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Abstract—The 3-user discrete memoryless multi-way relay
channel with circular message exchange and instantaneous relay-
ing is investigated. We first show that this channel is effectively a
3-user interference channel with receiver message side informa-
tion for every fixed (and instantaneous) relay mapping. Then, we
extend the Han-Kobayashi coding scheme to this channel. Finally,
we apply these results to Gaussian channels with amplify-and-
forward relaying and present numerical results showing the gain
of the proposed scheme compared to the state of the art.

Index Terms—Multi-way networks, multi-way relay channel,
relay systems, Han-Kobayashi coding, instantaneous relaying.

I. INTRODUCTION

We study the 3-user discrete memoryless multi-way re-
lay channel (DM-MWRC) with circular message exchange
and instantaneous relaying. The MWRC models relay-aided
communication across several nodes with no direct links
between the users. Applications of this model are, for example,
communication of several ground stations over a satellite,
wireless board-to-board communication in highly adaptive
computing [1] where multiple chips exchange data with the
help of another chip acting as relay, heterogeneous dense small
cell networks in modern and future 5G wireless networks,
Industry 4.0, or wireless sensor networks.

Instantaneous relaying [2] restricts the relay to operate
deterministically, memoryless and symbol-wise. That is, the
current output signal depends only on the currently observed
input symbol. A famous example for instantaneous relaying
is the linear amplify-and-forward (AF) relaying scheme [3],
[4]. However, it is shown in [2] that AF is not the optimal
instantaneous relaying scheme for the Gaussian relay channel
with orthogonal receive components. Restricting the relay
to operate instantaneously has two main reasons: First, the
processing delay at the relay is significantly less than in other
schemes like decode-and-forward (DF). Second, the relay does
not need power hungry analog-to-digital conversation and
digital signal processing which results in reduced hardware
complexity and better energy efficiency (EE). The downside
is that noise is not cancelled at the relay. However, it is
shown in [5] that in terms of EE AF can outperform DF and
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similar schemes due to reduced circuit power. These advantages
make it a favorable choice for highly adaptive energy efficient
computing or sensor networks.

The Gaussian MWRC is studied in [6] as a model for
clustered communication over a relay, where the terminals
in each cluster exchange information among each other with
the help of a relay. They require each user to decode all
other messages sent by users in the same cluster and present
achievable rate regions for AF, DF, compress-and-forward (CF),
and lattice codes. Most other works on MWRCs consider the
case with only one cluster. An extensive overview of results
for this channel is given in [7].

We focus on the general class of DM-MWRCs with instan-
taneous relaying. Due to the circular message exchange, each
node only wants to recover one message and, hence, has to
deal with interference. Some of this interference is self-induced
and can be removed, but the remaining interference needs to
be addressed. Common approaches are treating interference as
noise (IAN) or performing simultaneous non-unique decoding
(SND). However, with rate splitting and superposition coding
a combination of these two techniques is possible which, in
general, results in higher transmission rates. This coding scheme
was first introduced by Han and Kobayashi [8] for the 2-user
interference channel (IC). We first show that the DM-MWRC
with instantaneous relaying is, for every fixed relaying function,
equivalent to a 3-user IC with receiver message side information
and feedback. Then, we extend the Han-Kobayashi (HK) coding
scheme to this channel and derive an achievable rate region,
which, to the best of our knowledge, is the largest achievable
rate region for this channel known to date. From this result,
we derive achievable rate regions using only SND or IAN as
corollaries. Finally, we extend the results to Gaussian channels
with AF and provide numeric evidence that HK coding achieves
higher sum rates than SND and IAN.

Throughout this paper, we use the same notation as in [9].

II. SYSTEM MODEL

We consider the 3-user DM-MWRC with partial message ex-
change illustrated in Fig. 1. The considered message exchange
has two defining properties:

1) Each user has a message to transmit which is intended
for at least one other user.
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Fig. 1. Block diagram of the 3-user DM-MWRC with circular message exchange and instantaneous relaying.

