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Abstract— The main focus will be on the indirect Joint Source-
Channel Coding problem in which a noisy observation of the
source has to be quantized ahead of transmission over an
error-prone forward link to a remote processing unit. To that
end, we present here a complete extension to the preliminary
Information Bottleneck method by providing the formal optimal
solution to this newly established Variational Principle, together
with an algorithm, the Forward-Aware Vector Information Bottle-
neck (FAVIB), to pragmatically tackle its underlying non-convex
design optimization. FAVIB extends the current state-of-the-art
approaches via capacitating a full sweep over the entire gamut
of the trade-off parameter. Consequently, the trajectory of all
achievable points in the Information-Compression plane becomes
traversable via soft mappings. It will be shown that, by enjoying
an inherent error protection, this novel compression scheme can
obviate the call for separate channel coding on the forward path.

Index Terms— Channel quantization, error-prone forward
channel, information bottleneck, mutual information.

I. INTRODUCTION

T
HE Information Bottleneck (IB) method was first intro-

duced in [1] as a novel stratagem towards Clustering

[2] which is a pivotal task in the context of Unsupervised

Learning [3]. In a nutshell, its principal idea is to compress a

Random Variable (RV) such that its information content w.r.t.

a statistically correlated (relevant) variable is mostly retained.

This information preservation capability is rather flexible and,

in effect, can be tuned through twiddling a parameter that

establishes a fundamental trade-off between the compactness

and informativity of its resultant outcome. Actually, the IB

method accomplishes this in an entirely symmetric fashion by

exploiting the same concept of Mutual Information (MI) to

quantify both aspects. For acquiring somewhat more concrete

insights into this framework with some of the most recent

studies on the pertinent design techniques, interested readers

are referred to [4]–[16].

Manuscript received January 20, 2020; revised June 4, 2020 and August 10,
2020; accepted August 14, 2020. Date of publication August 25, 2020; date
of current version December 16, 2020. This work was partly funded by the
German ministry of education and research (BMBF) under Grant 16KIS0720
(TACNET 4.0). The associate editor coordinating the review of this article
and approving it for publication was V. Stankovic. (Corresponding author:

Shayan Hassanpour.)
The authors are with the Department of Communications Engineering,

University of Bremen, 28359 Bremen, Germany (e-mail: hassanpour@ant.uni-
bremen.de; tmonsees@ant.uni-bremen.de; wuebben@ant.uni-bremen.de;
dekorsy@ant.uni-bremen.de).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2020.3019447

Specifically, in [16] a comprehensive discussion has been

provided about the learning and information-theoretic aspects

of the IB paradigm together with some interesting connections

with several classical problems in the context of information

theory, e.g., the Wyner-Ziv setup [17] with the logarithmic-

loss distortion [18] under the Common Reconstruction (CR)

constraint [19], the Wyner-Ahlswede-Körner problem [20],

[21], and also the efficiency of investment information [22].

The structure of problems the IB method aims to address

turns it into an appropriate choice for Noisy Source Coding

(NSC) [23]–[29] scenarios. Explicitly, pursuing the IB phi-

losophy to compress a noisy observation signal at the output

of an imperfect access channel to a remote source brings about

a purely statistical design setup. Further, an important special

instance of the IB principle focuses on designing the quantizers

that intend to maximize the overall transmission rate for a

given input statistics that, in general, is an absolutely desirable

criterion for all communication systems. In fact, the IB method

has already found its path into various aspects of modern

data transmission schemes from design of analog-to-digital

converters for receiver front ends [30], to construction of polar

codes [31] and low-complexity discrete (channel) decoding

schemes [32]–[37] with rather promising performance.

In a vast variety of practical situations, the compressed

data at the output of the quantizer block(s) should be trans-

mitted over a / some noisy channel(s) to a distant unit for

further processing. As several examples of such scenarios, one

can think of relaying setups with the Quantize-and-Forward

approach [38], [39], Cloud-based Radio Access Networks

(C-RANs) with non-ideal fronthaul channels [40]–[43], dis-

tributed inference sensor networks with noisy links to the

fusion center [44], [45] and, last but not least, reception

schemes with unreliable memories [46], [47]. The aforemen-

tioned miscellaneous list of applications can be subsumed

under the umbrella of a broader setup, being known as

Joint Source-Channel Coding (JSCC) [48], [49] in which the

impacts of error-prone forwarding of the quantizer output have

to be taken into account and brought into the pertinent design

problem. Otherwise, it might lead to a substantial performance

degradation of the applied compression scheme. In the avail-

able literature on this subject some general approaches can be

recognized: Among others, multiple techniques are presented

to judiciously assign binary codewords to quantizer output

(see, e.g., [50], [51]), or focusing on squared-error distortion,

some modifications to the conventional Lloyd algorithm [52]
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are proposed (see, e.g., [53], [54]). In [55] MI has been chosen

as the fidelity criterion to obtain a compression scheme that

intends to maximize the end-to-end transmission rate. A rather

extensive survey of various relevant methods can be found,

e.g., in [56], [57].

Contributions: Within the scope of this article, the math-

ematical framework of the IB method [1] for NSC is com-

pletely extended to enable its applicability for the JSCC setup.

Specifically, we derive the optimal solution to the IB-based

JSCC problem and utilize that to propose a design algorithm,

along with its proof of convergence. By this, the trajectory of

all achievable points in the Information-Compression plane1

for JSCC becomes traversable via probabilistic mappings.

Furthermore, we directly adapt the conducted derivations to

the Vector Quantization (VQ) setup and introduce a forward-

aware vector quantizer that, by enjoying an inherent error

protection, can obviate the demand for separate employ-

ment of channel coding at the second hop. This approach

becomes interesting and crucial in many practical occasions,

i.a., in applications where tight latency constraints prohibit

the utilization of modern iterative Forward Error Correction

(FEC) schemes on the error-prone forward channel, or in case

of hardware imperfections where the separate implementation

of such error-correction schemes comes with a substantial

overhead in terms of energy efficiency, leading to an evident

waste of resources since they serve solely as a precaution

against worst-case conditions [47]. Moreover, it is noteworthy

that from a pure theoretical perspective, as the optimality of

the Shannon’s source and channel separation [58] does not

hold in general [59] (e.g., when working in a non-asymptotic

regime), devising such joint schemes becomes relevant as well.

Outline: To facilitate a seamless segue, after a succinct

discussion on the IB method for the NSC in Section II,

we introduce our presumed system model and state the

quantizer design problem as a constrained optimization in

Section III-A. Subsequently, in perfect harmony with the

content flow of the seminal work [1], applying Variational

Calculus we derive a complete formal characterization of the

optimal solution to the IB-based JSCC Variational Principle

in Section III-B and propose an algorithm to pragmatically

tackle the pertinent quantization design problem in Section III-

C. Furthermore, we present a concise proof for the con-

vergence of the suggested algorithm to a stationary point

of its objective functional. We also provide the essential

mathematical insights concerning the underlying optimiza-

tion problem and the structure of the presented solution in

Section III-D. As the conducted derivations for the scalar

case can be generalized straightforwardly, in Section IV,

we turn our focus into the VQ [60]. There, we introduce the

Forward-Aware Vector IB (FAVIB) routine which extends the

State-of-the-Art (SotA) algorithm Mutual Information-based

Channel-Optimized Vector Quantizer (MICOVQ) [55] that is

an approach proposed for maximizing the end-to-end transmis-

sion rate. This can be interpreted as an extreme instance of

full informativity from FAVIB’s perspective. Finally, we con-

1It is a plane featuring two sides of the IB trade-off as its ordinate and
abscissa, depicting their fundamental interrelations.

Fig. 1. The considered system model for Noisy Source Coding. The access
channel is presumed to be discrete and memoryless.

sider some typical data transmission setups in Section V to

substantiate the effectiveness of the proposed approach, prior

to a succinct wrap-up in the end. The respective proofs for the

presented theorems are provided in the Appendix.

