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ABSTRACT

In this paper, a task is addressed to track a nonlinear time-
varying diffusion field based on data collected by sensor
networks. By exploiting kernel methods, the nonlinear field
function is approximated by a linear combination of kernel
functions in a reproducing kernel Hilbert space (RKHS). To
capture the dynamical property of a diffusion field and the
relation of system input and output data, a state-space model
on weights of these kernel functions is constructed with un-
known process noise. Thus, the nonlinear tracking problem is
transformed into a linear state estimation solved by Kalman
filter. Further, this kernel Kalman filter (KKF) is decomposed
into a decentralized fashion in a way to collect sensor data
efficiently over a hierarchical network structure with different
clusters. To adapt the algorithm to unknown process noise, a
decentralized variational Bayesian KKF is proposed to learn
the distributions of system unknown variables.

Index Terms— Diffusion field estimation, nonlinear, ker-
nel method, Kalman filter, variational Bayesian method

1. INTRODUCTION

Sensor networks can be applied to estimate spatially dis-
tributed fields. The main idea is to utilize collected sensor
data to model the environment functions such as temperature,
salinity or magnetic field in a specific region [1]. Usually,
these functions are nonlinear. The kernel method has been
successfully applied for nonlinear estimation in the past [2].
By transforming the input data to the high dimensional fea-
ture space, nonlinear problems can be modeled linearly. The
kernel-based least squares (LS) estimation [3] and varieties of
kernel adaptive filters [4], [5] have been studied for nonlinear
estimation. However, when estimating dynamic fields, LS-
based methods may have limited performance. The authors in
[6] propose a kernel Kalman filter (KKF) for estimating time-
varying nonlinear systems and it shows good performance
compared to the kernel least mean squares algorithm. How-
ever, in [6] spatially distributed fields are not the main focus.
In [7], a dynamic field is approximated by a linear combi-

nation of known basis functions which are not specified as
kernels. By building up a proper linear dynamic model on co-
efficients of the linear combination, a decentralized Kalman
filter is proposed to reconstruct the dynamic field. In practice,
the absence of good model for system dynamics will restrict
the performance of the Kalman filter. Hence, some model pa-
rameters should be estimated or learned, such as a variational
Bayesian treatment of linear dynamic systems [8].

In this work, our main contribution is to exploit a kernel
Kalman filter for time-varying diffusion field estimation in
a decentralized fashion and adapt the algorithm to unknown
system parameters with variational Bayesian method. Similar
to [7], we specify the basis functions as kernels in the repro-
ducing kernel Hilbert space (RKHS) and construct a simple
process model to capture the dynamical properties of the field
with unknown Gaussian noise. Then a kernel-based Kalman
filer is analyzed in a Bayesian perspective for further varia-
tional Bayesian treatment of linear dynamic systems to learn
distributions of unknown variables. In addition, we illustrate
a decentralized estimation by efficiently collecting data over
hierarchical sensor networks separated into clusters. The de-
centralized processing overcomes a single point of failure of a
central processing unit and avoids complicated routing proto-
cols. Finally, numerical simulation results are shown to com-
pare the performance of different algorithms.

2. SYSTEM MODEL

Consider a diffusion field f(x, t) with M instantaneous
sources localized in a 2D plane in an isotropic medium.
The function f(x, t) : X → R which maps 2D positions
x ∈ X ⊂ R2 to a scalar real value at time t is modeled by
[9]:

f(x, t)=

M∑
m=1

bm
4πν·(t− tm)

exp

(
−‖x− pm‖

2

4ν·(t− tm)

)
h(t−tm),

(1)
where the source m at Cartesian position pm with intensity
bm is activated at time tm. h(t) is the Heaviside-function and
parameter ν is the diffusion constant of the medium. This dif-
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Fig. 1. Left: An example of the diffusion field (1) at a spe-
cific time instant with two sources and sensor measurements;
Right: Contour of the field with source (×), sensor (◦) and
cluster head (•) positions.