2) Each user desires at most one message.

From these two properties it follows immediately that each
message is only required at one other user. We denote the
message of user k, k ∈ K = {1, 2, 3}, as Mk and the node
receiving it as q(k). Furthermore, the user not interested in
Mk is denoted by l(k). Also, it follows from the properties
listed above, that user k, k ∈ K, desires the message sent by
user l(k). Further, since Mk and Ml(k) are to be decoded by
users q(k) and k, respectively, Mq(k) is the desired message at
node l(k). This leaves us with two possible message exchanges,
either clockwise or counter-clockwise, depending on whether
q(1) is 2 or 3, respectively. Furthermore, it follows immediately
that q(q(k)) = l(k), l(q(k)) = k, q(l(k)) = k, l(l(k)) = q(k),
q−1(k) = l(k), and l−1(k) = q(k).

Finally, we assume the messages to be independent. They
are communicated in n channel uses with the help of a relay.
Each message Mk, k ∈ K, is encoded into a codeword Xn

k

of length n and transmitted over the channel. Upon receiving
Y nq(k), receiver q(k), k ∈ K , finds an estimate M̂k of message
Mk using its own message Mq(k) as side information. We
assume full-duplex operation at all nodes.

The 3-user DM-MWRC (X0 × X1 × X2 ×
X3, p(y0, y1, y2, y3|x0, x1, x3, x4),Y0×Y1×Y2×Y3) consists
of four finite input sets X0, X1, X2, X3, four finite output sets
Y0, Y1, Y2, Y3, and a collection of conditional probability
mass functions (pmfs) p(y0, y1, y2, y3|x0, x1, x3, x4) on
Y0 × Y1 × Y2 × Y3.

A (2nR1 , 2nR2 , 2nR3 , n) code for the 3-user DM-MWRC
consists of

• three message sets Mk = [1 : 2nRk ], one for each user
k ∈ K,

• three encoders, where encoder k ∈ K assigns a symbol
xki(mk, y

i−1
k ) to each message mk ∈Mk and received

sequence yi−1
k for i ∈ [1 : n],

• a relay encoder that assigns a symbol x0i(y
i−1
0 ) to every

past received sequence yi−1
0 for i ∈ [1 : n], and

• three decoders, where decoder q(k) ∈ K assigns an
estimate m̂k ∈ Mk or an error message e to each pair
(mq(k), y

n
q(k)).

We assume that the message triple (M1,M2,M3)
is uniformly distributed over M1 × M2 × M3. The

average probability of error is defined as P
(n)
e =

Pr
{
M̂k 6= Mk for some k ∈ K

}
. A rate triple (R1, R2, R3)

is said to be achievable if there exists a sequence of
(2nR1 , 2nR2 , 2nR3 , n) codes such that limn→∞ P

(n)
e = 0. The

capacity region of the 3-user DM-MWRC is the closure of the
set of achievable rates.

In our model we assume no direct user-to-user links which
implies that the channel decomposes into an upstream channel
p(y0|x1, x2, x3) from the users to the relay, and a downstream
channel p(y1, y2, y3|x0) from the relay back to the users.
Further, we constrain the relay to operate instantaneously on
the received symbol y0i using a deterministic mapping

f : Y0 7→ X0

x0i = f(y0i), i = 1, . . . , n.

Then, for every fixed f , the channel effectively is a 3-
user discrete memoryless interference channel (DM-IC) with
receiver message side information and causal feedback with
inputs (x1, x2, x3), outputs (y1, y2, y3) and a collection of
conditional pmfs p(y1, y2, y3|x1, x2, x3) given as

p(y1, y2, y3|x1, x2, x3) =∑
y0∈Y0

p(y0|x1, x2, x3) pY1Y2Y3|X0
(y1, y2, y3|f(y0)). (1)

Now, we can carefully adapt results for the classical DM-IC
to our channel with receiver message side information.