Notation: The RV, a, with the probability mass function,

p(a), accepts certain realizations, a, from its domain, A.

With boldface counterparts, the same holds for the random

vector, a. Moreover, H( · ), DKL( · k · ) and I( · ; · ) denote the

Shannon’s entropy, the relative entropy (Kullback-Leibler (KL)

divergence) and the MI [61], respectively. Also, D
{ · , · }
JS ( · k · )

stands for the Jensen-Shannon divergence [62].

II. INFORMATION BOTTLENECK METHOD FOR NOISY

SOURCE CODING (NSC)

This section provides a brief overview on the Information

Bottleneck (IB) paradigm and its mathematical methodology.

In an attempt to bypass the complicated problem of feature

selection in pattern recognition to extract a relevant summary

of data, the authors in [1] came up with the intuitive idea

of bringing an additional variable into play to effectively

determine the meaning of relevance. In a variety of practical

applications, e.g., bioinformatics and neural coding, defining

such a relevant (target) variable is a fairly simple task with a

natural answer that is way easier to be addressed compared to

the rather complicated problem of the correct feature selection.

The procedure is then to extract the part of information from

data that is important for prediction of the target variable.

In other words, the information that the data set provides about

the target variable is squeezed through a bottleneck being

formed by a limited number of clusters, hence the name.

Describing it more tangibly, the IB setup [1] considers the

quantization of a given RV, y, into the compression variable, z,

such that it remains highly informative w.r.t. a target variable,

x. As a straightforward translation into the context of Noisy

Source Coding (NSC), the system model illustrated in Fig. 1

is considered. The data source, x, is observed through a dis-

crete, memoryless access channel being described by transition

probabilities, p(y|x). The noisy observation, y, then has to

be compressed into the signal, z, prior to getting forwarded

over an error-free channel to a (remote) processing unit. It

is presumed that the joint distribution p(x, y) is given and,

further, x↔y↔z is a first-order Markov chain. To design the

quantizer, p(z|y), then the IB method establishes a fundamen-

tal trade-off between the compactness and informativity of its

outcome in a symmetric fashion, employing two MI terms to

quantify both aspects. On the one hand, I(y; z) is considered

as the term gauging the compactness of outcome. Clearly,

lower values of this quantity imply higher compression and

vice versa. A rather more formal interpretation associates

I(y; z) with the maximum number of bits which can be

reliably transmitted over the quantizer block, employing the
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Fig. 2. The considered system model for Joint Source-Channel Coding. Both access and forward channels are presumed to be discrete and memoryless.

Asymptotic Equipartition Property (AEP) [61]. On the other

hand, I(x; z) is chosen as the indicator of the informativity.

The design problem is then stated as finding the conditional

distribution, p∗(z|y), satisfying

p∗(z|y) = argmin
p(z|y): I(x;z)≥I

I(y; z), (1)

with 0 ≤ I ≤ H(x). Applying the method of Lagrange Mul-

tipliers, the constrained optimization (1) can be transformed

into an unconstrained one (up to the validity of the quantizer

mapping) over an augmented objective functional

p∗(z|y) = argmin
p(z|y)

I(y; z)−βI(x; z), (2)

in which β denotes a non-negative trade-off parameter.

Exploiting the Variational Calculus, the formal characteriza-

tion of the optimal solution to the pertinent design problem

has been derived in [1] for each pair (y, z)∈Y×Z as

p∗(z|y) =
p(z)

ψ(y, β)
exp

(
−βdNSC

IB (y, z)
)
, (3)

wherein ψ(y, β) is a partition (normalization) function, ensur-

ing a valid distribution and the so-called IB-NSC Relevant

Distortion, dNSC
IB (y, z), is given as

dNSC
IB (y, z)=DKL

(
p(x|y)kp(x|z)

)
=

∑

x∈X
p(x|y) log

p(x|y)

p(x|z)
.

(4)

This indicates that, principally, the IB-based clustering must

gather together those realizations of the signal, y, which pro-

vide quite similar information about the source, x. Specifically,

for two distinct realizations y1∈Y and y2∈Y to be allocated

to the same cluster z ∈ Z , the KL divergence between a

posteriori terms p(x|y1) and p(x|y2) must be relatively small

as it must be the case for both KL divergences among each

individual a posteriori term and p(x|z). Finally, it is noteworthy

that a design algorithm, the iterative IB, has been provided in

[1] as well that exerts the Fixed-Point Iteration method [63]

on (3) together with a short proof of its convergence to a

stationary point of the pertinent objective functional in (2).

III. EXTENSION OF INFORMATION BOTTLENECK METHOD

TO JOINT SOURCE-CHANNEL CODING (JSCC)

In this part, after introducing the system model and the

respective design problem we present the optimal solution to

IB-based Joint Source-Channel Coding (JSCC) quantization.

We also devise an algorithm to pragmatically tackle the non-

convex design optimization and provide a theorem regarding

the convergence of the proposed algorithm to a stationary

point of its objective functional. Furthermore, we analyze in

full detail various mathematical aspects of the design problem

itself together with the features of the presented solution for

the sake of a solid and crisp understanding of the method.

A. System Model and Problem Formulation

Consider the system model depicted in Fig. 2. The main

difference compared to the original IB setup (cf. Fig. 1) is

to relax the ideal transmission presumption of the quantizer

output, z, to the (remote) processing unit by adding an error-

prone, discrete memoryless forward channel with transition

probabilities, p(t|z), to the previous system model. Presum-

ably, the statistical description of the source, p(x), as well

as the access p(y|x) and the forward p(t|z) channels are

available (fixing an upper-bound on the quantizer’s output

cardinality, |Z|) and, further, x ↔ y ↔ z ↔ t forms a first-

order Markov chain. Henceforth, the main focus will be on the

quantizer design, p(z|y). For that, in perfect harmony with the

foundational idea of the IB method [1], here we introduce the

mathematical formulation of the required quantization through

establishing a fundamental trade-off between two MI terms.

On the one hand, the MI between the quantizer’s input and

output signals, I(y; z), denoted as the compression rate, is the

term indicating the compactness of outcome. On the other

hand, the MI between the relevant variable, i.e., the source,

x, and the output signal, t, of the forward channel, I(x; t),
that is denominated as the relevant information, is treated as

the term signifying the informativity. Naturally, one then aims

for such solutions which, despite being relatively compact

(|Z|≤|Y|), are still highly informative. Analogous to (1), this

goal is mathematically formulated as the following constrained

optimization

p∗(z|y) = argmin
p(z|y): I(x;t)≥I

I(y; z), (5)

wherein for the lower-bound of relevant information, I ,

it applies 0 ≤ I ≤ H(x). 2 As before, making use of the

method of Lagrange Multipliers, the constrained optimization

in (5) can be transformed into an unconstrained one (up to the

validity of the quantizer mapping) over an augmented objective

functional

p∗(z|y) = argmin
p(z|y)

I(y; z)−βI(x; t), (6)

with the non-negative trade-off parameter, β, as the coun-

terpart of the lower-bound, I , in (5) and p(z|y) being a

valid conditional distribution, i.e., for each y ∈ Y , it applies
∑

z∈Z
p(z|y)=1.

B. Optimal Quantizer Mapping

The following theorem provides a complete characterization

of the formal optimal solution to the IB-based JSCC quanti-

zation design problem (6).

2Besides this one-shot formulation, the pertinent (asymptotic) coding prob-
lem calls for a formal multi-letter description.
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Theorem 1 (Optimal Solution for IB-JSCC): Assume the

joint distribution, p(x, y), the forward transition probabilities,

p(t|z), and β are given. The conditional distribution, p∗(z|y),
is a stationary point of the IB-JSCC functional

LJSCC
IB = I(y; z) − βI(x; t) (7)

if and only if for each pair (y, z)∈Y×Z

p∗(z|y) =
p(z)

ψ(y, β)
exp

(
−βd JSCC

IB (y, z)
)
, (8)

in which ψ(y, β) is a normalization function, ensuring the

validity of the pertinent conditional distribution and the so-

called IB-JSCC Relevant Distortion, d JSCC
IB (y, z), is given as

d JSCC
IB (y, z) =

∑

t∈T
p(t|z)DKL

(
p(x|y)kp(x|t)

)
. (9)

The proof is provided in Appendix A.