fusion field is sampled and measured at every ∆t interval by
Ns sensor nodes which are randomly deployed over a specific
area. We use k to indicate the time index such that tk = k∆t
where k ∈ N+. Each node j ∈ Ns, where Ns is a set of
nodes, has a time-invariant position xj . We assume that the
positions of all sensor nodes are global knowledge which can
be obtain at each sensor by broadcast. The local measurement
model at each node j ∈ Ns at time instant k is

dj,k = f(xj , tk) + nj,k, (2)

where nj,k ∼ N (0, σ2
n) is node and time uncorrelated, i.e.,

E{nj,knp,q} = σ2
nδj,pδk,q with the Kronecker delta.

These sensors form a hierarchical network with Nc clus-
ters without overlap. Each cluster involves: one cluster head
(CH) and normal nodes (NNs). We assume that each NN only
connects to the CH in its cluster and different CHs can ex-
change information. Thus, data over the network is aggre-
gated more efficiently compared to homogeneous networks
and only CHs process data with information exchange among
neighboring CHs in order to diminish the processing efforts of
NNs and save power. An example of the diffusion field mea-
sured by sensors in a hierarchical structure is shown in Fig. 1.
Now our objective is to estimate/track the nonlinear time-
varying diffusion field f( · , tk) at each time instant k based
on the input and sequential output data set {xj , dj,1:k}Ns

j=1.

3. PROBLEM FORMULATION

3.1. Reformulated Measurement Model with Kernel
Method

If we only consider the instantaneous measurement model (2)
at k to estimate the unknown f( · , tk), a nonlinear estimation
with kernel trick [2] can be performed. In this way, nonlin-
ear algorithms are transformed into linear ones formulated by
only inner products. Define a kernel function κ: X ×X → R
which represents an inner product of two input sample xj

and xi in a high dimensional feature space with the relation:
κ(xj ,xi) = ΦT(xj)Φ(xi). By choosing Φ(x) = κ( · ,x),

the input samples x in the input space X is mapped to a spe-
cial case of feature space called reproducing kernel Hilbert
space (RKHS) H [2], which is a vector space of functions.
Using such kernels, the nonlinear function f( · , tk) at a time
instant k has a linear representation in H. Based on (2), we
can apply the LS criterion by minimizing a sum ofNs squared
residuals between measurements dj,k and estimated f̂( · , tk)
to find the optimal solution f∗( · , tk) inH [3] as

f∗( · , tk) = arg min
f̂∈H

Ns∑
j=1

|dj,k − f̂(xj , tk)|2. (3)

According to the representer theorem [2], f̂(·, tk) as a solu-
tion of (3) can be represented by a linear combination of ker-
nel functions centered at Ns input samples with weights wj,k

as

f̂( · , tk) =

Ns∑
j=1

wj,kκ( · ,xj). (4)

The terms of this linear combination can be reduced by apply-
ing dictionary learning [10]. Thus, some input data (here sen-
sor positions) with high similarity will be removed from the
calculation to enhance computation efficiency while keeping
performance. We define a dictionary set D = {κ( · , x̃`)}Nd

`=1

containing kernel functions centered at Nd input samples
which can be selected locally from global known Ns sensor
positions after dictionary learning. Then, (4) is changed into

f̂( · , tk) =

Nd∑
`=1

w`,kκ( · , x̃`). (5)

With (5), the original LS problem (3) can be reformulated into
a kernel least squares (KLS) estimation with a stacked weight
vector wk = [w1,k, · · · , wNd,k]T ∈ RNd and a vector of
kernel evaluations κ(xj) = [κ(xj , x̃1), · · · , κ(xj , x̃Nd

)]T ∈
RNd :

w∗k = arg min
wk∈RNd

Ns∑
j=1

|dj,k −wT
kκ(xj)|2. (6)

Thus, the objective is reduced to finding the optimal weight
vector w instead of searching for a function f inH.

