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Abstract—Optimal resource allocation in interference networks
requires the solution of non-convex optimization problems. Ex-
cept from treating interference as noise (IAN) one usually has to
optimize jointly over the achievable rates and transmit powers.
This non-convexity is normally only due to the transmit powers
while the rates are linear. Conventional approaches like the
Polyblock Algorithm treat all variables equally and, thus, require
a two layer solver to exploit the linearity in the rates and keep the
computational complexity at a reasonable level. In this paper, we
develop a branch and bound algorithm that exploits most of the
problem structure and, compared to previous algorithms, has
significantly better performance, improved numerical stability
and provides a feasible solution even if terminated prematurely.
We employ this novel algorithm to study throughput optimal
power allocation in a multi-way relay channel with simultaneous
non-unique decoding (SND) and rate splitting (RS) encoders.
We evaluate the performance gains of RS over “pure” SND
and IAN numerically. While SND often achieves significantly
higher throughput than IAN, the benefits of rate splitting are not
that pronounced on average and largely depend on the channel
condition.

Index Terms—Resource allocation, global optimization, multi-
way relay channel, rate splitting, simultaneous non-unique de-
coding, interference networks

I. INTRODUCTION

Recent results show that simultaneous non-unique decoding
(SND) is an optimal decoder for general interference networks
under the restriction to random codebooks with superposition
coding and time sharing [1]. Before, common wisdom was that
neither treating interference as noise (IAN) nor SND dominates
the other rate-wise, with IAN generally better in noise limited
scenarios and SND superior when interference is the limiting
factor. This misconception is due to an longstanding oversight
in the SND proof that was clarified in [1]. The major obstacle
in implementing SND is the joint decoding whose direct
implementation requires quite complex multiuser sequence
detection. This issue, however, is subject to ongoing research.
For example, in [2] commercially available point-to-point codes
are used to achieve the whole SND region asymptotically. These
major advances towards the implementation of theoretically
optimal decoders brings the encoding into focus. For Gaussian
channels, the most common approach is to use a single random
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Gaussian codebook per message, albeit there might be better
choices for IAN.

We can improve upon this codebook by employing rate
splitting (RS) and superposition coding. In this approach, each
encoder splits its message into two parts, a “common” and
a “private” and encodes it with a Gaussian codebook. It then
transmits a symbol-wise superposition of both codewords. Each
receiver recovers all parts of its desired message and the
“common” messages of the interfering transmitters using SND.
This coding scheme known as Han-Kobayashi coding is the
most powerful available coding scheme for the interference
channel [3], [4]. Its theoretical advantage over the non-RS
approach is that IAN and joint decoding can be used jointly
on the same message, while, otherwise, the decoder has to
commit to only one of these strategies.

The goal of this paper is to develop a procedure to obtain
global optimal transmit power allocations for a 3-user multi-
way relay channel (MWRC) [5] with amplify-and-forward
(AF) relaying and RS encoders [6]. This algorithm is then
employed to evaluate the rate gain over non-RS encoders
numerically. Specifically, we solve the optimization problem
maxR,P {wTR |R ∈ R(P ), P ≤ P̄ } for some w ∈ Rn

≥0

where R(P ) denotes the achievable rate region. The major
challenge here, as for most interference networks, is that this
problem is not convex and, hence, the computational complexity
of solving it grows exponentially in the number of variables [7].
Most research in the wireless resource allocation community
focuses on rectangular rate regions that occur, e.g., when IAN is
employed. Due to the simple structure of those rate regions, the
rates can be eliminated analytically and numerical optimization
over them is not necessary. Instead, the rate region at hand
is more involved making it almost impossible to eliminate
the rates analytically. Moreover, with RS each transmitter
requires the allocation of two powers. Thus, we have three
times as many optimization variables per transmitter as when
simply using IAN. However, a careful examination of the
optimization problem reveals that the non-convexity lies only
in a few variables. Exploiting this structural property is key
to solving the problem with reasonable complexity. In [8], we
show how to achieve this within the widely used monotonic
optimization framework [9]. This is, however, neither the
most elegant nor efficient approach. Instead, we develop an
optimization framework based on recent advancements of
global optimization theory [10] that exploits most of the



structure present in the problem at hand and is applicable
to a wide range of resource allocation problems. The proposed
algorithm is guaranteed to obtain a numerically stable solution
and exhibits faster convergence and less numerical complexity
than our earlier approach in [8].