Theorem 1 can, actually, be interpreted as the direct gener-

alization of Theorem 4 in [1] to incorporate the noisy forward

channel as well. The Backward Compatibility of the provided

solution here to the one derived for the primary IB setup can be

checked by assuming an ideal forward link, i.e., p(t|z)= δz,t

(with the Kronecker Delta denotation 3). For that, (8) and (9)

boil down to the given optimal solution at Theorem 4 in [1]

that has been restated in (3) and (4).

C. Forward-Aware Iterative IB Algorithm

It shall be noted that (8) has an implicit form as p(z) and

p(x|t) on its right-hand side are functions of its left-hand side,

p∗(z|y), through self-consistency relations below

p(z) =
∑

y∈Y
p(y)p∗(z|y) (10a)

p(x|t) =

∑

y∈Y

∑

z∈Z
p(x, y)p∗(z|y)p(t|z)

∑

z0∈Z
p(z0)p(t|z0)

. (10b)

Therefore, the iterative IB routine in [1] can be straightfor-

wardly adapted to a novel algorithm which implements the

Fixed-Point Iteration method [63] for the IB-based JSCC.

To that end, the generalized version of Theorem 5 in [1]

will be presented here, leading to an alternating optimization

procedure analogous to the well-established Blahut-Arimoto

(BA) method [64], [65] and the Expectation-Maximization

(EM) algorithm [66].

Theorem 2 (Iterative Algorithm): The self-consistent equa-

tions (10a), (10b) and (8) will be satisfied simultaneously at

the minima of the functional F =−Ey,z{logψ(y, β)}, wherein

the minimization is done independently over the convex sets

of normalized distributions p(z), p(z|y), and p(x|t). This mini-

mization is performed by the following convergent, alternating

3The Kronecker Delta denotation shall not be confused with the one
which will be used for functional derivatives. Besides the context, the clear
distinction is that the former has two arguments on its subscript while the
latter does not have any.

iterations: With (i) denoting the iteration counter, it applies

p(i)(z) =
∑

y∈Y
p(y)p(i)(z|y) (11a)

p(i)(x|t) =

∑

y∈Y

∑

z∈Z
p(x, y)p(i)(z|y)p(t|z)

∑

z0∈Z
p(i)(z0)p(t|z0)

(11b)

p(i+1)(z|y)=

p(i)(z)exp
(

−β
∑

t∈T
p(t|z)DKL

(
p(x|y)kp(i)(x|t)

))

ψ(i+1)(y, β)
.

(11c)

The partition (normalization) function 4, ψ(i+1)(y, β), is eval-

uated per iteration.

The proof is provided in Appendix B.

D. Supplementary Mathematical Discussion

In this part, we provide an in-depth and comprehensive

discussion on various mathematical aspects of the proposed

extended approach (IB-based JSCC). For that, a number of

important issues have to be elucidated at this point:

1) The precise relation between the auxiliary functional F
introduced in Theorem 2 and the IB-JSCC functional LJSCC

IB

of Theorem 1 must be determined. For that, the constituent

terms of F shall be analyzed more critically. It applies

F =
∑

y,z

p(y)p(z|y) log
p(z|y)

p(z)

+ β
∑

y,z

p(y)p(z|y)
∑

t

p(t|z)DKL

(
p(x|y)kp(x|t)

)
. (12)

The first summand in (12) equals I(y; z) by definition. Further,

its second summand is equal to β
(
I(x; y)−I(x; t)

)
. To realize

that, applying the presumed Markovian properties and through

expansion of the respective KL divergences, it holds

∑

y,z

p(y)p(z|y)
∑

t

p(t|z)DKL

(
p(x|y)kp(x|t)

)
+ I(x; t)

(13a)

=
∑

x,y,z,t

p(x, y, z, t)
(

log
p(x|y)

p(x|t)
+ log

p(x|t)

p(x)

)

(13b)

=
∑

x,y,z,t

p(x, y, z, t) log
p(x|y)

p(x)
= I(x; y) . (13c)

Consequently, for a certain trade-off parameter, β, since I(x; y)
is fixed via the given joint distribution, p(x, y), it is deduced

that the functionals F and LJSCC
IB differ only in a constant term

and, thus, converging to the minima of either of them directly

corresponds to converging to the minima of the other one too.

2) Analogous to the content of the discussion in the original

work [1] about the structure of the derived solution, it shall

be noted that each specific β value results in certain values of

compression rate, I(y; z), and relevant information, I(x; t), for

4Per definition, for each access channel output realization, y∈Y , the sum of
the calculated terms in (11c) (ignoring ψ) over all output clusters, z∈Z , acts
as the partition (normalization) function, ψ(y, β), to ensure

�

z∈Z

p(z|y)=1.
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every choice of the quantizer output cardinality, |Z|. Further,

the variational principle implies

δI(x; t)

δI(y; z)
= β−1 >0 . (14)

As will be demonstrated in Section V-B with a relevant

example, in cases where the forward transition probabilities,

p(t|z), are output semi-symmetric (i.e., having an identical

distribution to all outputs regardless of the particular choice

of input), analogous to the original IB setup, this brings about

a Deterministic Annealing behavior [67]. Through increasing

the value of the trade-off parameter, β, one can move along

concave curves in the Information-Compression plane. These

curves exist for each choice of the quantizer output cardinality,

|Z|. The solution of self-consistent equations in (11) will then

correspond to a family of such annealing curves, all starting

from the origin with an infinite slope and getting parameterized

by β. Every two curves in this family then bifurcate at some

finite (critical) value of β via a second order phase transition.

These transitions constitute a hierarchy of quantizations with

different granularity, from an extreme case of |Z| = 1 up to

the other extreme where |Z|= |Y|.
3) It is important to note that the IB-based JSCC problem

(6) is, basically, a non-convex optimization in its most general

form. To discern this, it has to be noticed that both MI

terms involved in (7) are convex functionals of the quantizer

mapping, p(z|y). Indeed, for a given p(y), the compression

rate, I(y; z), is convex w.r.t. p(z|y) [61]. Analogously, for

a given p(x), the relevant information, I(x; t), is convex

w.r.t. p(t|x). Since the relation between p(t|x) and p(z|y) is

established through

p(t|x) =
∑

y∈Y
p(y|x)

∑

z∈Z
p(t|z)p(z|y), (15)

which is an affine transform preserving convexity, I(x; t) will

also be convex w.r.t. p(z|y). Thus, the IB-JSCC functional (7)

that is a difference of two convex functionals is non-convex in

general, leading to a non-convex (more precisely, a Difference

of Convex (DC)) optimization [68, Ch. 4]. The aforementioned

proposition implies the fact that the auxiliary functional F is

not jointly convex w.r.t. all of its arguments. As an immediate

ramification, the random choice of initialization, p(0)(z|y),
for the proposed iterative algorithm has a direct influence on

the quality of final upshot, as convergence to different local

minima may occur. A common workaround is then to rerun

this routine with multiple distinct starting points, p(0)(z|y), and

retain the best outcome. It is noteworthy that for finite trade-off

values, β, usually a stochastic (soft) mapping 0≤p(z|y)≤1 is

resulted that associates each realization, y∈Y , with a certain

probability to every output cluster, z∈Z .