III. MAIN RESULTS & PROOFS

In Theorem 1 we present an achievable rate region for the
DM-MWRC with instantaneous relaying using an HK [8]
inspired coding scheme. It uses rate splitting to represent each
message Mk, k ∈ K, by an independent common message
M c
k at rate Rck and a private message Mp

k at rate Rpk. These
messages are sent via superposition coding with cloud center
Uk(M c

k) and satellite codeword Xk(M c
k ,M

p
k ). Receiver q(k),

k ∈ K, recovers all common messages and its desired private
message Mp

k using its own message as side information. This
approach not only incorporates IAN, i.e., Rck = 0 or Uk = ∅,
and SND, i.e., Rck = 0 or Uk = Xk, but also allows for
arbitrary combinations of those strategies. Furthermore, we
present corollaries with achievable rate regions using IAN and



SND. For notational convenience, we define RΣ = R1 +R2 +
R3.

Theorem 1: A rate triple (R1, R2, R3) is achievable for the
DM-MWRC p(y0, y1, y2, y3|x0, x1, x3, x4) if, for all k ∈ K,

Rk < Bk,

Rk +Rq(k) < Ak +Dq(k),

RΣ < Ak + Cq(k) +Dl(k),

Rk +RΣ < Ak + Cq(k) + Cl(k) +Dk,

and, RΣ < C1 + C2 + C3,

where Ak = I
(
Xk;Yq(k)|Uk, Ul(k), Xq(k), Q

)
(2)

Bk = I
(
Xk;Yq(k)|Ul(k), Xq(k), Q

)
(3)

Ck = I
(
Xk, Ul(k);Yq(k)|Uk, Xq(k), Q

)
(4)

Dk = I
(
Xk, Ul(k);Yq(k)|Xq(k), Q

)
(5)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q)p(u3, x3|q), and some
deterministic mapping f(y0) at the relay, where |Uk| ≤ |Xk|+3,
k ∈ K, and |Q| ≤ 9.

Corollary 1 (Treating interference as noise): A rate
triple (R1, R2, R3) is achievable for the DM-MWRC
p(y0, y1, y2, y3|x0, x1, x3, x4) using IAN if, for all k ∈ K,

Rk < I
(
Xk;Yq(k)|Xq(k), Q

)
for some pmf p(q)p(x1|q)p(x2|q)p(x3|q), and some determin-
istic mapping f(y0) at the relay, where |Q| ≤ 3.

Proof: For all k ∈ K, set Uk = ∅ in Theorem 1. The
cardinality bound on Q follows from a standard Carathéodory
type argument [9, Appendix C].

Corollary 2 (Simultaneous non-unique decoding): A
rate triple (R1, R2, R3) is achievable for the DM-MWRC
p(y0, y1, y2, y3|x0, x1, x3, x4) using SND if, for all k ∈ K,

Rk < I
(
Xk;Yq(k)|Xl(k), Xq(k), Q

)
,

Rk +Rl(k) < I
(
Xk, Xl(k);Yq(k)|Xq(k), Q

)
,

for some pmf p(q)p(x1|q)p(x2|q)p(x3|q), and some determin-
istic mapping f(y0) at the relay, where |Q| ≤ 6.

The proof of this corollary is given in Section III-B.
Before we proof Theorem 1, we need the following lemma.
Lemma 1: A rate triple (R1, R2, R3) is achievable for the

DM-MWRC p(y0, y1, y2, y3|x0, x1, x3, x4) if, for all k ∈ K,

Rk < min{Bk, Ak + Cq(k)}
Rk +Rq(k) < Ak + min

{
Dq(k), Cq(k) + Cl(k)

}
,

RΣ < Ak + Cq(k) +Dl(k),

Rk +RΣ < Ak + Cq(k) + Cl(k) +Dk,

and, RΣ < C1 + C2 + C3,
for some pmf p(q)p(u1, x1|q)p(u2, x2|q)p(u3, x3|q), and some
deterministic mapping f(y0) at the relay, where Ak, . . . , Dk

are as defined in Theorem 1.
Proof: Codebook generation: Fix p(q)

∏
k∈K p(uk, xk|q)

and f(y0). Generate a sequence qn according to
∏n
i=1 pQ(qi).

