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Abstract—This paper studies the maximization of the weighted
sum rate in multi-way relay channels with simultaneous non-
unique decoding at the receivers. We state the resource allocation
problem as a global optimization problem of the transmit powers
and achievable rates, and transform it into a monotonic opti-
mization problem. The computational complexity of monotonic
optimization problems is exponential in the number of variables.
We observe that for fixed powers the problem is a linear program
with much lower complexity and exploit this structural property
by decomposing the optimization problem into an inner linear
and an outer monotonic program. This reduces the computational
complexity significantly and allows computing the global solution.
We compare the achievable throughput with multi-user decoding
and optimal power allocation numerically to state-of-the-art
single-user decoding and to simply transmitting at maximum
power. We observe that multi-user decoding performs much
better than single-user decoding in terms of throughput and
fairness for medium to high SNRs.

Index Terms—Resource allocation, interference networks, 5G
networks, monotonic optimization, power control, global opti-
mization, multi-way relay channel, amplify-and-forward, simul-
taneous non-unique decoding, linear programming

I. INTRODUCTION

Relays are fundamental building blocks of modern wireless
networks. They help to increase coverage and reliability. Due to
the high attenuation in mmWave communications, this is even
more important in the era of 5G than it was in classical and
current wireless systems. Thus, relaying is a key technology
in emerging wireless technologies and its study is important
to understand the fundamental limits of modern and future
wireless communication systems. An integral part to advance
the understanding of relaying in networks is the multi-way
relay channel (MWRC). It models relay-aided communication
across several nodes with no direct links between the users.
Applications of this model are, e.g., heterogeneous dense small
cell networks in modern and future wireless networks, wireless
board-to-board communication in highly adaptive computing,
wireless sensor networks, Industry 4.0, or communication of
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several ground stations over a satellite. An extensive overview
of results for the MWRC is provided in [1].

We focus on the Gaussian MWRC with three users, amplify-
and-forward (AF) relaying, and multiple unicast transmissions.
Non-regenerative relaying introduces significantly less delay
than state-of-the-art decode-and-forward (DF) relaying with
the additional benefits of low energy consumption and reduced
hardware cost. This comes at the price of noise amplification
at the relay. To mitigate this effect, interference is not treated
as additional noise at the receivers. Instead, simultaneous non-
unique decoding (SND) [2, Chap. 6] is employed where all
received messages are decoded simultaneously but without
requiring correct decoding of interfering messages. Achievable
rate regions for this channel are derived in [3]. Throughput
and energy efficiency (EE) maximization is done in [4] for
symmetric channels and in [5] for non-symmetric channels
with treating interference as noise (IAN) at the receivers.

In this paper, we solve the weighted sum rate maximization
problem for the MWRC at hand with global optimality. This
optimization problem is non-convex and its global optimal
solution requires computationally intensive algorithms. In
general interference networks with single-user decoding the
achievable rate region is often a hypercube and the weighted
sum rate can be derived analytically [6]–[9]. Instead, the
achievable rate region with SND is more involved making
it impractical to determine the weighted sum rate analytically
except for some special cases (e.g. [3]). Thus, we have to jointly
optimize over the achievable rates and transmit powers instead
of just the powers. This means that the number of optimization
variables is roughly doubled compared to the case where
the rate expressions can be eliminated. The computational
complexity of global optimization algorithms usually grows
exponentially with the number of variables making the resulting
optimization problem significantly more complex than problems
involving just the transmit powers.

However, it is not hard to notice that for fixed transmit
powers the weighted sum rate maximization becomes a linear
optimization problem while all the non-convexity is just due to
the powers. Following the general rule in global optimization to
exploit as much structure of the problem as possible, we show
how to decompose the original problem into an easy to solve
inner problem and a non-convex outer problem. Along the



way, we transform the constraints such that they are increasing
functions in the transmit powers making the outer problem a
monotonic optimization problem [10].

In the next section, we develop the system model and
derive the achievable rate region for AF relaying and SND
at the receivers. In Section III, we state the weighted sum
rate optimization problem and transform it as outlined above.
Afterwards, in Section IV, we provide numeric evidence that
the global optimal solution enables higher throughput and better
fairness than state-of-the-art single-user decoding and is more
energy-efficient than heuristic power allocation.

II. SYSTEM MODEL

We consider a 3-user single-input single-output (SISO)
MWRC where the users communicate in multiple unicast
transmissions via an AF relay. Gaussian channels with quasi-
static block flat fading, full-duplex transmission, SND at the
receivers and no direct user-to-user links are assumed. Users
are denoted as node 1 to 3 and the relay as node 0. We define
the set of all users as K = {1, 2, 3}.