II. SYSTEM MODEL & PROBLEM STATEMENT

We use the system model from [8] and consider a 3-user
single-input single-output (SISO) MWRC where the users
communicate in multiple unicast transmissions via an AF relay.
Gaussian channels with quasi-static block flat fading, full-
duplex transmission, SND at the receivers and no direct user-
to-user links are assumed. Users are indexed by k, k ∈ K =
{1, 2, 3} and the relay is node 0.

The relay receives the signal Y0 =
∑

k∈K hkXk + Z0,
with Xk the channel input at node k ∈ K with power Pk,
hk the channel coefficient from user k to the relay, and Z0

the independent and identically distributed (i.i.d.) zero-mean
circularly symmetric complex Gaussian noise with power N0

observed at the relay. The relay adjusts the power of the
received symbol and broadcasts it back to the users, i.e.,
X0 = αY0 where α =

√
P0 /(

∑
k∈K |hk|

2
Pk +N0) is chosen

such that the relay’s transmit power is P0.
User k ∈ K receives the signal Yk = gkX0 +Zk, with gk the

channel coefficient from the relay to user k, and Zk the i.i.d.
zero mean circularly symmetric complex Gaussian noise with
power N . The channel inputs are subject to an average power
constraint P̄k on Xk, k ∈ K ∪ {0}. The message exchange is
defined as follows. Let the receiver of node k’s message be
q(k) and the user not interested in it l(k). Then we consider
without loss of generality q(1) = l(3) = 2, q(2) = l(1) = 3,
and q(3) = l(2) = 1.

1) Rate Splitting: Encoder k, k ∈ K, employs RS to divide
its message into a common message to be decoded by all
receivers and a private part that is treated as additional noise
by unconcerned receivers. These messages are then encoded
by individual Gaussian codebooks with powers P c

k and P p
k

and linearly superposed to be transmitted in a single codeword
with power Pk = P c

k + P p
k . The receiver first removes its

self-interference from the observed signal and then employs
SND to decode simultaneously for its desired message and
non-uniquely for the cloud centers of the interfering message,
while treating the interfering satellite codeword as noise.

The achievable rate region for this coding scheme in discrete
memoryless multi-way relay channel is computed in [6] and
extended to Gaussian channels below. Since the achievable rates
do not depend on the absolute values of P c

k , P p
k and N0 but on

their ratio, we state all results in terms of the signal-to-noise
ratio (SNR). Define the cloud and satellite transmit SNRs as
Sc
k =

P c
k

N0
and Sp

k =
Pp

k

N0
, respectively, their sum Sk = Sc

k +Sp
k ,

the maximum transmit SNR S̄k = P̄k

N0
, and the corresponding

vectors Sc = (Sc
1, S

c
2, S

c
3), Sp = (Sp

1 , S
p
2 , S

p
3 ), S = (Sc,Sp),

and S̄ = (S̄1, S̄2, S̄3).

Lemma 1: A rate triple (R1, R2, R3) is achievable for the
Gaussian MWRC with AF relaying if, for all k ∈ K,

Rk ≤ Bk, (1a)
Rk +Rq(k) ≤ Ak +Dq(k), (1b)

Rk +Rq(k) +Rl(k) ≤ Ak + Cq(k) +Dl(k), (1c)
2Rk +Rq(k) +Rl(k) ≤ Ak + Cq(k) + Cl(k) +Dk, (1d)

and, R1 +R2 +R3 ≤ C1 + C2 + C3, (1e)

with Ak = log

(
1 +
|hk|2 Sp

k

γk(S)

)
(2a)