3) Considering (8), it can be discerned that the value of β

determines how diffused the conditional distribution, p(z|y),
is. Small β values imply high diffusion as, in those cases, β

reduces the difference among the calculated IB-JSCC relevant

distortion, d JSCC
IB (y, z), for different candidates, z ∈Z . In the

limit of letting β→0, there would be maximal diffusion and

each certain realization, y ∈ Y , will be allotted to all output

levels, z ∈ Z , equiprobably. By that, the input and output

of the quantizer block become statistically independent and

the compression rate, I(y; z), achieves its global minimum of

zero. Obviously, this case is not of interest as no relevant

information is kept at all. In contrast, by increasing the value

of β for each realization, y∈Y , most of the probability mass

gets assigned into the very bin showing the least relevant

distortion, d JSCC
IB , among all output candidates. Naturally, in the

limit of letting β→∞ full concentration is achieved wherein

a particular bin, z∗(y), contains all the probability mass,

i.e., each y ∈ Y , is allotted to one and only one output bin,

z∗(y).
5) Finally, it is worth exclusively discussing the extreme

case of letting β → ∞ in more details. For that, the design

focus is solely on the preservation of relevant information,

I(x; t). Thus, practically, the only effective limit on compres-

sion rate, I(y; z), will be stipulated by fixing the cardinality,

|Z|, of the quantizer’s output alphabet. For β→∞, the second

term of LJSCC
IB in (7) predominates entirely. Hence, via substi-

tuting the minimization by maximization through dropping the

minus sign, (6) boils down to

p∗(z|y) = argmax
p(z|y)

I(x; t) . (16)

This is a concave optimization task, i.e., maximizing a

convex function over a closed convex set. Resorting to a well-

known proposition which asserts a convex function attains its

global maximum at an extreme point of its search space [68,

Th. 1.19], it can then be realized that the focus will be on

deterministic mappings, i.e., p(z|y) ∈ {0, 1}. To comprehend

this, one may note that the validity condition,
∑

z p(z|y)=1,

for each realization, y ∈Y , introduces a Probability Simplex.

Consequently, the overall search space in (16) will be a

closed and convex polytope which is engendered by the

Cartesian product of its constituent probability simplices [69].

The extreme points of this polytope happen at its corners.

Furthermore, each corner corresponds to the Cartesian product

of different corners of the individual probability simplices

(all being deterministic), leading to a hard mapping for each

extreme point.

Focusing on the assignment phase (quantizer input realiza-

tions to its output clusters) of the proposed algorithm that

is performed by applying (8) per iteration, also reveals (as

already discussed) that, in line with the discussion above,

the resultant mapping will be deterministic. This is simply

an effect of the present normalization function, ψ, which, for

a given y ∈ Y , concentrates all of the probability mass into

the very cluster with the least relevant distortion among all

candidates. Mathematically, denoting by z∗(y) the chosen bin

for y∈Y

z∗(y)= argmin
z∈Z

d JSCC
IB (y, z) . (17)

Remark: Interestingly, the criterion in (17) is identical to

the one already provided in [55] regarding the SotA algorithm

Mutual Information-based Channel-Optimized Vector Quan-

tizer (MICOVQ) which delivers a vector quantizer aiming at

maximizing the overall transmission rate in the same setup

as the one illustrated in Fig. 2 with the main difference

of considering vector-valued signals x and y. This becomes

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on December 17,2020 at 19:38:36 UTC from IEEE Xplore.  Restrictions apply. 



7916 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 12, DECEMBER 2020

more surprising when noting the fact that the mathematical

deduction applied in [55] is completely different from the one

presented here and does not involve the Variational Calculus.

To realize that, the line of derivation in [55] is briefly discussed

in the next section for the generalized VQ case. Finally,

it is noteworthy that in [44] an algorithm has been proposed

for multiterminal extension of the presumed system model

in Fig. 2 wherein a number of observations from a source,

x, are quantized locally with the aim of maximizing the

overall transmission rate. The algorithmic equivalence of the

approach presented in [44] and that of MICOVQ [55] has

been established in [70] for the overlapping case of scalar

quantization of a single observation.

IV. IB-BASED JSCC VECTOR QUANTIZATION

In this part, we focus on a certain VQ problem and, after a

brief discussion on the SotA routine MICOVQ [55] that only

considers the special case of assuming an asymptotically large

trade-off parameter (β →∞), we extend that by introducing

the Forward-Aware Vector IB (FAVIB) algorithm which also

allows for finite trade-off values. For explicit adaptation to the

general case of K-dimensional VQ, in this study, we consider

the length-K source sequences, x=[x1, · · · , xK ]∈XK , with

the available distribution, p(x), accompanied by the length-K

(noisy) observation sequences, y = [y1, · · ·, yK ] ∈ YK , at the

output of the discrete memoryless access channel depicted

at the presumed system model in Fig. 2. This immediately

implies that p(y|x)=
∏K

k=1 p(yk|xk). Thus, knowing the tran-

sition probabilities, p(y|x), of the access channel indicates that

the joint distribution, p(x, y), is also available. The aim is then

to obtain a suitable quantizer, p∗(z|y), that (probabilistically)

maps each vector, y ∈ YK , to every scalar, z ∈ Z , as the

solution of the following optimization

p∗(z|y) = argmin
p(z|y): I(x;t)≥I

I(y; z), (18)

where for the lower-bound of the relevant information, I ,

it applies 0 ≤ I ≤ H(x). Like before, making use of the

method of Lagrange Multipliers, the constrained optimization

in (18) can be transformed into an unconstrained one (up to the

validity of the quantizer mapping) over an augmented objective

functional (with non-negative trade-off parameter, β)

LJSCC
VQIB = I(y; z) − βI(x; t) . (19)

It is noteworthy that the upcoming discussion also applies to

the memoryless access channels with continuous outputs via

a prediscretization step to the required precision. The perti-

nent extension for the continuous-output forward channels is

more demanding as the corresponding transition probabilities,

p(t|z), may depend on the quantizer output probabilities, p(z),
(e.g., through an average power constraint) that are not known

a priori.

A. MICOVQ (MI-Based Channel-Optimized Vector

Quantizer)

Attempting to achieve an end-to-end rate maximizing vector

quantizer for the IB-JSCC setup, the authors in [55] have

focused on the extreme case of having an asymptotically large

trade-off parameter, i.e., β→∞. For that, it is rather straight

to discern that minimizing (19) boils down to maximizing

the relevant information, I(x; t), as the second term in (19)

predominates entirely and the minimization is substituted by

maximization through dropping the minus sign. Applying the

chain rule for MI, it holds

I(x; y, t) = I(x; y) + I(x; t|y) = I(x; t) + I(x; y|t) . (20)

The presumed Markov chain implies that I(x; t|y)=0 (given

the observation y, the source, x, and the forward channel out-

put signal, t, are statistically independent). Hence, the relevant

information can be rewritten as

I(x; t) = I(x; y) − I(x; y|t), (21)

which immediately indicates that the maximization of I(x; t)
corresponds to the minimization of I(x; y|t) as I(x; y) is fixed.

Through the definition C(y, t)=DKL(p(x|y)kp(x|t)), it holds

I(x; y|t) = Ey

{
Et{C(y, t)|y}

}
, (22)

in which the stated conditional expectation is calculated as

Et{C(y, t)|y=y} =
∑

z∈Z
p(z|y)

∑

t∈T
p(t|z)C(y, t) . (23)

Since the inner sum in (23) is constant for each z ∈ Z ,

to minimize the conditional expectation (23) for every y∈YK ,

the quantizer mapping must be chosen as p(z|y) = δz,z∗(y),

where

z∗(y) = argmin
z

∑

t∈T
p(t|z)C(y, t) . (24)

In this manner, the conditional information term in (22)

will also be minimized for the given C(y, t). To establish

an iterative algorithm, the authors in [55] then suggest to

commence with a random (yet valid) initialization, C(0)(y, t)
and obtain the quantizer mapping, p(i)(z|y), with the help of

(24). This mapping is then utilized to update the distribution,

p(i+1)(x|t), and, subsequently, C(i+1)(y, t), putting into effect

the relations implied by the presumed Markov chain. It should

be mentioned that, contrary to the conventional vector quan-

tizers, depending on forward channel transition probabilities,

p(t|z), some elements of the quantizer’s output alphabet may

not be utilized at all [55], i.e., it might happen that p(z)=0
for some z∈Z .

