈ X ∩Mi.

(P5)

With the assumptions in Section 2 we can further simplify this prob-
lem. Let

¯
x∗Mi

be the common minimizer of γf−x (x) − f+
x (x),

g+
1,x(x), . . . , g+

m,x(x) over X ∩Mi. It is easy to see that
¯
x∗Mi

is
the optimal solution of (P5) since it jointly minimizes the objective
and the left-hand side of the constraint. Then, we obtain a simpler
bound on (P4) by solving

min
ξ

max
i=1,2,...,m

{
g+
i,ξ(ξ) + g+

i,x(
¯
x∗Mi

)− g−i (x̄∗Mi
)
}

s. t. γf−ξ (ξ)− f+
ξ (ξ) + γf−x (

¯
x∗Mi

)− f+
x (

¯
x∗Mi

) ≤ 0

ξ ∈ Ξ.

(P6)

This is, in general, a convex optimization problem and can be solved
in polynomial time using standard tools [17]. For our motivating

resource allocation problem (P3), this is easily verified to be a linear
program since g+

i,ξ(ξ) = aTi and γf−ξ (ξ)− f+
ξ (ξ) = −∑k ξk.

In iteration k, the BB procedure selects the box Mk with the
best bound, i.e., Mk = arg mini β(Mi). This box is then bi-
sected adaptively via (vk, jk) where vk = 1

2
(xk + yk) and jk =

arg maxj
∣∣ykj − xkj ∣∣, i.e.,Mk is replaced by

Mk
− = {x | pkjk ≤ xjk ≤ v

k
jk , p

k
i ≤ xi ≤ qki (i 6= jk)}

Mk
+ = {x | vkjk ≤ xjk ≤ q

k
jk , p

k
i ≤ xi ≤ qki (i 6= jk)}.

(3)

The points xk,yk ∈Mk in the computation of vk need to satisfy

(xk, ξk) ∈ D, lim
k→∞

(
β(Mk)− min

ξ∈D
yk

g(yk, ξ)
)

= 0 (4)

for convergence of this procedure [11, Prop. 6.2], where Dyk is D
for fixedx = yk and g(x, ξ) = maxi=1,2,...,m

(
g+
i (x, ξ)− g−i (x)

)
.

For β(Mi) being the solution of (P6) this is satisfied for β(Mi) =
−∞ if (P6) is infeasible; and yk = x̄∗Mk and (xk, ξk) =
(
¯
x∗Mi

, ξ∗) otherwise, where ξ∗ is the optimal solution of (P6).
The following proposition connects the simple observation from
Proposition 1 with the outlined BB procedure.

Proposition 3 (adapted from [11, Prop. 7.14]). Let ε > 0 be given.
Either g(xk, ξ∗) < 0 for some k and ξ∗ or β(Mk) > −ε for some
k. In the former case, (xk, ξ∗) is a nonisolated feasible solution

of (P3) satisfying f+(xk,ξ∗)
f−(xk,ξ∗)

≥ γ. In the latter case, no ε-essential

feasible solution (x, ξ) of (P3) exists such that f
+(x,ξ)

f−(x,ξ)
≥ γ.

Thus, an adaptive BB algorithm for solving (P4) with deletion
criterion β(M) > −ε and stopping criterion g(xk) < 0 implements
the feasibility check in the SIT scheme. The final procedure is stated
in Algorithm 1 and its convergence is established below.

Theorem 1. Algorithm 1 converges in finitely many steps to the
(ε, η)-optimal solution of (P3) or establishes that no such solution
exists.

Proof. Convergence is mostly apparent from the discussion above
(and [9–11]). It remains to show our choice of β(Mi) satisfies (4).
Due to the branching procedure diamMk → 0 as k → ∞. As
diamMk shrinks,Mk ⊆ D for some k. Also, |x̄∗Mk −

¯
x∗Mk | → 0

and, thus, β(Mk) → minξ∈D
yk g(yk, ξ). Hence, (P6) satisfies (4)

and Algorithm 1 converges.

The initialization of Algorithm 1 requires a box M0 that con-
tains thex-dimensions of the feasible set. For (P1) this box is [0,P ].
Observe that for the resource allocation problem (P1), problems (P7)
and (P8) in Algorithm 1 are linear optimization problems.