The relay receives the signal

Y0 =
∑
k∈K

hkXk + Z0,

with Xk the channel input at node k ∈ K with power Pk,
hk the channel coefficient from user k to the relay, and Z0

the independent and identically distributed (i.i.d.) zero-mean
circularly symmetric complex Gaussian noise with power N0

observed at the relay. The relay adjusts the power of the
received symbol and broadcasts it back to the users, i.e., X0 =

αY0 where α =

√
P0 /

(∑
k∈K |hk|

2
Pk +N0

)
is chosen such

that the relay’s transmit power is P0.
User k ∈ K receives the signal

Yk = gkX0 + Zk,

with gk the channel coefficient from the relay to user k, and
Zk the i.i.d. zero mean circularly symmetric complex Gaussian
noise with power N . The channel inputs are subject to an
average power constraint P̄k on Xk, k ∈ K∪{0}. The receiver
first removes its self-interference from the received signal and
then decodes simultaneously for its desired and non-uniquely
for the interfering message. Since the achievable rates do not
depend on the absolute values of Pk and N0 but on their ratio,
we state all results in terms of the signal-to-noise ratio (SNR).
We define the transmit SNR Sk = Pk

N0
, the maximum transmit

SNR S̄k = P̄k

N0
, and the corresponding vectors S = (S1, S2, S3)

and S̄ = (S̄1, S̄2, S̄3).
The message exchange is illustrated in Fig. 1 where the

different line styles indicate different messages. We denote the
receiver of node k’s message as q(k), k ∈ K, and the user not
interested in it as l(k). Conversely, user k desires the message
sent by user l(k). From Fig. 1, we have q(1) = l(3) = 2,
q(2) = l(1) = 3, and q(3) = l(2) = 1.
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Fig. 1. Illustration of the system model where node 0 is the relay and nodes
1 to 3 are the users. Messages travel along the different line styles.

Lemma 1: A rate triple (R1, R2, R3) is achievable for the
Gaussian MWRC with AF relaying and SND if, for all k ∈ K,

Rk < log

(
1 +
|hk|2 Sk
γl(k)(S)

)

Rk +Rl(k) < log

(
1 +
|hk|2 Sk +

∣∣hl(k)

∣∣2 Sl(k)

γl(k)(S)

)
where Sk ≤ S̄k and

γl(k)(S) = 1︸︷︷︸
sink
noise

+ g̃−1
q(k)

(
1 +

∑
i∈K
|hi|2 Si

)
︸ ︷︷ ︸

relay noise amplification

,

with g̃k = |gk|2 P̄0

Nk
.

Proof sketch: Adapt [3, Corollary 2] to Gaussian channels
using the standard procedure in [2, Chap. 3]. Apply it to
the considered channel with E[X2

0 ] = P0 to obtain the rate
expressions above with g̃k = |gk|2 P0

Nk
. The achievable rates

are increasing in P0 since the partial derivatives with respect to
P0 of the rate expression’s right-hand sides (RHSs) are always
non-negative. Thus, P0 = P̄0 is optimal.

III. WEIGHTED SUM RATE OPTIMAL POWER ALLOCATION

The optimal power allocation that maximizes the weighted
system throughput is the solution to the optimization problem

max
R,S

∑
k∈K

wkRk

s. t.
∑
k∈S

Rk < hS(S), for all S ∈ S

R ≥
¯
R, S ∈ [0, S̄]

(P1)

with positive weights wk, k ∈ K, minimum rate and maximum
power constraints

¯
R ≥ 0 and S̄ > 0, respectively, the family

of sets S =
⋃
k∈K{{k}, {k, l(k)}}, and

hS(S) = log

(
1 +

∑
k∈S |hk|

2
Sk

γS(S)

)
where γS := γl(κ) for κ such that q(κ) ∈ K \ S if |S| = 2
and κ ∈ S otherwise. This is a global optimization problem
because hS(S) is a non-concave function. Thus, standard tools
from convex optimization are not applicable. Fortunately, (P1)
has some structure that we can exploit to avoid examining
every point in the feasible set.