B. FAVIB (Forward-Aware Vector IB)

One shall note that, since the dimensionality of the source

as well as the observation signal sequences does not play

a role in the derivation of the optimal solution (as long

as their joint distribution is available), all of the provided

discussion in Section III-B for scalar case can be immediately

translated to the K-dimensional vector case without posing

further problems. Thus, the proposed algorithm in Theorem 2

is directly adaptable to the K-dimensional VQ scenario. This

fact brings about a generalized routine that not only tallies

with MICOVQ for β → ∞, but also enables a full sweep

through the entire gamut of β values. Consequently, all the
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Algorithm 1 Forward-Aware Vector IB (FAVIB)

Input: p(x, y), β >0, stopping parameter ε>0, K >0, p(t|z)

Output: A (soft) partition z of YK into (at most) |Z| bins

Initialization: i=0, random mapping p(0)(z|y)

while True do

• p(i)(z) =
∑

y∈YK

p(y)p(i)(z|y) ∀z∈Z

• p(i)(x|t) =

�

y∈YK

�

z∈Z

p(x,y)p(i)(z|y)p(t|z)

�

z0∈Z

p(i)(z0)p(t|z0)
∀x∈XK, ∀t∈T

• p(i+1)(z|y) =
p(i)(z) exp

(

−β
�

t∈T

p(t|z)DKL

(
p(x|y)kp(i)(x|t)

))

ψ(i+1)(y,β)

• i ← i+1

if ∀y∈YK: D
{ 1

2 , 12 }
JS

(
p(i)(z|y)kp(i−1)(z|y)

)
≤ ε then

Break

end if

end while

achievable points in the respective Information-Compression

plane become traversable via stochastic mappings resulted

from choosing finite β values. For each certain choice of

the output cardinality, |Z|, a concave curve is achieved. This

curve starts from the origin (β → 0, corresponding to full

diffusion of the quantizer mapping, p(z|y)) and by increasing

β, other points on the graph are swept. This conforms to a

gradual shift from high compression towards preservation of

relevant information. In the extreme case of letting β → ∞
(corresponding to full concentration of the quantizer mapping,

p(z|y)) this curve gets saturated at the maximum possible

overall transmission rate, I(x; t), that can be supported by

at most |Z| output levels. By this, for each choice of |Z|,
the achievable Information-Compression region is obtained as

the set of points lying on and beneath the relevant curve.

As discussed, (14) indicates that the slope of the tangent line

at any point on the curve equals the inverse of pertinent β

value.

Regarding the claimed algorithmic equivalence among

MICOVQ and FAVIB for β → ∞, while the equivalence

of assignment phases has been explicitly discussed (cp. (24)

and (17)), the one concerning the update phases, i.e., recal-

culating p(x|t), can be realized by noting the fact that both

algorithms, indeed, marginalize p(x, y, z, t), employing the

relations induced by the presumed Markov chain. Exploiting

the conventional vector quantization approaches (see, e.g.,

[71]) in the JSCC setup usually calls for separate consideration

of the NP-hard quantizer output labeling problem as these

methods mostly require fixed labels in advance. Contrarily,

the FAVIB algorithm implicitly addresses this issue by directly

working on forward transition probabilities, p(t|z), in the

process of designing the quantizer that is a clear advantage.

Before concluding this section, we present the pseudo-code

of the FAVIB routine in Alg. 1 that yields a K-dimensional

vector quantizer extending the foundational idea of the IB

method in its full format to the JSCC scenario. As already

argued, FAVIB is a direct generalization of the provided

iterative algorithm in Section III-C to the considered VQ setup.

Explicitly, after a random initialization, it executes the conver-

gent, alternating iterations over the adapted version of (11).

These iterations are perpetuated until the bounded and sym-

metric Jensen-Shannon divergence between the obtained quan-

tizer mappings from two consecutive iterations equals or falls

below a threshold, ε. One may note, that the a posteriori

term, p(x|t), for every t∈T appears directly as a potentially

beneficial by-product to be utilized in the preplanned post-

processing phase, e.g., efficient lookup table-based discrete

channel decoding schemes with quite comparable performance

to the conventional floating-point decoder (see, e.g., [72]).

V. SIMULATION RESULTS

In this section, we specify some typical data transmission

setups over which we perform a comprehensive analysis on the

FAVIB algorithm to substantiate its effectiveness. To that end,

we consider an equiprobable source signaling from a Quadra-

ture Phase Shift Keying (QPSK) constellation with σ2
x =1 over

an Additive White Gaussian Noise (AWGN) access channel

model that is characterized by the noise variance, σ2
n . To obtain

a discrete access channel, as will be explicitly mentioned,

either we generate some samples out of the continuous model

(the first two scenarios), or we perform a prediscretization

over a fine grid (the last scenario). Generally, there is no

specific restriction on the structure of the forward channel

when utilizing the FAVIB algorithm. Indeed, throughout our

numerical investigations, we will consider three various for-

ward channel models: a) A square symmetric model being

characterized by the reliability parameter, e, and the allowed

number of output levels, N ; b) A non-square model being

characterized by the reliability parameter, e, and the forward

channel output cardinality, |T |; c) A square Binary Symmetric

Channel (BSC)-based bit-pipe model being delineated by the

bit-flip probability, Pe, as well as the allocated number of the

forward bits, M =log2 N . The pertinent detailed descriptions

will be provided in the upcoming respective subsections.

A. An N×N Square Symmetric Forward Model

Here, for simplicity, we consider the scalar quantization

case. For that, first we generate 256 access channel output

samples. These received points are then clustered (utilizing

FAVIB) into a varying number of bins (N = 16 to 64). The

forward channel is presumed to be an N×N symmetric model

being purely delineated through the reliability parameter, e,

in a following manner: For each input symbol, the correct

reception occurs with probability 1 − e and the erroneous

reception to every other output symbol occurs with probability
e

N−1 . Hence, the lower the e value, the more reliable the

respective transmissions. Moreover, it shall be noted that, for

a certain reliability value, e, the choice of N influences the

transition probabilities, p(t|z). This forward channel (which,

e.g., has been considered in [41] to model the impacts of

a mmWave link) is chosen here in the first part of our

numerical investigations solely for the sake of simplicity. We
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Fig. 3. Overall transmission rate, I(x; t), vs. allowed number of clusters, N ,
equiprobable QPSK signaling (σ2

x =1), AWGN access channel with varying
noise variance, σ2

n , N×N symmetric forward channel with fixed reliability,
e=0.25.

Fig. 4. Overall transmission rate, I(x; t), vs. allowed number of clusters,
N , equiprobable QPSK signaling (σ2

x =1), AWGN access channel with fixed
noise variance, σ2

n = 0.2, N ×N symmetric forward channel with varying
reliability, e.

set β to 100 and as the performance indicator, we calcu-

late the overall transmission rate, I(x; t). The predescribed

scenario is simulated for different noise variances (access

channel) and various reliabilities (forward channel) to cover

the effects of both present channels at the presumed system

model in Fig. 2. The required quantization is performed by

the proposed FAVIB algorithm and the baseline iterative IB

routine [1] 5 to investigate whether incorporating the forward

channel effects into the quantizer design formulation yields

some performance enhancement or not (compared to the case

where the error-prone forward channel is completely ignored).

As these routines are initialized randomly, for the sake of

fairness, we use the same starting point, p(0)(z|y), for both

5As the iterative IB routine is proven to converge to a stationary point of its
objective functional and there is no intention to assess any algorithmic aspect
of the provided solution (e.g., the computational complexity, the convergence
speed, etc.) in the upcoming numerical investigations, the iterative IB serves
as a legitimate baseline.

approaches and to avoid poor local optima, we repeat each

method 100 times and retain the best outcome.