Based on (6), we can approximate the local measurement
model (2) at each node j ∈ Ns by

dj,k = wT
kκ(xj) + nj,k. (7)

All local measurement models can be stacked into a central-
ized form at each time instant k as

dk = Kwk + nk, (8)

where dk = [d1,k,· · ·, dNs,k]T ∈RNs is the stacked measure-
ment vector,K=[κ(x1),· · ·,κ(xNs

)]T∈RNs×Nd is the fea-
ture matrix and nk = [n1,k,· · ·, nNs,k]T ∈RNs is the stacked
measurement noise vector with covariance Rk = σ2

nINs .
Note that the feature matrix K is time-invariant because we
assume that the sensor positions are fixed during the whole
measurement procedure.



3.2. Process Model

So far, we generate a kernel-based measurement model (8) to
deal with the nonlinear estimation more easily. Since the dif-
fusion field is time-varying, using only the instantaneous data
set at a specific time instant k for estimation may degrade the
performance. Definitely, the weight vectorwk should also be
time-varying to capture the change of diffusion field f( · , tk)
along with the increasing time instant k. As [6], wk can be
modeled by a first-order Markov process corrupted by Gaus-
sian random noise:

wk+1 = F kwk + qk, (9)

whereF k ∈ RNd×Nd is a process matrix and qk ∼ N (0,Qk)
is zero mean Gaussian noise with covariance matrix Qk.
However, both parameters F k and Qk highly depend on the
properties of the true diffusion field and are unknown in our
case. In the absence of good knowledge on system dynamics,
we can set F k = INd

[7]. The process noise covariance
matrix Qk should be estimated or learned. Thus, a Gaussian
random walk process model is formulated. Equations (9) and
(8) can be regarded as a kernel-based state-space model of a
linear dynamic system with system state variable wk.

3.3. Problem Formulation

The main task is to estimate the system state wk based
on available sequential data set from time instant 1 to k:
{xj , dj,1:k}Ns

j=1. We can apply the Kalman filter to solve
this state estimation problem. The Kalman filter [11] is an
optimal filter in the minimum mean square error (MMSE)
sense to estimate system state based on the state-space model
(9) and (8) with accurate noise parameters. It can be de-
rived in a Bayesian viewpoint [12] by inferring the posterior
distribution based on the likelihood and prior distribution as

p(wk|d1:k) ∝ p(dk|wk)p(wk|d1:k−1). (10)

Because of assumed Gaussian noise in (9) and (8), all above
distributions are Gaussian distributed. Here, the prior distri-
bution is defined by p(wk|d1:k−1)=N (wk;ŵk|k−1,P k|k−1)
with prediction mean ŵk|k−1 and covariance P k|k−1, where
the subscript notation k|k − 1 is used to denote the estimate
at time instant k given measurements up to k − 1. From
(8), the likelihood distribution is determined by p(dk|wk) =
N (dk;Kwk,Rk). The posterior distribution is defined by
p(wk|d1:k) = N (wk; ŵk|k,P k|k) with posterior mean ŵk|k
and covariance P k|k. To estimate the system state ŵk|k,
the maximum-a-posteriori (MAP) estimation problem can be
solved:

ŵk|k = arg max
wk∈RNd

p(wk|d1:k)

= arg max
wk∈RNd

p(dk|wk)p(wk|d1:k−1),
(11)

which is equivalent to the MMSE estimation under Gaussian
assumptions [13], i.e., the a-posteriori state estimate ŵk|k is
given by the mean of p(wk|d1:k).