For each k ∈ K, randomly and conditionally indepen-
dently generate 2nR

c
k sequences unk (mc

k), mc
k ∈ [1 : 2nR

c
k ],

each according to
∏n
i=1 pUk|Q(uki|qi). For each mc

k, ran-
domly and conditionally independently generate 2nR

p
k se-

quences xnk (mc
k,m

p
k), mp

k ∈ [1 : 2nR
p
k ], each according to∏n

i=1 pXk|Uk,Q(xki|uki(mc
k), qi).

Encoding: To send mk = (mc
k,m

p
k), encoder k ∈ K

transmits xnk (mc
k,m

p
k).

Decoding: We use SND. Suppose that receiver q(k) observes
ynq(k). Then it finds the unique (m̂c

k, m̂
p
k) such that

(
qn, unk (m̂c

k), unl(k)(m
c
l(k)), x

n
k (m̂c

k, m̂
p
k),

unq(k)(m
c
q(k)), x

n
q(k)(m

c
q(k),m

p
q(k)), y

n
q(k)

)
∈ T (n)

ε

for some mc
l(k) ∈ [1 : 2nR

c
l(k) ] using its own messages

(mc
q(k),m

p
q(k)) as side information. Otherwise it declares an

error.
Analysis of the probability of error: To bound the average

probability of error for decoder q(k), k ∈ K, we assume
without loss of generality that (M c

k ,M
p
k ) = (1, 1) is sent for

all k ∈ K. Then, the decoder makes an error if and only if
one or more of the following events occur:

Eq(k),0 = {(Qn, Unk (1), Unl(k)(1), Xn
k (1, 1), Unq(k)(1),

Xn
q(k)(1, 1), Y nq(k)) /∈ T (n)

ε },
Eq(k),1 = {(Qn, Unk (1), Unl(k)(1), Xn

k (1,mp
k), Unq(k)(1),

Xn
q(k)(1, 1), Y nq(k)) ∈ T (n)

ε for some mp
k 6= 1},

Eq(k),2 = {(Qn, Unk (mc
k), Unl(k)(1), Xn

k (mc
k,m

p
k),

Unq(k)(1), Xn
q(k)(1, 1), Y nq(k)) ∈ T (n)

ε

for some mc
k 6= 1,mp

k},
Eq(k),3 = {(Qn, Unk (1), Unl(k)(m

c
l(k)), X

n
k (1,mp

k),

Unq(k)(1), Xn
q(k)(1, 1), Y nq(k)) ∈ T (n)

ε

for some mc
l(k) 6= 1,mp

k 6= 1},
Eq(k),4 = {(Qn, Unk (mc

k), Unl(k)(m
c
l(k)), X

n
k (mc

k,m
p
k),

Unq(k)(1), Xn
q(k)(1, 1), Y nq(k)) ∈ T (n)

ε

for some mc
k 6= 1,mc

l(k) 6= 1,mp
k}.

Due to the union bound, the average probability of error for de-
coder q(k) is bounded above as Pr(Eq(k)) ≤

∑4
i=0 Pr(Eq(k),i).

By the weak law of large numbers, Pr(Eq(k),0) tends to zero
as n→ 0. By the packing lemma [9] and since

Uk − (Q,Xk)−
(
Y1, Y2, Y3, Uq(k), Xq(k), Ul(k), Xl(k)

)
(6)

form a Markov chain for every k ∈ K, Pr(Eq(k),1), Pr(Eq(k),2),
Pr(Eq(k),3), and Pr(Eq(k),4) tend to zero as n→ 0 if the con-
ditions Rpk < I

(
Xk;Yq(k)|Uk, Ul(k), Uq(k), Xq(k), Q

)
− δ(ε),

Rck + Rpk < I
(
Xk;Yq(k)|Ul(k), Uq(k), Xq(k), Q

)
− δ(ε), Rpk +

Rcl(k) < I
(
Xk, Ul(k);Yq(k)|Uk, Uq(k), Xq(k), Q

)
− δ(ε), and

Rck +Rpk +Rcl(k) < I
(
Uk, Xk, Ul(k);Yq(k)|Uq(k), Xq(k), Q

)
−

δ(ε) are satisfied, respectively, where δ(ε) is a functions that
tends to zero as ε→ 0.