Regarding Figs. 3 and 4, in the first case, we fix the reliabil-

ity parameter of the forward channel to e=0.25 and vary the

noise variance, σ2
n , of the access channel. In the second case,

we fix the access channel by choosing a certain noise variance,

σ2
n =0.2, and change the reliability parameter, e, of the forward

channel. In both cases we investigate the performance, I(x; t),
over a range of allowed output clusters, N . It is noteworthy

that, for β = 100, FAVIB yields quite similar results as

MICOVQ and, consequently, for the sake of a better read-

ability the corresponding curves for MICOVQ are not drawn.

Concerning both plots together, the main observation is that

irrespective of the specific choices of the model parameters,

i.e., the access channel noise variance, σ2
n , the forward channel

reliability parameter, e, and the allowed number of output

clusters, N , FAVIB outperforms the algorithm presented for

the original IB setup, leading to higher overall transmission

rates. This vividly reflects the fact that bringing the forward

channel into the quantizer design formulation is beneficial.

Focusing on Fig. 3, it is observed that, expectedly,

by increasing the noise variance, σ2
n , the end-to-end trans-

mission rate, I(x; t), decreases. To justify this, one shall note

that, for a given forward channel, I(x; t) is upper-bounded

by the capacity of the access channel, CAC. This can be

immediately realized by the direct application of the Data

Processing Inequality [61] on the presumed Markov chain

in our design setup. It is well known that, assuming a fixed

input variance, σ2
x , the capacity of the discrete-input AWGN

channel is reversely related to its noise variance, σ2
n [73].

Hence, the lower the noise variance, the higher the capacity of

the access channel, and thus the possibility of attaining higher

overall transmission rates.

Regarding Fig. 4, the impact of forward channel on the

overall transmission rate, I(x; t), reflects itself on the value

of the pertinent reliability parameter, e. Explicitly, it can be

observed that in case of more reliable forward transmissions,

the end-to-end rate increases. This can be justified quite

analogously, noting the fact that, for a given access channel,

I(x; t) is also upper-bounded by the capacity of the forward

channel, CFC. It will be rather undemanding to discern that,

presuming a given number of output clusters, |T | = N ,

the respective capacity of the forward channel, CFC, being

calculated as [74]

CFC(N, e) = log2 N + (1 − e) log2(1 − e) + e log2

e

N−1
,

(25)

increases by decreasing the reliability parameter, e, enabling

the overall transmission rate to reach higher values. From the

discussion above, it is deduced that I(x; t) is upper-bounded

by the minimum capacity among the access and forward

channels at the presumed system model in Fig. 2. To plainly

observe that, one may consider Fig. 4 in case of N = 32 as

an example. There, even though the capacity of the forward

channel, CFC, is calculated as 2.95, 2.63 and 2.33 bits (per

channel use) for different values (in ascending order) of the

reliability parameter, e, the end-to-end transmission rate is
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Fig. 5. Overall transmission rate, I(x; t), vs. SNR, equiprobable QPSK
signaling (σ2

x =1), AWGN access channel with varying noise variance, σ2
n ,

N =32, N×N symmetric forward channel with different reliability values,
e=0.1 to 0.4.

Fig. 6. Overall transmission rate, I(x; t), vs. reliability parameter, e,
equiprobable QPSK signaling (σ2

x = 1), AWGN access channel with fixed
noise variance, σ2

n = 0.4, N ×N symmetric forward channel with varying
reliability parameter, e.

limited by the capacity (more precisely, the input-output MI

assuming a uniform input signaling) of the access channel

which amounts to 1.9 bits. Obviously, the theoretically optimal

rate of 2 bits per channel use for the considered system setup

is only achievable by asymptotically large values of Signal-

to-Noise-Ratio (SNR) for the access channel together with

relatively reliable transmissions over the forward channel (i.e.,

rather small e values). As another important remark, it shall

be noticed that, generally, by increasing e, corresponding to

experiencing less reliable forwarding, the gap between the

obtainable performances of the considered algorithms (FAVIB

vs. iterative IB) widens. This statement is clearly substantiated

in both Figs. 5 and 6.

Particularly, in Fig. 5 the attainable performance is investi-

gated over a certain range of SNR (
σ2

x

σ2
n

) values for access chan-

nel with a fixed number of the allowed output levels, N =32.

In contrast, in Fig. 6 the achieved performance is drawn over

a certain range of reliability values, e, when assuming a fixed

access channel of SNR≈4 dB. It is commonly observable in

both figures that irrespective of the chosen allowed number

of output levels, N , by increasing e, the outperformance of

FAVIB w.r.t. the baseline is steadily more pronounced. Once

again, this utterly indicates the key fact that the more critical

the forwarding conditions are, the more advantageous the

proposed routine becomes. The provided discussion for Figs. 3

and 4 is directly applicable to Fig. 5 as well. Explicitly, it can

be noticed that for a given SNR, the more reliable the forward

channel, the larger the attainable end-to-end rate. Likewise,

for a given reliability value, e, the higher the SNR, the better

the overall performance. As another interesting observation,

it shall be noted that the information loss, i.e., the difference

among the access channel’s input-output MI (the ultimate

upper-bound on transmission rate), I(x; y), and the achieved

end-to-end rate, I(x; t), is mostly due to the forward path as

the gap between I(x; y) and the obtainable MI at the output of

the quantizer block, I(x; z), without considering the forward

channel, is almost negligible for the applied compression

factor of 8 (from |Y| = 256 output channel samples to

N = 32 clusters). Naturally, this information loss becomes

more substantial for a less reliable forward path.

Concentrating on Fig. 6, it is observed that for an ideal

forward channel, i.e., e = 0, the gap between the access

channel’s input-output MI, I(x; y), and the one achieved after

quantization, I(x; z), increases with decreasing the allowed

number of output levels, N . Then, regardless of the chosen

value for N , through increasing e, the forward path becomes

less reliable and, as already discussed, the information loss

becomes more substantial. It is also noteworthy that for larger

allowed output levels, N , FAVIB reveals its advantage over

the baseline more tangibly, indicating the graver importance

of incorporating the error-prone forward channel effects into

the quantizer design formulation for such occasions.

Next, to acquire a crisp feeling about the role of the

respective trade-off parameter, β, we generate Fig. 7. There,

for a particular access channel noise variance, σ2
n = 0.4,

and also a fixed forward channel reliability value, e = 0.25,

we vary the trade-off value, β, and depict the resultant

Information-Compression pairs for three distinct choices of

the allowed quantizer output cardinality, N . While MICOVQ

can only provide an asymptotic point per choice of N , FAVIB

enables a full sweep over the entire range of β. By this, all

achievable points in the respective plane become traversable.

Furthermore, it is observed that, basically, irrespective of

the chosen value for N , through increasing β the focus

tends from compression towards preservation of the relevant

information. More specifically, for finite values of β, both sides

of the underlying trade-off (compactness and informativity)

are treated via stochastic mappings. It is rather imaginable

that, depending on the application, these soft decisions may

become more beneficial. On the other hand, by letting β→∞,

hard mappings merely highlight one side of the trade-off,

namely, the informativity. It shall be noted that even in this

extreme case, although the focus is solely on preservation

of the relevant information, I(x; t), still the compression rate,

I(y; z), can not grow arbitrarily large and is upper-bounded by

log2N bits that is an ultimate upper-bound on the quantizer

output entropy, H(z).
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Fig. 7. Relevant information, I(x; t), vs. compression rate, I(y; z), equiprob-
able QPSK signaling (σ2

x = 1), AWGN access channel with fixed noise
variance, σ2

n =0.4, N×N symmetric forward channel with fixed reliability,
e=0.25, varying β.