First, observe that hS(S) is a difference of increasing
functions in S, i.e.,

hS(S) = fS(S)− gS(S)

= log

(
γS(S) +

∑
k∈S

|hk|2 Sk

)
− log (γS(S)) ,

where the monotonicity of fS(S), gS(S), and γS(S) is
easily established by checking the non-negativity of their first
derivatives. Since

∑
i wiRi is also an increasing function (P1)

belongs to the class of monotonic optimization problems [10].
Monotonic optimization theory provides a framework to

solve the general optimization problem maxx∈G∩H f(x) where
f(x) is an increasing functions, G is a normal set, and H is
a conormal set. Without going into detail, a set is normal if
G = {x ∈ Rn+ : g(x) ≤ α} for some increasing function g(x)
and any α ∈ R, and conormal if H = {x ∈ Rn+ : h(x) ≥ α}
for some increasing function h(x). For optimization problems
of this type it is known that the optimal solution is a Pareto point
of G. Thus, we can restrict the search for the global optimizer to
the upper boundary ∂+G of G. Several algorithms that exploit
this property exist, whereas the polyblock algorithm is the
most widely known [10], [11]. However, the computational
complexity of these algorithms grows exponentially with the
number of variables.

Note that problem (P1) is a linear optimization problem
in R for fixed S. We can exploit this structural property
by transforming (P1) into an outer monotonic optimization
problem 

max
t,S

ρ(t,S)

s. t. t+ gΣ(S) ≤ gΣ(S̄)

0 ≤ t ≤ gΣ(S̄)− gΣ(0)

S ∈ [0, S̄]

(P2)

where gΣ(S) =
∑
S∈S gS(S) and ρ(t,S) is either the solution

to the linear program

max
R

∑
i

wiRi

s. t.
∑
k∈S

Rk < fS(S) +
∑
T ∈S\S

gT (S) + t

− gΣ(S̄), for all S ∈ S

R ≥
¯
R

(P3)

or −∞ if (P3) is infeasible. This reduces the number of
variables in the outer monotonic optimization problem almost
by a factor of two. Since the computational complexity of
monotonic optimization is exponential in the number of
variables, while the solution of a linear program only requires
polynomial time, this transformation reduces the numerical
complexity of solving (P1) significantly. We show that (P2)
is a monotonic optimization problem in the next theorem.
Afterwards, we establish that every optimal solution of (P2)
also solves (P1).

Theorem 1: (P2) is a monotonic optimization problem and
has at least one optimal solution.

Proof: Let C(S, t) be the constraint set of (P3) for
fixed (S, t). Since the RHS of the first constraint in (P3)
is an increasing function, C(S, t) ⊆ C(S′, t′) whenever
0 ≤ (S, t) ≤ (S′, t′). This implies max{

∑
i wiRi : R ∈

C(S, t)} ≤ max{
∑
i wiRi : R ∈ C(S′, t′)} since wi > 0.

Thus, ρ(S, t) is an increasing function. Since gΣ(S) is
increasing and continuous on S ≥ 0, and gΣ(S̄) is constant,
the constraint set of (P2) is closed and normal [10, Prop. 5].
This proves that (P2) is a monotonic optimization problem.

Moreover, the feasible set of (P2) is non-empty, gΣ(S) is
a continuous function for S ≥ 0 and ρ(t,S) is upper semi-
continuous on the relevant interval. Thus, (P2) has at least one
optimal solution [11, Prop. 11.11].

Theorem 2: Let (R∗,S∗, t∗) be a solution of (P2). Then,
(R∗,S∗) solves (P1).

Proof: First, consider the optimization problem

max
t,R,S

∑
i

wiRi

s. t.
∑
k∈S

Rk < fS(S) +
∑
T ∈S\S

gT (S) + t

− gΣ(S̄), for all S ∈ S

t+ gΣ(S) ≤ gΣ(S̄)

0 ≤ t ≤ gΣ(S̄)− gΣ(0)

R ≥
¯
R, S ∈ [0, S̄].

(P4a)

(P4b)

(P4c)
(P4d)
(P4e)

We know from Theorem 1 that (P2) has a solution. Hence,
ρ(t∗,S∗) takes the value

∑
i wiR

∗
i for every optimal solution

(R∗,S∗, t∗) satisfying the constraints in (P3). Hence, (P2)
yields the maximum of

∑
i wiR

∗
i under the constraints in (P3)

and (P2). These are exactly the objective and constraints of
(P4). Thus, (R∗,S∗, t∗) solves (P4).

Next, observe that any optimal solution of (P4) satisfies
(P4c) with equality because the RHS of (P4b) is increasing
in t, and (P4d) is always inactive since gΣ is an increasing
function and S ≥ 0. Then, for (P4b), we have∑

k∈S

R∗k < fS(S∗) +
∑
T ∈S\S

gT (S∗) + t∗ − gΣ(S̄∗)

= fS(S∗) +
∑
T ∈S\S

gT (S∗) + gΣ(S̄∗)

− gΣ(S∗)− gΣ(S̄∗)

= fS(S∗)− gS(S∗).