Finally, by substituting Rpk = Rk − Rck and using Fourier-
Motzkin we obtain Lemma 1.



A. Proof of Theorem 1

We show that the rate regions in Theorem 1 and Lemma 1
are equal. For that, we use the same approach as in [10].

Let P be the set of pmfs on Q × U1 × X1 × U2 × X2 ×
U3 × X3 that factor as p(q)p(u1, x1|q)p(u2, x2|q)p(u3, x3|q).
Fix an input pmf P ∈ P and let Ro(P ) be the achievable rate
region from Lemma 1 evaluated for P . For a fixed κ ∈ K, this
rate region is given below in explicit form:

Rκ < Bκ (7)
Rq(κ) < Bq(κ) (8)
Rl(κ) < Bl(κ) (9)
Rκ < Aκ + Cq(κ) (10)

Rq(κ) < Aq(κ) + Cl(κ) (11)
Rl(κ) < Al(κ) + Cκ (12)

Rκ +Rq(κ) < Aκ +Dq(κ) (13)
Rq(κ) +Rl(κ) < Aq(κ) +Dl(κ) (14)
Rl(κ) +Rκ < Al(κ) +Dκ (15)
Rκ +Rq(κ) < Aκ + Cq(κ) + Cl(κ) (16)

Rq(κ) +Rl(κ) < Aq(κ) + Cl(κ) + Cκ (17)
Rl(κ) +Rκ < Al(κ) + Cκ + Cq(κ) (18)

Rκ +Rq(κ) +Rl(κ) < Aκ + Cq(κ) +Dl(κ) (19)
Rq(κ) +Rl(κ) +Rκ < Aq(κ) + Cl(κ) +Dκ (20)
Rl(κ) +Rκ +Rq(κ) < Al(κ) + Cκ +Dq(κ) (21)
Rκ +Rq(κ) +Rl(κ) < Cκ + Cq(κ) + Cl(κ) (22)

2Rκ +Rq(κ) +Rl(κ) < Aκ + Cq(κ) + Cl(κ) +Dκ (23)
2Rq(κ) +Rl(κ) +Rκ < Aq(κ) + Cl(κ) + Cκ +Dq(κ) (24)
2Rl(κ) +Rκ +Rq(κ) < Al(κ) + Cκ + Cq(κ) +Dl(κ). (25)

Then, Ro =
⋃
P∈P R

o(P ) is the rate region in Lemma 1
for a fixed f . Further, define R̃c(P ) as the set of all rate tuples
(R1, R2, R3) satisfying (7) to (9) and (13) to (25), and Rc(P )
as the set of all rate tuples (R1, R2, R3) satisfying (7) to (9),
(13) to (15) and (19) to (25). Let R̃c =

⋃
P∈P R̃c(P ) and

Rc =
⋃
P∈P Rc(P ). Thus, Rc is the rate region in Theorem 1

for a fixed f . Our goal is to show that Rc = Ro.
Obviously, Ro ⊆ R̃c ⊆ Rc since, for every P ∈ P ,

Ro(P ) ⊆ R̃c(P ) ⊆ Rc(P ). Thus, for equality to hold, we
have to show that Rc ⊆ R̃c ⊆ Ro. We first show that
the second inclusion holds and proceed with a distinction
of cases to show that, for every P ∈ P , R̃c(P ) ⊆ Ro.
First, if Rk < Ak + Cq(k) for all k ∈ K, then, obviously,
R̃c(P ) ⊆ Ro(P ). Next, consider the case

Rκ ≥ Aκ + Cq(κ). (26)

We construct a new input pmf Pκ ∈ P from P that results
in a Ro(Pκ) such that R̃c(P ) ⊆ Ro(Pκ). For this inclusion
to hold, we have to show that every inequality in Ro(Pκ) is
implied by R̃c(P ) and (26).