Bk = log

(
1 +
|hk|2 (Sp

k + Sc
k)

γk(S)

)
(2b)

Ck = log

(
1 +
|hk|2 Sp

k +
∣∣hl(k)

∣∣2 Sc
l(k)

γk(S)

)
(2c)

Dk = log

(
1 +
|hk|2 (Sp

k + Sc
k) +

∣∣hl(k)

∣∣2 Sc
l(k)

γk(S)

)
(2d)

where Sc
k + Sp

k ≤ S̄k and

γk(S) = 1 +
∣∣hl(k)

∣∣2 Sp
l(k) + g̃−1

q(k)

(
1 +

∑
i∈K

|hi|2 (Sc
i + Sp

i )

)
,

with g̃k = |gk|2 P̄0

Nk
.

Proof sketch: Extend [6, Thm. 1] to Gaussian channels
using the standard procedure in [11, Sect. 3.4.1]. Evaluate it
with Gaussian inputs Uk ∼ CN (0, P c

k ) and Xk = Uk + Vk
with Vk ∼ CN (0, P p

k ), and E[X2
0 ] = P0 to obtain the rate

expressions above with g̃k = |gk|2 P0

Nk
. The achievable rates

are increasing in P0. Thus, P0 = P̄0 is rate-optimal.
2) Single Message: Encoder k, k ∈ K, uses a Gaussian

codebook with power Pk to transmit its message. Upon
observing ynk the receiver uses the SND typicality decoder
to recover its desired message. The achievable rate region
is given below where Sk = Pk

N0
, S = (S1, S2, S3), and

S̄ = (S̄1, S̄2, S̄3). Observe that this region is strictly larger
than previously published SND regions [6], [8] and includes
IAN as a special case. This is due to the new insights on SND
decoders in [1].

Lemma 2: A rate triple (R1, R2, R3) is achievable for the
Gaussian MWRC with AF and SND if, for each k ∈ K,

Rk ≤ log

(
1 +
|hk|2 Sk

γl(k)(S)

)
(3)

or

Rk ≤ log

(
1 +
|hk|2 Sk

δl(k)(S)

)
(4a)

Rk +Rl(k) ≤ log

(
1 +
|hk|2 Sk +

∣∣hl(k)

∣∣2 Sl(k)

δl(k)(S)

)
(4b)

where Sk ≤ S̄k, γk(S) and g̃k as in Lemma 1, and δk(S) =

γk(S)−
∣∣hl(k)

∣∣2 Sp
l(k).

Proof: The proof follows along the lines of [1, Sect. II-A.]
and is omitted due to space constraints.

Remark 1: Let Rk,IAN and Rk,SND be the regions defined
by (3) and (4), respectively. Then, the rate region in Lemma 2
is

R =
⋂
k∈K

(Rk,IAN ∪Rk,SND) =
⋃

d∈{IAN,SND}|K|

⋂
k∈K

Rk,dk . (5)



A. Problem Statement
The optimal power allocation that maximizes the weighted

system throughput and characterizes the Pareto boundary of
these achievable rate regions is the solution to

max
R,S

∑
k∈K

wkRk

s. t. R ∈ R(S), R ≥
¯
R

S ≥ 0, Sk ≤ S̄k, k ∈ K

(P1)

for all w ∈ R3
≥0 \ {0} where R(S) is one of the rate

regions defined in Lemmas 1 and 2 and
¯
R ≥ 0 are minimum

rate requirements. This is a non-convex optimization problem
because the right-hand sides (RHSs) of the rate constraints
are non-concave functions. Instead, they belong to the classes
of difference of convex (DC) and difference of increasing
functions since

log

(
1 +

f(S)

γk(S)

)
= log(f(S) + γk(S))− log(γk(S)). (6)

Following the general rule in global optimization to exploit
as much structure in the problem as possible, we strive to
exploit both these properties in our proposed algorithm. This,
and the fact that (P1) is a linear program (LP) for fixed S
prohibits the use of of-the-shelve DC progamming or monotonic
optimization algorithms. Instead, we develop a robust branch
and bound (BB) algorithm inspired by the successive incumbent
transcending (SIT) algorithm for DC programming [10], [12].

