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Abstract—Throughput in 3-way relay channels is studied in
this paper. We focus on Gaussian channels, amplify-and-forward
relaying, and treating interference as noise at the receivers.
Unlike other contributions, we consider multiple unicast trans-
missions. First, we provide the achievable rate region. Then, we
design two algorithms for joint power allocation at all terminals
so as to maximize the system throughput. One algorithm has
guaranteed convergence to the global optimal solution, while
the other exhibits very low complexity. Numerical simulations
evaluate the performance of both algorithms by means of a
mmWave wireless board-to-board communication system. The
results show that both algorithms converge to the same solution
but with very different convergence speed. On average, obtaining
the global optimal solution requires approximately 1,500x the
iterations of the low complexity solution. Thus, we can either
obtain a certificate of global optimality at the price of slow
convergence or attain a stationary point that is most likely
globally optimal within a few iterations.

Index Terms—Multi-hop networks, multi-way relay chan-
nel, relay systems, resource allocation, monotonic optimization,
mmWave communications, power control, global optimization,
amplify-and-forward

I. INTRODUCTION

Next generation High Performance Computing (HPC) sys-
tems are envisioned to move away from wired backplane com-
munication and instead use wireless interfaces to communicate
across boards [1], [2]. A promising candidate technology to ob-
tain the required high data rates is millimeter wave (mmWave)
communication [3]. It achieves much higher bandwidths than
state-of-the-art wireless technologies and allows to place a
high number of antennas on each computing node. This results
in very narrow beams letting inter-node interference almost
vanish. However, due to the high attenuation of mmWaves,
communication is only feasible between adjacent boards. To
overcome this obstacle nodes on intermediate boards can be
used as relays. This is possible without additional hardware
costs when layer 1 relaying is employed.

The multi-way relay channel (MWRC) models relay-aided
communication across several nodes with no direct links
between the users. One application of this model is the wireless
board-to-board communication scenario outlined above, where
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multiple nodes exchange data across boards with the help of
another node acting as relay. Communication over the relay also
helps to relieve the on-board network, especially when routing
over multiple hops is the alternative. Other applications are, for
example, wireless sensor networks, Industry 4.0, heterogeneous
dense small cell networks in modern and future 5G wireless
networks, or communication of several ground stations over a
satellite. It was first introduced in [4] as a model for clustered
communication where multiple terminals use a single relay
to multicast information to all other terminals in their cluster.
Since the usual approach to share the relay across clusters is
time sharing, most subsequent works only considered a single
cluster. An extensive overview of results for the MWRC can
be found in [5].

We focus on the Gaussian MWRC with 3 users, amplify-
and-forward (AF) relaying, circular message exchanges, and
treating interference as noise at the receivers. Achievable rate
regions for this channel are derived in [6]. The energy efficiency
(EE) of this channel with symmetric channels is analyzed in [7]
for different relaying schemes. One important result in [7] is
that, when taking hardware complexity into account, the EE of
AF is quite good even though the throughput of other relaying
schemes might be higher. As opposed to many other works on
the MWRC, we are considering a circular message exchange
where each node only wants to recover one message, and,
thus, has to deal with interference. Some of this interference
is self-induced and can be removed. While there are several
ways to deal with the remaining interference at the receivers,
in this paper we are limiting ourselves to treat the interference
as additional noise so that conventional single user receivers
can be employed.

In this paper, we determine the throughput optimal power
allocation of the MWRC at hand. The resulting optimization
problem is non-convex and, thus, can not be solved by standard
convex optimization tools. While EE is considered to be the
most important design criterion in future wireless networks,
the throughput optimization problem considered here poses
sufficient difficulties to be dealt with before tackling the EE
problem. We present two algorithms to solve this optimization
problem: 1) we leverage monotonic optimization theory to find
the global optimal power allocation with exponential complex-
ity; 2) we adapt a recently proposed unified successive pseudo-
convex approximation framework [8] to find a stationary point



of the problem exhibiting very fast convergence. Afterwards,
we provide numeric evidence that both algorithm converge to
the same solution.

Notation: (ak)k denotes the row vector (a1, a2, . . . ).
e1, e2, . . . are the Euclidean unit vectors. For two vectors
x,y, we say that x ≥ y if xi ≥ yi, for all i, and x ≤ y if
xi ≤ yi. Rn+ denotes the set of n-dimensional positive real
numbers.