4. DECENTRALIZED KERNEL KALMAN FILTER

In the Kalman filter, the mean and covariance of prior dis-
tribution can be predicted based on the process model (9).
Then, by plugging the Gaussian likelihood and prior distribu-
tion into (11), the MAP problem can be solved to update the
mean and covariance of posterior distribution. Thus, central-
ized KKF (CKKF) update equations can be obtained [13]:

Predict step:
ŵk|k−1 = F k−1ŵk−1|k−1, (12)

P k|k−1 = F k−1P k−1|k−1F
T
k−1 +Qk−1, (13)

Update step:

P k|k =
(
P−1k|k−1 +KTR−1k K

)−1
, (14)

ŵk|k = P k|k(KTR−1k dk + P−1k|k−1ŵk|k−1). (15)

Note that equations (14) and (15) are equivalent to the tra-
ditional form of Kalman filter. This form is more suitable
for decentralized implementation of the filter. With a hierar-
chical sensor network structure, each NN first transmit local
measurement dj,k to its CH forming a stacked vector dc,k,
∀c ∈ Nc, where Nc is a set of clusters. The centralized
stacked feature matrix and measurement noise covariance ma-
trix can also be separated into blocks corresponding to clus-
ters as K = [KT

1 , · · · ,K
T
Nc

]T and block diagonal Rk =
blkdiag[R1,k, · · · ,RNc,k]. Thus, the following two terms in
(14) and (15) collect the global data from all Nc CHs as:

KTR−1k K =

Nc∑
c=1

KT
c R
−1
c,kKc, (16)

KTR−1k dk =

Nc∑
c=1

KT
c R
−1
c,kdc,k. (17)

If the communication network of CHs is fully connected,
summations in (16) and (17) are immediately obtained by in-
formation exchange on terms KT

c R
−1
c,kKc and KT

c R
−1
c,kdc,k

among CHs. If not, an average consensus scheme [14] can be
applied to iteratively calculate (16) and (17). An alternative
for consensus is to directly decompose (11) subject to a con-
sensus constraint [13]. In [15], a proposed diffusion Kalman
filter is another choice for an arbitrary network. There, (16)
and (17) are approximated at each CH c by a collection of
information in a neighboring cluster set Ac including c itself
as

U c,k =
∑
i∈Ac

KT
i R
−1
i,kKi, (18)

uc,k =
∑
i∈Ac

KT
i R
−1
i,kdi,k. (19)



Then a update step is performed at each c ∈ Nc:

P c,k|k =
(
P−1c,k|k−1 +U c,k

)−1
, (20)

ϕ̂c,k|k = P c,k|k

(
uc,k + P−1c,k|k−1ŵc,k|k−1

)
, (21)

ŵc,k|k =
∑
i∈Ac

rc,kϕ̂c,k|k, (22)

where (22) is a weighted average step to combine the interme-
diate state estimate ϕ̂c,k|k inAc and the weight rc,k is decided
by network topologies [15]. However, the result can be sub-
optimal compared to the central solution. In our work, to fast
reach the optimal central solution, we suppose a fully con-
nected communication network among CHs. Thus, each CH
acts as a central node to gather the whole network information
using (18), (19) and perform a local update step as (20), (21)
which are identical to the central form (14), (15). Then, the
subsequent predict step is calculated locally at each CH.

5. NOISE ADAPTIVE KERNEL KALMAN FILTER

To adapt the KKF to the unknown process noise, we first
present a parameter estimation applied in [16] and [6] as
a comparison. Then, we exploit the variational Bayesian
method to learn distributions of unknown variables in the
linear dynamic system in a decentralized way.

5.1. Parameter Estimation

As proposed in [16], the process noise covariance matrix is
assumed to be Qk = σ2

qINd
. Then the parameter σ2

q at each
time instant k is estimated by

σ̂2
q (k) =

‖ŵk|k − ŵk|k−1‖22
Nd

. (23)

An estimated σ̂2
q (k) achieves a compromise between good

tracking when the KF at the beginning of the convergent stage
or when a sudden change comes to the system and low mis-
alignment when the KF converges to the steady-state. How-
ever, a simple diagonal matrix Qk may not sufficient to cap-
ture the statistics of the time-varying state wk.