4. NUMERICAL EVALUATION

We consider a Gaussian 3-user Gaussian multi-way relay chan-
nel [18, 19] with amplify-and-forward relaying and multiple unicast
transmissions for the numerical evaluation of Algorithm 1 against
the state-of-the-art. The achievable rate region with simultaneous
non-unique decoding (SND) is stated in Proposition 4 below where
the relay is node 0 and users are nodes 1 to 3, Pk, P̄k, and Nk
are transmit, maximum transmit, and noise powers, respectively,
Sk = Pk

N0
, hk and gk are up- and downstream channels, respec-

tively, and q(k) and l(k) are index functions describing the message



Algorithm 1 SIT Algorithm for (P3)

0. Initialize ε, η > 0 andM0 = [p0, q0], P1 = {M0}, R = ∅,
k = 1, and γ such that γ ≤ f+(x,ξ)

f−(x,ξ)
for all feasible (x, ξ).

1. For each boxM∈Pk:

• Set β(M) as the solution of (P6) or β(M) =∞ if (P6)
is infeasible.

• AddM to R if β(M) ≤ −ε.
2. Terminate if R = ∅: If x̄ is not set, then (P3) is ε-essential

infeasible; else x̄ is an essential (ε, η)-optimal solution.
3. LetMk = arg min{β(M) |M ∈ R} and solve the feasibil-

ity problem{
find ξ ∈ Ξ

s. t. g+
i (

¯
x∗Mk , ξ)− g−i (

¯
x∗Mk ) ≤ 0, i = 1, . . . ,m.

(P7)

If (P7) is feasible go to Step 4; otherwise go to Step 5.
4.

¯
x∗Mk is a nonisolated feasible solution satisfying
f+(

¯
x∗
Mk ,ξ)

f−(
¯
x∗
Mk

,ξ)
≥ γ for some ξ ∈ Ξ. Solvemin

ξ∈Ξ

f+(
¯
x∗Mk , ξ)

f−(
¯
x∗Mk , ξ)

s. t. g+
i (

¯
x∗Mk , ξ)− g−i (

¯
x∗Mk ) ≤ 0, i = 1, . . . ,m.

(P8)

If x̄ is not set or v(P8) > γ − η, set x̄ =
¯
x∗Mk and γ =

v(P8) + η.
5. Bisect Mk via (vk, jk) where jk ∈ arg maxj{|x̄∗Mk,j −

¯
x∗Mk,j} and vk = 1

2
(
¯
x∗Mk + x̄∗Mk ) (cf. (3)). RemoveMk

from R. Let Pk+1 = {Mk
−,Mk

+}. Increment k and go to
Step 1.

transfer. Please refer to [14, 20] for a detailed system model. Ob-
serve that this region is strictly larger than previously published
SND regions [14, 20, 21] and includes treating interference as noise
(IAN) as a special case. This is due to recent insights on SND
decoders [22].

Proposition 4 ([15, Lem. 2]). A rate triple (R1, R2, R3) is achiev-
able for the Gaussian MWRC with AF and SND if, for each k ∈ K,

Rk ≤ log

(
1 +
|hk|2 Sk
γk(S)

)
(5)

or Rk ≤ log

(
1 +
|hk|2 Sk
δk(S)

)
(6a)

Rk +Rl(k) ≤ log

(
1 +
|hk|2 Sk +

∣∣hl(k)

∣∣2 Sl(k)

δk(S)

)
(6b)

where Sk ≤ S̄k, δk(S) = 1+ g̃−1
q(k)

(
1 +

∑
i∈K |hi|

2 Si
)

with g̃k =

|gk|2 P̄0
Nk

, and γk(S) = δk(S) +
∣∣hl(k)

∣∣2 Sl(k).

Let Rk,IAN and Rk,SND be the regions defined by (5) and
(6), respectively. Then, the rate region in Proposition 4 is R =⋂
k∈K(Rk,IAN ∪ Rk,SND) =

⋃
d∈{IAN,SND}|K|

⋂
k∈KRk,dk . Since

infx∈⋃i Di
f(x) = mini infx∈Di f(x), we can split the resource

allocation problem into eight individual optimization problems.
Each is easily identified as an instance of (P1) and solvable with
Algorithm 1 using the initial boxM0 = [0, S̄].