Let Pκ =
∑
uκ∈Uκ P be the marginal pmf of P where

Uκ has been marginalized out and set Uκ = ∅. Then, Ro(Pκ)
consists of all nonnegative rate tuples (R1, R2, R3) such that

Rκ < Bκ (27)
Rq(κ) < B∗q(κ) (28)

Rq(κ) < A∗q(κ) + Cl(κ) (29)

Rl(κ) < Bl(κ) (30)
Rκ +Rl(κ) < Al(κ) +Dκ (31)

Rq(κ) +Rl(κ) < A∗q(κ) +Dl(κ) (32)

Rκ +Rq(κ) +Rl(κ) < Dκ +A∗q(κ) + Cl(κ) (33)

where A∗q(κ) = I
(
Xq(κ);Yl(κ)|Uq(κ), Xl(κ), Q

)
,

B∗q(κ) = I
(
Xq(κ);Yl(κ)|Xl(κ), Q

)
.

Equations (27), (30), and (31) are the same as (7), (9),
and (15), respectively. From (6), (13) and (26), we obtain
Rq(κ) < I

(
Uq(κ);Yl(κ)|Xl(κ), Q

)
≤ B∗q(κ); from (16) and (26),

we obtain Rq(κ) < Cl(κ) ≤ A∗q(κ) +Cl(κ); from (19) and (26),
we obtain Rq(κ) + Rl(κ) < Dl(κ) ≤ Dl(κ) + A∗q(κ); and,
finally, from (23) and (26), we obtain Rκ +Rq(κ) +Rl(κ) <
Cl(κ) +Dκ ≤ Cl(κ) +Dκ +A∗q(κ).

The proof for the cases Rq(κ) < Aq(κ) +Cl(κ) and Rl(κ) <
Al(κ)+Cκ follow exactly along the same lines due to symmetry.
Hence, for every P ∈ P , R̃c(P ) ⊆ Ro(P )∪

(⋃
k∈KRo(Pk)

)
with Pk =

∑
uk∈Uk P . Thus, R̃c = Ro.

Next, we show that Rc ⊆ R̃c using similar steps as before.
First, if Rk +Rq(k) < Ak +Cq(k) +Cl(k) for all k ∈ K, then
Rc(P ) ⊆ R̃c(P ). Further, consider the case

Rκ +Rl(κ) ≥ Al(κ) + Cκ + Cq(κ). (34)

Let Pκ be as before. Then, R̃c(Pκ) consists of all nonnegative
rate tuples (R1, R2, R3) such that

Rκ < Bκ (35)
Rq(κ) < B∗q(κ) (36)

Rl(κ) < Bl(κ) (37)
Rκ +Rl(κ) < Al(κ) +Dκ (38)

Rq(κ) +Rl(κ) < A∗q(κ) +Dl(κ) (39)

Rκ +Rq(κ) < Bκ +A∗q(κ) + Cl(κ) (40)

Rκ +Rq(κ) +Rl(κ) < Dκ +A∗q(κ) + Cl(κ) (41)

Equations (35), (37), and (38) are the same as (7), (9),
and (15), respectively. From (6), (21) and (34), we obtain
Rq(κ) < I

(
Uq(κ);Yl(κ)|Xl(κ), Q

)
≤ B∗q(κ); from (25) and (34),

we obtain Rq(κ) + Rl(κ) < Dl(κ) ≤ A∗q(κ) + Dl(κ); from (6),
(23) and (34), we obtain Rκ + Rq(κ) < Aκ + Dκ − Cκ +
Cl(κ) − Al(κ) ≤ Bκ + A∗q(κ) + Cl(κ); and, finally, from (15),
(22) and (34), we obtain Rκ +Rq(κ) +Rl(κ) < Cl(κ) +Dκ ≤
Dκ +A∗q(κ) + Cl(κ).