5.2. Parameter Learning

Another noise adaptive Kalman filter is a variational Bayesian
method to online learn distributions of unknown variables
based on sequential measurement data. There are different
considerations to adapt the KF algorithm to an unknown Qk

such as [17] and [18]. Recall the update equations of KF in
(12)-(14). With (13), it is obvious that P k|k−1 depends on
Qk−1 and will further influence the update of posterior dis-
tribution onwk. Instead of learning the unknownQk−1, here
we refer to the idea of [17] to learn the distributions of co-
variance matrix P k|k−1 and system state wk together based

on sequential data set {xj , dj,1:k}Ns
j=1 up to time k. Note that

here P k|k−1 with subscript notation k|k − 1 is regarded as a
random variable. The problem now is to calculate the joint
posterior distribution which is proportionate to the likelihood
times joint prior distribution:

p(wk,P k|k−1|d1:k) ∝ p(dk|wk)p(wk,P k|k−1|d1:k−1).
(24)

To update the posterior distribution in (24) along with time in-
stants, conjugate priors are chosen which ensure the prior and
posterior distribution are in the same model given a likelihood
in order to make the calculation mathematically tractable.
Following the Bayesian statistics, the inverse Wishart (IW)
distribution is used to model the covariance matrix of a
Gaussian form given its mean [19]. Thus, the prior term
p(wk,P k|k−1|d1:k−1) in (24) can be written as a product of
a Gaussian distribution and an IW distribution:

p(wk,P k|k−1|d1:k−1) =N (wk; ŵk|k−1,P k|k−1)×
IW(P k|k−1; vk|k−1,W k|k−1),

(25)
where ŵk|k−1, P k|k−1, vk|k−1 and W k|k−1 are the learning
parameters. To capture the prior information of P k|k−1, we
select vk|k−1 andW k|k−1 such that the mean of IW distribu-
tionW k|k−1/(vk|k−1−Nd− 1) is set to be the prediction of
P k|k−1 in (13) with a pre-selected nominal Q̃k−1 as

W k|k−1

vk|k−1 −Nd − 1
= P̃ k|k−1 =F k−1P k−1|k−1F

T
k−1+Q̃k−1.

(26)
The selected prior parameters of IW distribution are

vk|k−1 = θ +Nd + 1, (27)

W k|k−1 = θP̃ k|k−1 (28)

with a defined tuning parameter θ > 0 which reflects how the
algorithm balances process model information in the update
step [17]. After choosing proper conjugate priors as shown
in (25), the VB-approach is seeking a function q(Θk) with
Θk = {wk,P k|k−1} to approximate the posterior distribu-
tion p(wk,P k|k−1|d1:k) by minimizing the Kullback-Leibler
(KL) divergence between the function q and the true posterior
[19]:

KL[q(Θk)‖p(Θk|d1:k)]=

∫
q(Θk) log

q(Θk)

p(Θk|d1:k)
dΘk>0.

(29)
To obtain an analytical solution, the standard VB-approach
applies the mean-field approximation [19] to factorize q in
disjoint groups:

q(Θk) = q(wk)q(P k|k−1), (30)

where the two separated functions have the following distri-
butions:

q(wk) = N (wk; ŵk|k,P k|k), (31)
q(P k|k−1) = IW(P k|k−1; vk|k,W k|k). (32)



Then, substitute (30) into (29) to minimize KL divergence,
we get the optimal solution of each partition:

ln q∗(wk) = EP k|k−1

{
ln p(wk,P k|k−1,d1:k)

}
+ const.,

(33)

ln q∗(P k|k−1) = Ewk

{
ln p(wk,P k|k−1,d1:k)

}
+ const.,

(34)

where the joint distribution p(wk,P k|k−1,d1:k) = p(dk|wk)
p(wk|d1:k−1,P k|k−1)p(P k|k−1|d1:k−1)p(d1:k−1). By cal-
culating (33) and (34), the parameters in (31) and (32) are
updated iteratively in an inner VB-iteration l as

vlk|k = vk|k−1 + 1, (35)

W l
k|k = W k|k−1 + P l−1

k|k + (ŵl−1
k|k −ŵk|k−1)×

(ŵl−1
k|k − ŵk|k−1)T, (36)

P l
k|k−1 = W l

k|k/(v
l
k|k −Nd − 1), (37)

P l
k|k =

(
(P l

k|k−1)−1 +KTR−1k K
)−1

, (38)

ŵl
k|k = P l

k|k

(
KTR−1k dk + (P l

k|k−1)−1ŵk|k−1

)
(39)

with initialization ŵ0
k|k = ŵk|k−1, P 0

k|k = P k|k−1 and (27)
(28). After VB-iteration, the subsequent predict step follows
(12) and (13). Due to limited space of this paper, readers can
refer to [17] for details on derivation and parameter tuning.