We assume equal maximum power constraints and noise power
at all nodes. Channels are reciprocal and chosen independent and
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Fig. 1. Energy efficiency in the MWRC with AF relaying. Averaged
over 1000 i.i.d. channel realizations and computed with η = 10−3.

SNR 0 dB 20 dB 40 dB

Algorithm 1 Mean 5.1438 s 0.1771 s 0.155 s
Median 3.2781 s 0.0762 s 0.06 s

Dinkelbach Mean 377.1501 s 145.4181 s 36.969 s
Median 162.811 s 23.027 s 16.9229 s

Table 1. Mean and median run times of EE computation for “tradi-
tional” SND and different solvers, all with precision η = 0.01

identically distributed (i.i.d.) as CN (0, 1). The static circuit power
consumption Pc = 1 W, the power amplifier inefficiencies φi = 4,
ε = 10−5, and the relay always transmits at maximum power. Re-
sults for SND, “traditional” SND defined by (6), and IAN defined
by (5) are displayed in Fig. 1. First, observe that the curves satu-
rate starting from 30 dB as is common for energy efficiency (EE)
maximization. In this saturation region, all three approaches achieve
the same EE. However, for lower signal-to-noise ratios (SNRs), IAN
outperforms “traditional” SND. Of course, the EE performance de-
pends quite a lot on the choice of real-world simulation parame-
ters [23, 24], so further work is necessary to draw final conclusions
in this regard.

The main point of this section, however, is measuring the per-
formance gain of inherently treating the fractional objective in Al-
gorithm 1 over the state-of-the-art approach of using Dinkelbach’s
Algorithm [6–8].1 Mean and median computation times for both
approaches are reported in Table 1. Dinkelbach’s Algorithm re-
quires the global solution of a sequence of auxiliary problems that
are solved with Algorithm 1. Hence, the differences in the run time
are solely due to the use of Dinkelbach’s Algorithm. It can be ob-
served from Table 1 that our algorithm is always significantly faster
(up to 800× on average at 20 dB) than Dinkelbach’s Algorithm.
Moreover, the obtained result is guaranteed to lie within an η-region
around the true essential optimal value, which is not the case for
Dinkelbach’s Algorithm.

5. CONCLUSIONS
We introduce ε-essential feasibility and the accompanying SIT ap-
proach. Based on these concepts, we develop a novel global EE
maximization algorithm that does not require Dinkelbach’s iterative
procedure and preserves the polynomial complexity in the number
of convex variables. Numerical experiments show that our approach
outperforms Dinkelbach’s algorithm by almost four orders of mag-
nitude.

1All algorithms are implemented in C++ with similar techniques. Thus,
performance differences should be mostly due to algorithmic differences.
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[18] D. Gündüz, A. Yener, A. Goldsmith, and H. V. Poor, “The
multiway relay channel,” IEEE Trans. Inf. Theory, vol. 59, no.
1, pp. 51–63, Jan. 2013.

[19] A. Chaaban and A. Sezgin, Multi-way Communications: An
Information Theoretic Perspective, vol. 12 of Found. Trends
Commun. Inf. Theory, Now Publishers, 2015.

[20] B. Matthiesen and E. A. Jorswieck, “Instantaneous relaying
for the 3-way relay channel with circular message exchanges,”
in Proc. 49th Asilomar Conf. Signals, Syst., Comput., Pacific
Grove, CA, Nov. 2015, pp. 475–479.

[21] A. El Gamal and Y.-H. Kim, Network Information Theory,
Cambridge University Press, 2011.

[22] B. Bandemer, A. El Gamal, and Y.-H. Kim, “Optimal achiev-
able rates for interference networks with random codes,” IEEE
Trans. Inf. Theory, vol. 61, no. 12, pp. 6536–6549, Oct. 2015.

[23] B. Matthiesen, A. Zappone, and E. A. Jorswieck, “Resource
allocation for energy-efficient 3-way relay channels,” IEEE
Trans. Wireless Commun., vol. 14, no. 8, pp. 4454–4468, Aug.
2015.

[24] E. Björnson, J. Hoydis, and L. Sanguinetti, Massive MIMO
networks: Spectral, energy, and hardware efficiency, vol. 11 of
Found. Trends Signal Process., Now Publishers, 2017.