II. SYSTEM MODEL

We consider a 3-user single-input single-output (SISO)
MWRC in which three users communicate with each other
via an AF relay. Gaussian channels with quasi-static block flat
fading and a circular (i.e. partial) message exchange, to be
described in detail later, are considered. We assume full-duplex
transmission and consider a scenario in which no direct user-
to-user link is available. The users are denoted as node 1 to
3 and the relay as node 0. We define the set of all users as
K = {1, 2, 3}.

The signal received by the relay is given by

Y0 =
∑
k∈K

hkXk + Z0,

with Xk the channel input at node k ∈ KR with power pk,
hk the channel coefficient from user k to the relay, and Z0

the independent and identically distributed (i.i.d.) zero-mean
circularly symmetric complex Gaussian noise with power N0.
The relay scales the observed signal Y0 by a positive constant
and broadcasts it back to the users. The transmitted symbol
at the relay is X0 = αY0, where α is a normalization factor
chosen such that the transmit power at the relay is p0, i.e.,

α =

√
p0 /

(∑
k∈K |hk|

2
pk +N0

)
.

Then, the signal received at user k ∈ K is given by

Yk = gkX0 + Zk,

with gk the channel coefficient from the relay to user k, and
Zk the i.i.d. zero mean circularly symmetric complex Gaussian
noise with power N . The channel inputs are subject to an
average power constraint P on each Xk, k ∈ K and P0 on
X0. The receiver first removes its self-interference from the
received signal and then decodes for its desired message while
treating the remaining interference as noise.

The message exchange is illustrated in Fig. 1 where the
different line styles indicate different messages. We denote the
receiver of node k’s message as q(k), k ∈ K, and the user not
interested in it as l(k). Conversely, user k desires the message
sent by user l(k). From Fig. 1, we have q(1) = l(3) = 2,
q(2) = l(1) = 3, and q(3) = l(2) = 1.

Lemma 1: A rate triple (R1, R2, R3) is achievable for the
Gaussian MWRC with AF relaying and treating interference
as noise at the decoders if, for all k ∈ K,

Rk(s) < log

(
1 +
|hk|2 sk
γl(k)(s)

)
, (1)

3 2
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0

Fig. 1. Illustration of the system model where node 0 is the relay and nodes
1 to 3 are the users. Messages travel along the different line styles.

where sk = pk
N0
≤ P

N0
= Sk, s = (s1, s2, s3), and

γl(k)(s) = 1︸︷︷︸
sink
noise

+
∣∣hl(k)

∣∣2 sl(k)︸ ︷︷ ︸
multiple access

interference

+ g̃−1
q(k)

(
1 +

∑
i∈K
|hi|2 si

)
︸ ︷︷ ︸

relay noise amplification

,

with g̃k = |gk|2 P0

Nk
.

Proof sketch: Adapt [6, Corollary 1] to Gaussian channels
using the standard procedure [9, Chapter 3]. Apply this to the
channel defined above with E[X2

k ] = pk, k ∈ K∪{0} to obtain
(1) with g̃k = |gk|2 p0

Nk
. It is easily shown that the partial

derivative of (1) with respect to p0 is always non-negative.
Thus, (1) is a monotonically increasing function of p0 and
p0 = P0 is optimal.

III. SUM RATE OPTIMAL POWER ALLOCATION

Our goal is to determine the optimal power allocation that
maximizes the system throughput, i.e., find the solution to the
optimization problemmax

s
RΣ(s) =

∑
k∈K

log

(
1 +
|hk|2 sk
γl(k)(s)

)
s. t. s ∈ [0;S],

(P1)

where S = (S1, S2, S3) and [0;S] =
Ś

k[0;Sk]. Each rate Rk
is monotonically increasing in sk and decreasing in si, i 6= k.
Thus, transmitting at maximum power at all nodes might be
suboptimal. Moreover, each Rk is a concave function in sk
and convex in si, i 6= k. Hence, RΣ is a non-concave function
and (P1) can not be solved by standard convex optimization
tools.