Thus, constraints (P4b)–(P4d) are equal to the first constraint
of (P1) for any optimal solution of (P4). Because (P1) and
(P4) also have the same objective and all other constraints are
the same, any solution to (P4) is also an solution of (P1).

IV. NUMERICAL EVALUATION

For the numerical evaluation, we assume equal maximum
power constraints and noise power at the users and the relay,
and no minimum rate constraint, i.e.

¯
R = 0. Channels are

assumed reciprocal and chosen i.i.d. with circular symmetric
complex Gaussian distribution, i.e., hk ∼ CN (0, 1) and gk =
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Fig. 2. Throughput in the 3-Way Relay Channel with amplify-and-forward
relaying and 1) SND with optimal power allocation; 2) SND with maximum
transmit power at all nodes; 3) IAN with optimal power allocation averaged
over 1,000 i.i.d. channel realizations.

h∗k. Results are averaged over 1,000 channel realizations. The
outer problem (P2) is solved with the polyblock algorithm.

Figure 2 shows the maximum achievable sum rate in the
MWRC with AF relaying and SND at the receivers, i.e., with
all weights wk = 1. Results are compared to simply using
maximum transmit power at all nodes and to the achievable
sum rate using single-user (IAN) receivers instead of the
significantly more involved multi-user receivers. These were
obtained by applying the algorithms from [5]. It can be
observed that SND outperforms IAN in the interference-limited
regime while IAN performs better when the SNR is low.
Moreover, using maximum transmit power at all nodes is almost
throughput optimal. This is quite surprising when looking at
the optimal power allocation in Fig. 3.

Figure 3 shows the optimal power allocation for SND
normalized to the maximum transmit power. For each drop,
the users are re-ordered such that |h̃1∗ |2 ≥ |h̃2∗ |2 ≥ |h̃3∗ |2
where h̃k = αhkgq(k) is the effective channel of user k. It
can be seen that the optimal transmit power for low and very
high SNRs converges to using maximum transmit power. In
between, all user transmit at reduced power where the user with
the best channel uses the least power. This is in stark contrast
to the optimal power allocation for IAN or water-filling based
solutions where the worst user does not transmit at all for
medium to high SNRs. Thus, SND has much better fairness
than IAN while also achieving higher throughput. Figure 3
also reveals the advantage of the optimal power allocation over
transmitting at maximum power. While there is no significant
difference in the throughput, the optimal power allocation uses
considerably less power and is, thus, more energy-efficient.

A. Implementation issues

The inner linear program (P3) is typically executed several
times in each iteration of the outer algorithm. Hence, its
implementation is performance critical. A simple benchmark

0 5 10 15 20 25 30

0.6

0.7

0.8

0.9

1

SNR [dB]

O
pt

im
al

T
x

Po
w

er
(N

or
m

al
iz

ed
)

P1∗

P2∗

P3∗

Fig. 3. Optimal power allocation per user for SND normalized to the maximum
transmit power and ordered such that |h̃1∗ |2 ≥ |h̃2∗ |2 ≥ |h̃3∗ |2.

comparing Matlab’s linprog with the state-of-the-art Gurobi
library [12] accessed through its Matlab interface already
shows a 6x speed-up as can be seen from Table I. Further
improvements are possible by noting that only the RHSs of
the constraints in (P3) change between calls. Thus, we can
setup the optimization model in Gurobi once and then just
update it. With this approach, a total speed-up of factor 20 over
linprog is possible achieving reasonable runtimes (“mex”
entry in Table I). Please note that the runtimes reported in
Table I are just for one operating point and do not reflect the
average runtime to obtain Figs. 2 and 3.

TABLE I
RUNTIME OF THE POLYBLOCK ALGORITHM FOR DIFFERENT

IMPLEMENTATIONS OF (P3).

Method Runtime

linprog 6,004 s
gurobi 1,075 s

mex 300 s

V. CONCLUSION

We have determined the global weighted sum rate optimal
power allocation for non-regenerative 3-user MWRCs. We
proposed a transformation of the optimization problem that
exploits the linearity in the rate variables and reduces the
computational complexity significantly. Note that, although we
consider a specialized problem, this approach can be applied
easily to many similar resource allocation problems.

We compared the achievable throughput numerically to the
state-of-the-art and a heuristic power allocation. It turns out
that SND has much better fairness than IAN and that maximum
transmit power at all nodes achieves almost the same throughput
as the optimal resource allocation but is also less energy-
efficient. Thus, the optimal power allocation not only maximizes
the throughput but also helps to increase the energy efficiency,
which are two key metrics in 5G networks.
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