III. ROBUST GLOBAL OPTIMIZATION

A. Review of Robust Global Optimization
The following explanations are a summary of [12, Sect. 7.5]

and [10], [13] with some minor modifications tailored for
our specific application. Consider the general non-convex
optimization problem

min
x∈[a,b]

f(x) s. t. gi(x) ≤ 0, i = 1, 2, . . . ,m (P2)

where f, g1, g2, . . . , gm are non-convex continuous real-valued
functions. Most current solution methods for this problem are
devised to find a (ε, η)-approximate optimal solution, i.e., a
solution x̄ that satisfies f(x̄) − η ≤ f(x∗) where x∗ is the
optimal solution of (P2) and gi(x̄) ≤ ε for all i and some
sufficiently small ε > 0. The problem with this approach is
that such a solution x̄ might be infeasible and also quite far
away from the real solution x∗ if ε is not sufficiently small.
Unfortunately, it is often not known in practice how small
“sufficiently small” is so as to guarantee a correct approximate
optimal solution.

If (P2) has a global optimal solution that is an isolated
feasible solution, i.e., a point x at the center of a ball containing
no other feasible points than x, things are even worse. In that
case, a slight change in the data or tolerances ε, η might cause
a drastic change in the obtained solution (including the optimal
value). Besides the numerical difficulties to compute such a
solution, it is not even desirable to obtain one since resource
allocation problems in wireless communications usually deal
with data that is subject to measurement and estimation errors.
Thus, a common practice is to assume a robust feasible set,
i.e., a feasible set containing no isolated feasible solutions.

Unfortunately, this assumption is generally very hard to
check for a given problem. Instead, a practical algorithm
should compute the best non-isolated feasible solution without
knowing a priori whether the feasible set is robust or not.

Let D be the feasible set of (P2) and D∗ = cl(intD) the set
of nonisolated feasible points of D, where cl and int denote
the closure and interior, respectively. A solution x∗ ∈ D∗ is
called essential optimal solution of (P2) if f(x∗) ≤ f(x) for
all x ∈ D∗. A point x ∈ [a, b] satisfying gi(x) ≤ −ε for all i
and some ε > 0 is called ε-essential feasible and a solution of
(P2) is said to be essential (ε, η)-optimal if it satisfies

f(x∗)− η ≤ inf{f(x)|x ∈ [a, b], ∀i : gi(x) ≤ −ε} (7)

for some η > 0. Clearly, for ε, η → 0 an essential (ε, η)-
optimal solution is a nonisolated feasible point which is optimal.

The robust approach to global optimization employed here
uses the SIT scheme in Algorithm 1 to generate a sequence of
nonisolated feasible solutions converging to an essential optimal
solution of (P2). The core problem in the SIT scheme is, given a
real number γ, to check whether (P2) has a nonisolated feasible
solution x satisfying f(x) ≤ γ, or, else, establish that no such
ε-essential feasible x exists. Given that this subproblem is
solved within finitely many steps, Algorithm 1 is also finite.
Apart from the improved numerical stability and convergence,
the SIT algorithm has another very desirable feature: it provides
a good nonisolated feasible (but possibly suboptimal) solution
even if terminated prematurely. Instead, conventional algorithms
usually outer approximate the solution rendering intermediate
solutions almost useless.

Algorithm 1 SIT Algorithm [12, Sect. 7.5.1].
Step 0 Initialize x̄ with best known nonisolated feasible solution;

otherwise choose x̄ such that f(x̄)− η > f(x) ∀x ∈ D.
Set γ0 = γ = f(x̄)− η.

Step 1 Check if (P2) has a nonisolated feasible solution x
satisfying f(x) ≤ γ; otherwise, establish that no such
ε-essential feasible x exists and go to Step 3.