In general, no optimization tool to solve non-concave
maximization problems with limited computational complexity
is available. Thus, it appears difficult to solve (P1) with limited
complexity. In the following, we present two approaches to
solve (P1). The first is based on a novel successive pseudo-
convex approximation framework [8]. It provides an efficient
method to find a stationary point of (P1) with low computational
complexity. Instead, the second approach utilizes monotonic
optimization theory [10] to find a global optimal solution at the
expense of exponential complexity. Interestingly, the numerical
results presented in Section IV indicate that both algorithms
converge to the same solution.



A. Successive convex approximation

The authors of [8] propose an iterative algorithm that
solves the optimization problem min

s∈S
f(s) as a sequence of

successively refined approximate problems where, in each
iteration t, a function f̃(s; st) that approximates f(s) is
minimized.

First, note that maximizing RΣ(s) is equivalent to minimiz-
ing −RΣ(s). Further, observe that that the objective

RΣ(s) =
∑
k∈K

log
(
|hk|2 sk + γl(k)(s)

)
−
∑
k∈K

log
(
γl(k)(s)

)
= g(s)− h(s). (2)

is a DC function [11] since g(s) and h(s) are concave functions
of s.1 A reasonable choice to approximate DC functions in
general is

f̃(s; st) = −g(s) + h(st) +∇h(st)T
(
s− st

)
. (3)

With that approximation function, we obtain Algorithm 1.

Algorithm 1 Successive convex approximation algorithm
Initialize t = 0, s0 ∈ [0;S].
repeat

st+1 ← argmin
s∈[0;S]

−g(s) + h(st) +∇h(st)T
(
s− st

)
t← t+ 1

until convergence.

Since f̃(s; st) is a convex function the minimization problem
in each iteration of Algorithm 1 can be solved by standard con-
vex optimization techniques. Computation of f̃(s; st) requires
the gradient of h(s) which is ∇h(s) =

(
1TJh(s)

)T
where

Jh(s) is the Jacobian of h(s). A straightforward computation
yields

Jh(s) = diag (Γ(s))
−1

JΓ(s)(s)

and

JΓ(s)(s) = (g̃−1
q(k))

T
k (|hk|2)k + Π diag((|hk|2)k).

where Γ(s) = (γl(k)(s))k∈K and Π = [ eq(1) eq(2) eq(3) ].
Corollary 1: Any limit point of {st} obtained by Algorithm 1

is a stationary point of (P1).
Proof: RΣ(s) is a proper and continuously differentiable

function in [0;S], and [0;S] is a closed convex set. Thus, (P1)
falls within the class of optimization problems considered in
[8] and we can adapt [8, Algorithm 1] to solve (P1).

The approximate function f̃(s; st) needs to fulfill the
following technical conditions for guaranteed convergence to
a stationary point:

1) f̃(x;y) is pseudo-convex in x for any y ∈ X .
2) f̃(x;y) is continuously differentiable in x for any y ∈ X

and continuous in y for any x ∈ X .
3) ∇xf̃(y; y) = ∇xf(y).

1This property gives rise to another global optimal solution method, namely,
DC programming [11]. However, since DC programming has the same
computational complexity as monotonic optimization, we do not pursue this
approach any further here.

4) The solution set of min
x∈X

f̃(x;xt) is nonempty in every
iteration t.

5) Given any convergent subsequence {xt}t∈T where T ⊆
{1, 2, . . .}, the sequence {arg minx∈X f̃(x;xt)}t∈T is
bounded.

Since any convex function is also pseudo-convex, 1) is satisfied.
It is obvious that condition 2) holds. With the remark below
and ∇s(−RΣ)(st) = −∇g(st) +∇h(st), condition 3) holds
as well. For conditions 4) and 5) to hold it is sufficient that
[0;S] is bounded [8].

It is shown in [8, Section III-B] that f̃(s; st) ≥ f(s) and
f̃(st; st) = f(st) also holds for (3). In that case, the proposed
algorithm can be simplified and we obtain Algorithm 1.

Remark 1: While many convex optimization tools are able
to approximate the objective’s gradient very well, explicit
characterization is favorable for increased performance. The
gradient of f̃(s; st) is ∇f̃(s; st) = −∇g(s) + ∇h(st) with
∇g(s) =

(
1TJg(s)

)T
and

Jg(s) = (diag((|hk|2 sk)k) + diag(Γ(s)))−1

(JΓ(s)(s) + diag((|hk|2)k)).