The proof for the remaining cases Rq(κ) + Rκ < Aκ +
Cq(κ) + Cl(κ) and Rl(κ) + Rq(κ) < Aq(κ) + Cl(κ) + Cκ is
similar. Hence, Rc(P ) ⊆ R̃c(P ) ∪

(⋃
k∈K R̃c(Pk)

)
. Thus,

Rc = R̃c = Ro.



Finally, the cardinality bounds follow from a standard
Carathéodory type argument [9, Appendix C].

B. Proof of Corollary 2

Set Uk = Xk, k ∈ K, in Lemma 1. This implies Rpk =
0. Observe that Eq(k),1 and Eq(k),3 do not contribute to the
overall error probability of user q(k). This is because they are
associated with the decoding error for the “private” part of
user k’s message. Since, here, all information is carried by Uk,
the rate constraints due to Eq(k),1 and Eq(k),3 are no longer
applicable and can be omitted. Finally, the cardinality bound
on Q follows from a standard Carathéodory type argument [9,
Appendix C].

IV. GAUSSIAN MWRC WITH AF RELAYING

Consider the Gaussian MWRC with AF relaying. It is defined
by Y0 =

∑
k∈KXk+Z0, Z0 ∼ N (0, N0), and Yk = X0 +Zk,

Zk ∼ N (0, Nk), for k ∈ K, with average power constraint Pk
on Xk, k ∈ K∪{0}, and a linear relaying function X0 = αY0,
where α is a normalization factor chosen such that the transmit
power constraint at the relay is met. Theorem 1 can be adapted
to Gaussian channels using the standard procedure [9, Chapter
3]. We evaluate it for Gaussian inputs Uk ∼ N (0, λ̄k) and
Xk = Uk +Vk, with Vk ∼ N (0, λk), where λk is chosen such
that the interference to noise ratio is one (or as close to one
as possible), i.e., λk = min

{
1,

N0+α−2Nl(k)
Pk

}
. This power

allocation was proposed in [11].
Figure 2 shows the achievable sum rate of HK coding

compared to SND and IAN for P0 = P , N0 = N , and
Pk = |hk|2 P and Nk = N

|hk|2
, k ∈ K, with h = [0.1 0.5 0.9].

SND and IAN results were obtained from Corollaries 1 and 2,
respectively.1 First of all, observe that HK and IAN perform
virtually the same up to approximately 15 dB. This can be
explained by the small P to N ratio which results in a power
allocation λk ≈ 1, k ∈ K. Furthermore, HK coding achieves
higher sum rates than SND for all P

N up to approximately
40 dB. However, for some signal-to-noise ratios (SNRs), HK
coding is outperformed by SND, but it still dominates in the
high SNR regime. Also, by choosing λk = 0 for all k ∈ K for
those SNRs where SND dominates, the sum rate achieved by
HK coding is always greater or equal than the rate achieved
by SND.

V. DISCUSSION

In [12], the HK region for the K-user cyclic IC is computed.
In some cases, such as Gaussian channels with linear relaying
functions, each terminal can subtract its self-interference
easily from its received signal. Then, the resulting channel
is equivalent to a cyclic IC and the results from [12] are
applicable. However, the results presented here cover the much
more general case of arbitrary instantaneous relaying functions
and DM channels. For this class of channels, we derived, to the

1Alternatively, SND and IAN results could be obtained by setting λk = 0
and λk = 1, respectively, for all k ∈ K.
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Fig. 2. Achievable sum rates in the Gaussian MWRC with AF relaying and
channels h = [0.1 0.5 0.9]; 1) Han-Kobayashi (HK) coding, 2) simultaneous
non-unique decoding (SND), and 3) treating interference as noise (IAN) plotted
as a function of P

N
.

best of our knowledge, the largest achievable rate region known
to date for restricted encoders. Now, a natural question to ask
would be how much could be gained by using the feedback
information present at the encoders. This topic will be dealt
with in future research.
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