Step 2 Update x̄← x and γ ← f(x̄)− η. Go to Step 1.
Step 3 Terminate: If γ 6= γ0, x̄ is an essential (ε, η)-optimal

solution; else Problem (P2) is ε-essential infeasible.

Now, let f be a convex and gi be DC functions and consider
the following dual problem to (P2)

min
x∈[a,b]

max
i=1,2,...,m

gi(x) s. t. f(x) ≤ γ (P3)

where objective and constraints are interchanged. In contrast
to (P2), Problem (P3) has a convex feasible set and, thus, no
isolated feasible solutions. Moreover, computing a feasible
solution can be done at cheap cost using an adaptive BB
procedure [12, Prop. 6.2] that partitions the feasible set into
boxes. For each partition M , a lower bound β(M) for (P3)
with the additional constraint x ∈ M is computed. In each
iteration of the BB algorithm two points xk ∈Mk, yk ∈Mk
satisfying

f(xk) ≤ γ, g(yk)− β(Mk)→ 0 as k →∞ (8)

are generated, where Mk is the box with the best bound β(M).
The following proposition links the solution of (P3) to the
original problem (P2).



Proposition 1 ([12, Prop. 7.14]): Let ε > 0 be given. Either
g(xk) < 0 for some k or β(Mk) > −ε for some k. In the
former case, xk is a nonisolated feasible solution of (P2)
satisfying f(xk) ≤ γ. In the latter case, no ε-essential feasible
solution x of (P2) exists such that f(x) ≤ γ (so, if γ =
f(x̄)− η for a given η > 0 and a nonisolated feasible solution
x̄ then x̄ is an essential (ε, η)-optimal solution).

Thus, an adaptive BB algorithm for solving (P3) with dele-
tion criterion β(M) > −ε and stopping criterion g(xk) < 0
implements Step 1 in Algorithm 1.

B. Application to Resource Allocation Problems
We now return our attention to the original problem (P1)

and extend the SIT algorithm from [12]. As noted before, the
devised algorithm should only branch over the non-convex
variables. Thus, we formulate the optimization problem in
terms of the non-convex variables x and convex variables ξ:{ min

(x,ξ)∈C
f(x, ξ)

s. t. g+i (x, ξ)− g−i (x) ≤ 0, i = 1, 2, . . . ,m,
(P4)

where C is a convex set, f , g+
i are convex, and g−i are convex

and decreasing functions.1 The essential step in solving (P4)
is the computation of the bound β(M) for the dual problem.
A common approach is to use a convex underestimator for
maxi=1,2,...,mgi(x) that is tight at a point yk ∈M in order to
satisfy (8).

Proposition 2: The objective of (P4)’s dual is underestimated
on the box M = [p, q] by

max
i=1,2,...,m

{
g+i (x, ξ)− g−i (p)

}
. (9)

This lower bound is tight at p.
Proof: Since g−i (x) is monotonically decreasing, g−i (p) ≥

g−i (x) for all x ∈ M, and each term of (9) underestimates
the corresponding term in the objective of (P4)’s dual and is
tight for the point p. It remains to show that for all real-
valued functions h1, h2, . . . ,

¯
h1,

¯
h2, . . . satisfying hi ≥

¯
hi

and hi(y) =
¯
hi(y) for all i and some point y, maxi{hi} ≥

maxi{
¯
hi} and maxi{hi(y)} = maxi{

¯
hi(y)} holds.

Consider the case with two functions and assume that
max{h1, h2} < max{

¯
h1,

¯
h2}. Since hi ≥

¯
hi, this can only

hold if max{h1, h2} = h1 and max{
¯
h1,

¯
h2} =

¯
h2 or vice

versa. This implies h1 ≥ h2 ≥
¯
h2 which contradicts the

assumption. The generalization to arbitrarily many functions
follows by induction. Finally, if

¯
hi(y) = hi(y) for all i, then

mini{
¯
hi(y)} = mini{hi(y)}.