Fig. 8. Relevant information, I(x; t), vs. compression rate, I(y; z), equiprob-
able QPSK signaling (σ2

x = 1), AWGN access channel with fixed noise
variance, σ2

n =0.4, N×16 forward channel with fixed reliability, e =0.25,
varying β.

B. An N×|T | Non-Square Forward Model

In this part of our numerical investigations, we consider the

case in which forward transition probabilities are independent

of the allowed quantizer output cardinality, N . For that, we fix

the forward output cardinality to |T | = 16 and presume an

N ×16 forward channel model with reliability parameter, e,

in the sense that for each input symbol, irrespective of the

chosen value of N , there will be one transition to a specific

output symbol with probability 1−e and other transitions are

happening with the same probability of e
15 . The corresponding

results for three different choices of the allowed number of out-

put clusters, N =3, 4, 5, are illustrated in Fig. 8. Specifically,

by varying the trade-off parameter, β, three concave curves are

attained. These graphs start from the origin and bifurcate at

certain (critical) values, β =1.95, 2.25. This behavior corrobo-

rates the pertinent discussion made in Section III-D about the

phase transition phenomena happening at critical β values for

a family of concave curves pertinent to different choices of the

allowed output cardinality, N . It shall be noted that each of

these sub-optimal curves splits the Information-Compression

plane into two segments of achievable (below the curve) and

non-achievable (above the curve) Information-Compression

rate-tuples for every choice of the allowed output cardinality,

N . Naturally, the overall possible achievable region is then

characterized by the trajectory of the curve with full output

granularity, i.e., N = |Y|.

C. A Square BSC-Based Bit-Pipe Forward Model

In this part, we would like to gain some further insights

about the engendered quantization clusters when applying

the joint and individual compression of both the inphase

(i.e., Re{ · }) and quadrature (i.e., Im{ · }) signals from a

particular source constellation followed by the equivalent joint

as well as the individual access and forward channel models

for the sake of a fair comparison. Specifically, we consider

an equiprobable QPSK source signaling (σ2
x = 1) over an

AWGN access channel with a certain noise variance, σ2
n .

To obtain discrete access channel models, we perform a fine

equidistant prediscretization of both the real and imaginary

part of the pertinent continuous output density function to

256 segments, restricting solely to the region with the border

guard interval of 3σn√
2

from data points to ensure 99.7%
coverage. Doing so, the individual access channels’ matrices

(inphase, p(Re{y}|Re{x}), and quadrature, p(Im{y}|Im{x}))
will be of dimension 2×28 and, accordingly, the equivalent

joint access channel matrix, p(y|x), will be of dimension

22×216.

Regarding the forward channel, we consider a bit-pipe

model in which different bits of the input sequence will

be treated separately via a BSC with a particular bit-flip

probability, Pe. Specifically, the integers 0, · · · , N − 1 are

assigned as labels to individual quantization clusters (for

inphase and quadrature signals) and the bit-tuples of length

M = log2 N which represent these integers are then fed into

the forward channels. This indicates that the forward transition

probabilities are determined by the Hamming distance, α,

between the respective input-output sequences. Thus, the indi-

vidual (inphase and quadrature) forward channels’ matrices

consist of entries having the form P α
e (1 − Pe)

M−α with

0 ≤ α ≤ M . By stacking together the binary representations

of the quantizer output labels for inphase and quadrature

signals, the equivalent joint forward channel matrix is obtained

that is of the squared size (i.e., N2) per dimension. In what

follows, we set the access channel noise variance to σ2
n =0.3

and N = 4. Further, we assume the trade-off parameter, β,

to be asymptotically large (therefore obtaining deterministic

mappings) and to avoid poor local optima, we rerun the FAVIB

algorithm 103 times with various starting points, p(0)(z|y), and

retain the best outcome. The clusters obtained for the joint

and individual treatments are illustrated in Figs. 9 and 10,

respectively.

The key enabler to understand and analyze the obtained

results is, indeed, the concept of Partial Mutual Information

that indicates the individual contributions of different clusters

to the overall transmission rate, I(x; t). Specifically, denoting
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Fig. 9. Quantization regions and integer labels for joint treatment of inphase and quadrature signals, equiprobable QPSK (σ2
x =1), AWGN access channel

with fixed noise variance, σ2
n =0.3, bit-pipe BSC-based forward channel with varying Pe.

TABLE I

PARTIAL MUTUAL INFORMATION, i(z), FOR JOINT TREATMENT OF THE INPHASE AND QUADRATURE SIGNALS, BIT-PIPE BSC-BASED FORWARD CHANNEL

WITH VARYING BIT-FLIP PROBABILITY, Pe

by i(z) the partial MI in a certain cluster, z, it is implied

that for the overall transmission rate, it must apply I(x; t) =
∑

z i(z). To analytically derive the partial MI, i(z), it shall be

noted that the following holds

I(x; t) =
∑

z

∑

y,x,t

p(x, y, z, t)log

∑

z0∈Z

∑

y0∈Y
p(t|z0)p(z0|y0)p(y0|x)

p(t)
︸ ︷︷ ︸

i(z)

.

(26)

Tables I and II provide in detail the calculated partial MI terms

for results depicted in Figs. 9 and 10 regarding the joint and

individual treatment of the inphase and quadrature signals.

Starting with Fig. 9a (joint treatment of the inphase and

quadrature signals with relatively reliable forwarding) and

noting the pertinent partial MI terms from Tab. I, three distinct

types of clusters can be immediately spotted:

1) Four corner clusters {0, 9, 11, 15} lying in the vicinity of

different source symbols and substantially contributing

to the overall transmission rate (i( · )≥0.31),

2) Cluster {6} locating around the origin and covering the

points with similar Euclidean distance to all different

input source symbols which provides almost no informa-

tion about the source (i(6)≈0) and acts like an erasure,

3) Other clusters situating in the middle of the adjacent

source symbols with limited contributions to the overall

transmission rate (0.016≤ i( · )≤0.051).

For quite reliable forwarding, e.g., Pe = 0.001, the choice

of labeling is rather inconsequential as, obviously, the inter-

cluster transitions engendered by forwarding errors are less

probable. This clearly explains the fairly arbitrary choice of

labeling for different clusters in Fig. 9a.

In contrast, for less reliable forwarding, i.e., larger bit-flip

probabilities, Pe, the appropriate choice of labeling becomes

more crucial as it plays an important role in minimizing
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Fig. 10. Quantization regions and integer labels for separate treatment of inphase and quadrature signals, equiprobable QPSK (σ2
x = 1), AWGN access

channel with fixed noise variance, σ2
n =0.3, bit-pipe BSC-based forward channel with varying Pe.

TABLE II

PARTIAL MUTUAL INFORMATION, i(z), FOR INDIVIDUAL TREATMENT OF THE INPHASE AND QUADRATURE SIGNALS, BIT-PIPE BSC-BASED FORWARD

CHANNEL WITH VARYING BIT-FLIP PROBABILITY, Pe

the inevitable information loss resulting from inter-cluster

transitions due to erroneous forward transmissions. A closer

look at the presented results in Fig. 9b-d reveals the following

trend: The pertinent labels for the corner clusters carrying

the most of information about the source, x, are chosen in

the fashion that the Hamming distance, α, between two pairs

with the point symmetry w.r.t. the origin is getting maximized.

That, in turn, minimizes the occurrence probability of such

worst-case inter-cluster transitions. This behavior is easily

verifiable by considering Fig. 9c-d. While the pairs {2, 5}
and {9, 14} for Pe = 0.1 provide the Hamming distance

of α = 3, both their counterparts {12, 3} and {0, 15} in

case of Pe = 0.3 enjoy the maximum protection through the

largest possible Hamming distance of α = 4. Furthermore,

it is observable that for less reliable forwarding the tendency

is to allocate more clusters to the erasure-like region in

the vicinity of origin. Effectively, these clusters are almost

inactive as they do not meaningfully contribute to the process

of information preservation (i( · ) ≈ 0). It is noteworthy

that in [41] an analogous behavior has been observed

as well.