B. Monotonic optimization

Solving general (non-convex) global optimization problems
can involve examining every point of the feasible set. Mono-
tonic optimization theory provides means to solve a broad
class of such optimization problems in a much more efficient
way but still with exponential complexity [10], [12]. More
precisely, it allows to solve the general problem max

x∈G∩H
f(x),

where f(x) is an increasing function, G is a normal set, and H
is a conormal set. A function f : Rn 7→ R is called increasing
on Rn+ if f(x) ≤ f(x′) whenever 0 ≤ x ≤ x′. A set G ⊆ Rn+
is called normal (conormal) if for any two vectors x,y ∈ Rn+
such that y ≤ x (y ≥ x), if x ∈ G, then y ∈ G.

The key ideas behind monotonic optimization are that, due
to f being increasing, the maximizer of f lies on the outer
boundary of the feasible set, and that, since the feasible set is
normal, if a point x is infeasible, then every point x′ ≥ x is
also infeasible. Thus, the feasible set can be approximated by
a sequence of enclosing polyblocks. A set is called polyblock
if it is a finite union of boxes in the nonnegative orthant. Since
the maximizer of f over a polyblock is one of its vertices, the
search space in each iteration is finite.

While the objective of (P1) is not increasing per se, the
problem still has hidden monotonicity. Consider again the
decomposition of RΣ(s) in (2). It is easily verified that g(s)
and h(s) are increasing functions in s. Thus, RΣ(s) belongs
to the class of difference of increasing (d.i.) functions and we
can use the following transformation from [10] to state (P1)
as a monotonic optimization problem.

Due to h(s) being increasing, for every s ∈ [0;S] and some
auxiliary variable t ≥ 0, we have h(s) + t = h(S). Replacing



TABLE I
LINK BUDGET FOR BOARD-TO-BOARD COMMUNICATIONS USING 16× 16

ANTENNA ARRAYS [13]

Unit Value

Receiver noise figure dB 15
Path loss exponent – 2
Array gain dB 24
Butler matrix inaccuracy dB 20
Implementation loss dB 5
Receiver temperature K 323

h(s) in the objective yields
max
s,t

g(s) + t− h(S)

s. t. t+ h(s) = h(S)

s ∈ [0;S].

(P2)

Clearly, the objective is an increasing function now. Removing
the inessential constant from the objective and relaxing the
new constraint results in the equivalent monotonic optimization
problem 

max
s,t

g(s) + t

s. t. 0 ≤ t+ h(s) ≤ h(S)

s ∈ [0;S].

(P3)

After a shift of origin this can be solved in exponential time
using the polyblock algorithm [12, Algorithm 3].

IV. NUMERICAL EVALUATION

We focus on wireless communication between computer
boards for the numerical evaluation of the presented algorithms.
This is a major issue addressed in the Collaborative Re-
search Center 912 Highly Adaptive Energy-Efficient Computing
(HAEC) initiated at TU Dresden in 2011 and funded by
Deutsche Forschungsgemeinschaft (DFG) [1], [2]. Part of the
HAEC-vision is a 1 liter HPC box housing 4 boards with 16 3D
chip stacks each. Instead of wire based interconnects between
boards, each chip stack is equipped with a wireless interface
operating at 200 GHz carrier frequency with a bandwidth of
30 GHz. Recent hardware advancements towards this goal are
reported in [13]. Therein, the link budget in Table I is given.
The authors assume a 16× 16 antenna array fed by a Butler
matrix switching network on each node.

The system model considered in this paper and depicted in
Fig. 1 is one possible communication scenario in this HAEC
Box. Since node positions and beam directions are fixed, the
antenna array and beamforming network can be regarded as
a single antenna and due to the small beamwidth of massive
MIMO mmWave communications, crosstalk between nodes
can be neglected. Hence, the model assumptions are valid for
the HAEC scenario.