Thus, a bound β(M) for the optimal value of (P4)’s dual
over the box M = [p, q] is the solution to

min
x,ξ,t

t

s. t. f(x, ξ) ≤ γ
g+i (x, ξ)− g−i (p) ≤ t, i = 1, 2, . . . ,m

(x, ξ) ∈ C, x ∈M

(P5)

1Note that g+i and g−i are convex functions while the logarithms, which they
might represent, are concave functions. Thus, if the logarithm is increasing,
g−i must be decreasing (cf. (P8)).

This is obviously a convex optimization problem since g−i (p)
is a constant now. Thus, we can use standard tools from convex
optimizations to obtain a solution in polynomial time [14].

The final algorithm from [12, Sect. 7.5.2] is extended in
Algorithm 2. Its convergence follows from [12, Theorem 7.10].
The required initial box M0 = [p0, q0] contains the x-
dimensions of C, i.e.,

p0i = min
(x,ξ)∈C

xi q0i = max
(x,ξ)∈C

xi, (10)

and Cx denotes the x-section of C defined as Cx = {(x̃, ξ) ∈
C |x = x̃}. Problems (P6) and (P7) in Steps 3 and 4 of
Algorithm 2 are convex.

Algorithm 2 SIT Algorithm for (P4)
Step 0 Initialize ε, η > 0 and M0 = [p0, q0] as in (10), γ =∞,

P1 = {M0}, R = ∅, and k = 1.
Step 1 For each box M ∈Pk:

• Compute β(M) with (P5). Set β(M) = ∞ if (P5) is
infeasible.

• Add M to R if β(M) ≤ −ε.
Step 2 Terminate if R = ∅: If γ = ∞, then (P4) is ε-essential

infeasible; else x̄ is an essential (ε, η)-optimal solution of
(P4).

Step 3 Let Mk = arg min{β(M) |M ∈ R} = [pk, qk]. Let
xk be the optimal solution of (P5) for the box Mk, and
yk = pk. Solve the feasibility problem{

find ξ ∈ Cxk

s. t. g+i (xk, ξ)− g−i (xk) ≤ 0, i = 1, . . . ,m.
(P6)

If (P6) is feasible go to Step 4; otherwise go to Step 5.
Step 4 xk is a nonisolated feasible solution satisfying f(xk, ξ) ≤

γ for some ξ ∈ Cxk . Let ξ∗ be the solution to min
ξ∈C

xk

f(xk, ξ)

s. t. g+i (xk, ξ)− g−i (xk) ≤ 0, i = 1, 2 . . . ,m.
(P7)

If γ =∞ or γ <∞ and f(xk, ξ∗) < γ + η, set x̄ = xk

and γ = f(xk, ξ∗)− η.
Step 5 Bisect Mk via (vk, jk) where jk ∈ arg maxj{

∣∣ykj − xkj ∣∣}
and vk = 1

2
(xkjk + ykjk ), i.e., let

M−k = {x | pkjk ≤ xi ≤ v
k, pki ≤ xi ≤ qki (i 6= jk)}

M+
k = {x | vk ≤ xi ≤ qkjk , p

k
i ≤ xi ≤ qki (i 6= jk)}.

Remove Mk from R. Let Pk+1 = {M−k ,M
+
k }. Incre-

ment k and go to Step 1.

C. Solution of Problem (P1)
1) Rate Splitting (Lemma 1): We already observed that

(P1) is a LP for fixed S, which leaves us with six non-convex
variables S. The non-convexity of (P1) stems from the negative
log(γk(S))-terms on the RHS of R(S). The variables Sc only
appear in γk(S) as the sum

∑
k∈K |hk|

2
Sc
k. Thus, we can

reduce the number of non-convex variables by introducing
a (non-convex) auxiliary variable y =

∑
k∈K |hk|

2
Sc
k. Then,

γk(Sp, y) = 1 +
∣∣hl(k)

∣∣2 Sp
l(k) + g̃−1

q(k)

(
1 +y+

∑
i∈K |hi|

2
Sp
i

)
.