The aforementioned trend can be nicely interpreted as a type

of inherent error protection being performed by the applied

quantization scheme. In principle, for supporting four input

source points, sixteen clusters are available, but through worse

forwarding conditions, smaller numbers of clusters are actively

utilized (introducing redundancy) and the labels are chosen

diligently such that those active clusters get well protected

against the inter-cluster transitions.

It is also noteworthy that although the underlying prob-

lem setup is completely symmetric, the obtained results

are not. In cases of rather small bit-flip probabilities, Pe,

the joint forward channel capacity, CFC, being calculated

as [74] (M =4)

CFC(Pe)=4+

4∑

i=0

(
4

i

)

Pe
i(1−Pe)

4−i log2 Pe
i(1−Pe)

4−i,

(27)

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on December 17,2020 at 19:38:36 UTC from IEEE Xplore.  Restrictions apply. 



HASSANPOUR et al.: FORWARD-AWARE INFORMATION BOTTLENECK-BASED VECTOR QUANTIZATION FOR NOISY CHANNELS 7923

is relatively large. This fact allows the quantizer to employ

most of the available clusters for engendering a finer decompo-

sition at each quadrant that, in turn, leads to an increase in the

overall transmission rate, I(x; t). Therefore, only one or two

clusters will be allocated around the origin (Pe =0.001, 0.01)

and the rest are meaningfully utilized elsewhere. This justifies

the noticeable asymmetry in the depicted results at the upper-

part of Fig. 9. Contrarily, in case of larger bit-flip probabilities,

Pe, limited forward channel capacity, CFC, cannot afford the

luxury of such fine decompositions. Hence, the quantizer is

forced to convey the information with lower number of active

clusters. The obtained results in such occasions exhibit more

symmetry. This can be observed by the depicted results at the

lower-part of Fig. 9.

Considering Fig. 10 for individual treatment of the inphase

and quadrature signals, it can be readily noticed that, contrary

to the joint treatment and irrespective of the quality of the

forward transmission, the symmetry in the outcome is always

ensured. This behavior is quite natural as the underlying

setup for both the inphase and quadrature signals are exactly

the same. Hence, expectedly, the resultant outcomes per

dimension of the complex plane become identical as well.

This present symmetry can also be easily substantiated by

skimming through the calculated partial MI terms which have

been provided in Tab. II.

Another interesting observation is about the effect of the

quality of forward transmission on the obtained quantiza-

tion regions. Explicitly, through an increase in the bit-flip

probability, Pe, corresponding to experiencing less reliable

forwarding, the clusters in the middle regions between all

pairs of neighboring points of the QPSK source constellation

shrink. To explain this, an analogous line of reasoning as

before regarding the inherent error protection applies here

as well. Basically, per dimension of the complex plane four

clusters are available for two input source points. Through

less reliable forwarding, two clusters in the middle become

gradually inactive to engender the required redundancy for

protection of the other two against inter-cluster transitions

occurring due to transmission over an erroneous forward path.

This clearly indicates that, principally, the applied compression

scheme can obviate the need for separate employment of

channel coding on the forward path.

Eventually, it is important to observe that performing indi-

vidual quantization of the inphase and quadrature signals also

reveals a kind of proper error protection behavior. The applied

labeling on different quantization regions in Fig. 10 clearly

exhibits a quite well separation with largest possible Hamming

distance of α=4 for all pairs of regions with point symmetry

w.r.t. the origin. This observation justifies to some extent the

relatively close performance of the applied individual (inphase

and quadrature) quantization scheme to the joint compression

that can be realized by noting the stated overall transmission

rates, I(x; t), in Figs. 9 and 10.

VI. SUMMARY

We focused on the problem of Joint Source-Channel Cod-

ing. In that regard, here for the first time, we extended

the mathematical framework of the Information Bottleneck

method in its full format for enabling its applicability to

this generalized scenario. Particularly, applying the Variational

Calculus, we derived the formal solution of the introduced

design optimization and utilized that to propose a novel

algorithm which extends the SotA methods by capacitating

a full sweep through the entire trade-off parameter’s range.

Further, we provided a brief proof of convergence to a sta-

tionary point of its objective functional along with an in-depth

analysis on its mathematical aspects. Finally, we corroborated

its effectiveness as well via several numerical simulations.

APPENDIX

A. Proof of Theorem 1

Introducing a Lagrange multiplier, λy , for each realization,

y∈Y , of the observation signal, y, the validity conditions can

be incorporated into the overall JSCC Lagrangian, LO, being

defined as

LO = I(y; z)−βI(x; t) +
∑

y∈Y
λy

(∑

z∈Z
p(z|y) − 1

)
. (28)

Taking the functional derivative of (28) w.r.t. the present

variational variable, i.e., p(z|y), and equating it to zero yields

the required optimality criterion, δLO

δp(z|y) = 0. Based on the

definition of MI and also the relations implied by the pre-

sumed Markov chain, the following functional derivatives are

obtained for three constituent terms in (28)

δI(y; z)

δp(z|y)
=

δ
(
H(z)−H(z|y)

)

δp(z|y)
= p(y) log

p(z|y)

p(z)
, (29)

δI(x; t)

δp(z|y)
=

δ
(
H(t)−H(t|x)

)

δp(z|y)
(30a)

= p(y)
(∑

t∈T
p(t|z)

∑

x∈X
p(x|y) log

p(x|t)

p(x)

)

, (30b)

and

δ
(

∑

y∈Y
λy

( ∑

z∈Z
p(z|y)− 1

))

δp(z|y)
= λy . (31)

Due to the positivity of p(y) and with the direct use of the

obtained functional derivatives, it is immediately deduced that

the following holds

log
p(z|y)

p(z)
+ β

∑

t∈T
p(t|z)

∑

x∈X
p(x|y) log

p(x)

p(x|t)
+

λy

p(y)
= 0 .

(32)

Hence, through the definition of KL divergence, it applies

log
p(z|y)

p(z)
+ β

∑

t∈T
p(t|z)DKL

(
p(x|y)kp(x|t)

)
+ λ̃y = 0,

(33)

with

λ̃y = β
∑

x∈X
p(x|y) log

p(x)

p(x|y)
+

λy

p(y)
. (34)
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Bringing both the second and the third summands in (33) to

the other side of the equality, exponentiating both sides and

finally multiplying by p(z), one obtains

p(z|y) = p(z) exp
(

−β
∑

t∈T
p(t|z)DKL

(
p(x|y)kp(x|t)

)
− λ̃y

)

.

(35)

Enforcing the validity condition,
∑

z p(z|y) = 1, and noting

that λ̃y does not depend on z, one can treat exp(λ̃y) as the

partition function, ψ(y, β), to come into the form of (8). �

B. Proof of Theorem 2

Using (8), for each (y, z)∈Y×Z it holds

− log ψ(y, β)=log
p(z|y)

p(z)
+β

∑

t∈T
p(t|z)DKL

(
p(x|y)kp(x|t)

)
.

(36)

Applying the expectation operator, Ey,z{f(·)}=
∑

y,z

p(y, z)f(·),

on (36), it can be realized that the (negative) free energy, F ,

is a sum of KL divergences. Hence, it will be non-negative and

also convex w.r.t. each of its arguments separately [61] as β≥0
and the sum of these convex functions is also convex. Further,

it is rather straightforward to verify that equating the functional

derivatives of F w.r.t. each of its arguments (presuming appro-

priate normalization constraints) to zero engenders exactly

the relations in (11) that are expressed in the statement of

Theorem 2. Therefore, updating one of these equations while

fixing the other two can only reduce F or keep it unchanged.

This is simply due to the separate convexity of F w.r.t. each

of its arguments, along with the fact that all the arguments

are constrained to belong to a convex set (projection over a

convex set). As F is bounded from below, the convergence is

guaranteed. �
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