Including the receiver noise figure in the channel gain, we
obtain Gc(d) = 2Garray−LImpl. loss−LButler−LRx NF−PLd[dB],
where PLd[dB] is the free space path loss for the distance
d in dB, i.e., PLd[dB] = 10n log10

(
4πdfc
c

)
, with n the path
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Fig. 2. Throughput in the 3-Way Relay Channel with amplify-and-forward
relaying and multiple unicast transmissions for wireless board-to-board
communication at 200 GHz averaged over 1,000 i.i.d. channel realizations.
The optimal power allocation was computed with the polyblock algorithm
(“monotonic”) and is compared to the local optimal solution of Algorithm 1,
and two heuristic power allocations where all users transmit at maximum power
and where the user with the worst channel does not transmit, respectively.

loss exponent, fc the carrier frequency, and c the speed of light
in vacuum. For this setup, up- and downlink channel gains
are equal, thus |hk|2 = |gk|2 = Gc(dk). The distances dk,
k ∈ K, are chosen randomly and independently with uniform
distribution between dmin and dmax. Simple geometrical
computations yield minimum and maximum link lengths of
dmin = 2.5 cm and dmax = 11 cm, respectively. Moreover, all
nodes have the same thermal noise and maximum transmit
power constraint. The message exchange is as indicated by the
different line styles in Fig. 1, i.e., node 1 transmits to node 2,
2 to 3, and 3 to 1.

Figure 2 shows the maximum average achievable sum
rate for this scenario as a function of the transmit power
obtained by monotonic optimization and the successive convex
approximation in Algorithm 1 compared to two heuristic power
allocations where all users transmit at the maximum allowed
transmit power and where the user with the worst channel
does not transmit at all, respectively. It can be seen that the
optimal power allocation achieves higher throughput than both
heuristic power allocations. Monotonic optimization yields a
global optimal solution that is within an absolute tolerance of
3 Gbit/s of the optimal value, while Algorithm 1 converges
only to a stationary point. However, the results in Fig. 2 show
that apparently both algorithms converge to the same value for
powers up to 0 dBm. After that, Algorithm 1 achieves better
results than monotonic optimization because the polyblock
algorithm was terminated after 50,000 iterations. At 0 dBm,
about 10 % of the monotonic optimization runs were aborted
due to that reason, and at 5 dBm and 10 dBm, 73 % and 100 %,
respectively. Thus, in these cases the monotonic optimization
algorithm does not yield the global optimal solution and
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(a) All 12,544 iterations until regular termination of the polyblock algorithm
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(b) Only the first 50 iterations are shown. Algorithm 1 terminates after 16
iterations while the first change in the polyblock algorithm happens at iteration
393 (not shown).

Fig. 3. Convergence of the polyblock algorithm (“monotonic”) versus Algorithm 1 for |h1|2 = −46.55 dB, |h2|2 = −39.46 dB, |h3|2 = −40.33 dB and
P = −10 dBm.

Algorithm 1 obtains a better solution.2

Figure 3 shows the convergence of both algorithms for a fixed
channel and transmit power. Figure 3a displays all iterations
until convergence of monotonic optimization and Fig. 3b
focuses on the convergence of Algorithm 1. It can be observed
that monotonic optimization has very slow convergence, while
Algorithm 1 converges after 16 iterations. Moreover, for
monotonic optimization, with each iteration the size of the set
of polyblock vertices increases leading to longer iteration times.
Also, the number of iterations until convergence increases with
P . Instead, the iterations needed for Algorithm 1 to terminate
do not depend on P . While computation times for monotonic
optimization were often of the order of seconds and minutes,
for some parameter configurations (usually high transmit SNR)
computation times can easily become hours or even days.

We can conclude that if performance is more important than a
certificate of global optimality Algorithm 1 is a valid alternative
to monotonic optimization with virtually no performance
loss. In a static communication scenario like the HAEC Box
precomputation of the optimal power allocation might be the
way to go, making monotonic optimization a favorable choice.
However, in (fast) changing environments, Algorithm 1 is most
likely the better choice. Moreover, when increasing the number
of users, monotonic optimization is not feasible at all due to
its exponential complexity.

V. CONCLUSION

In this paper, we studied power allocation for the 3-user
MWRC with AF relaying, multiple unicast transmission and
single user receivers. We presented the achievable rate region
for Gaussian channels and discussed throughput optimal power
allocation. We obtained the global optimal solution of this prob-
lem leveraging monotonic optimization theory. To circumvent

2It is beyond question that monotonic optimization also yields the global
optimal solution in these cases if the maximum iteration limit is increased
accordingly.

the high computational complexity of monotonic optimization,
we derived an alternative successive convex approximation
algorithm with very fast convergence to a stationary point.
Numerical evaluations show that both algorithms converge to
the same solution and that the successive convex approximation
is indeed much faster than monotonic optimization.
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