Due to the exponential complexity in the number of non-
convex variables this substitution reduces the computation
time significantly. To bring (P1) in a form matching (P4), we
introduce some additional definitions. Consider the constraints



(1a)–(1e) and number them by i = 1, 2, . . . , 13. The left-hand
side of each inequality can be written as aT

i R, while each
term in the RHS is equivalent to l+j (S, y) − l−j (Sp, y) for
some j = 1, . . . , 12 (cf. (6)). Thus, the RHSs of (1a)–(1e)
can be written as L+

i (S, y) − L−i (Sp, y) with L+
i (S, y) =∑

j∈Ii l
+
j (S, y) and L−i (S, y) =

∑
j∈Ii l

−
j (Sp, y) where Ii

contains the corresponding indices. Then, (P1) is equivalent to

max
R,S,y

wTR

s. t. aT
i R− L+

i (S, y) + L−i (Sp, y) ≤ 0, i = 1, 2, . . .

y =
∑

k∈K
|hk|2 Sc

k

Sc
k + Sp

k ≤ S̄k, k ∈ K, R ≥
¯
R, S ≥ 0

(P8)

and we can easily identify x = (Sp, y), ξ = (R,Sc),
f(x, ξ) = wTR, g+

i (x, ξ) = aTi R − L+
i (S, y), g−i (x) =

−L−i (Sp, y), and C as the set defined by the last three lines of
(P8). The initial box M0 required by Algorithm 2 is identified
as [0, S̄]× [0,

∑
k∈K |hk|

2
S̄k].

2) Single Message (Lemma 2): Observe that
infx∈

⋃
iDi

f(x) = mini infx∈Di
f(x). Thus, we can

split the resource allocation problem for Lemma 2 into eight
individual optimization problems as indicated in Remark 1.
Each is easily identified as an instance of (P1) and solvable
with Algorithm 2 using the initial box M0 = [0, S̄].

IV. NUMERICAL EVALUATION

We employ Algorithm 2 to answer two questions numerically:
How does the extended SND region improve upon IAN and
the “traditional” SND region, and how much can we gain over
single message SND by using rate splitting? For this purpose we
compute the optimal power allocations for the Gaussian MWRC
with AF relaying considered in Section II with tolerances
ε = η = 0.01. Results for “traditional” SND and IAN are
published in [8] and [15], respectively. The simulation setup
is identical to these publications: We assume equal maximum
power constraints and noise power at the users and the relay,
no minimum rate constraints, i.e.

¯
R = 0, reciprocal channels

chosen randomly and independently with circular symmetric
complex Gaussian distribution, i.e., hk ∼ CN (0, 1) and gk =
h∗k. Results are averaged over 800 i.i.d. channel realizations.

Figure 1 displays the results. First, observe that, in accor-
dance with conventional wisdom, neither “traditional” SND
nor IAN dominates the other. Instead, “extended” SND clearly
dominates the other two where the gain is solely due to allowing
each receiver to either use IAN or “traditional” SND. The
average gain of SND over the other two is approximately 12 %
and 18 % at 10 dB, respectively, or 0.32 bpcu and 0.48 bpcu.
Note that this gain is only achieved by allowing each receiver
to chose between IAN and joint decoding which does not result
in higher decoding complexity than “traditional” SND.

The average gain observed for RS over single message SND
and shown in Fig. 1 is rather small, e.g., at 25 dB it is only
0.2 bpcu. However, depending on the channel realization we
observed gains up to half a bit (or 3.5 %) at 10 dB. With
spectrum being an increasingly scarce resource this occasional
gain might justify the slightly higher coding complexity.
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Fig. 1. Throughput in the MWRC with AF relaying and 1) RS 2) SND; 3)
“traditional” SND; and 4) IAN. Averaged over 800 i.i.d. channel realizations.

V. CONCLUSIONS

We evaluated the merits of SND in MWRCs with and
without rate splitting numerically and compared it with IAN
and restricted SND. This required a novel global optimization
algorithm to keep the numerical complexity at a reasonable
level. Although the channel model is quite specific, the
developed algorithm is applicable to a wide variety of non-
convex optimization problems.
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