To distinguish these two noise adaptive approaches, here
we name the first one as noise adaptive KKF with Q estima-
tion (NAKKF Q) and the second one as variational Bayesian
KKF (VBKKF). To process the VBKKF in a decentralized
mode, only the updates (38) and (39) on parameters of state
wk require information from neighboring clusters following
the procedure in section 4. The parameters vk|k and W k|k of
P k|k−1 can be updated locally.

6. SIMULATION RESULTS

To evaluate the performance of KKF for diffusion field esti-
mation, we generate a M = 2 sources field with diffusion
constant ν = 0.01 based on (1). These two sources have
intensities b1 = 1, b2 = 0.7 at positions p1 = [0.3, 0.3]T,
p2 = [0.8, 0.6]T activating at time t1 = 0, t2 = 10. This
field is sampled at every ∆t = 0.2 up to the total simulation
time T = 20 and measured by a randomly deployed sensor
network with Ns = 80 sensors in a unit square area separated
into Nc = 4 clusters. The communication links among CHs
are assumed to be ideal and fully connected. We set param-
eters F k = INd

, σ2
n = 0.01 and a nominal Q̃k = σ2

qINd

with σ2
q = 10−4 in the state-space model. Here, a Gaus-

sian kernel [2] κ(xj ,xi) = exp{−‖xj − xi‖2/(2ζ2)} is
applied to match the form of system model (1) with adap-
tive kernel bandwidth ζ =

√
2νk [3]. The decentralized

KKF and two noise adaptive algorithms are applied to track
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Fig. 2. (a) Field MSE vs time instant k with time-invariant
intensities; (b) Field MSE vs time instant k with time-variant
intensities; (c) Averaged filed MSE over time vs inner VB
iteration for VBKKF.

this time-varying diffusion field over a hierarchical sensor
network compared to the central KLS solution and another
KDiCE algorithm [3] which is designed for distributed KLS
regression. To reduce computation effort, a dictionary set D
is selected by the coherence criterion [3, eq. (18)] with thresh-
old τ = 0.8. The initial mean and covariance of system state
are ŵ0|0 = 0Nd

, P 0|0 = INd
. For VBKKF, we choose θ = 3

and run 5 inner VB-iteration under each time instant k. For
KDiCE, the step-size is set to be 1 and only one inner iteration
is simulated per k. We calculate the mean square error (MSE)
per k between the true and estimated field averaged over Nc

clusters and Ng grid sample points in a unit square area:

MSEk =
1

Nc

1

Ng

Nc∑
c=1

Ng∑
g=1

‖f(xg, tk)−ŵT
c,k|kκ(xg)‖2, (40)

which is further averaged over 200 Monte Carlo simulations
with random realizations of nj,k and sensor positions.

Fig. 2(a) shows online tracking curves of different algo-
rithms along with the increasing time instant k. Note that in
simulations, KKF, NAKKF Q and VBKKF are all decentral-
ized algorithms. Due to the activation of the second source,
there is a sudden change at k = 50. It is obvious that various
KKF algorithms which estimate the field based on all data
set up to the current time instant outperforms the KLS and
KLS-based KDiCE algorithm. The NAKKF Q has the best
steady-state performance at the first stage but has a slower
adaptation to the sudden change compared to VBKKF. Then,
we change the field with time-varying intensities bm × (1 −
0.2 sin(2π10−1.2k)) to observe the tracking capabilities of
different algorithms for this continuous changing. The results



are shown in Fig. 2(b) indicating that VBKKF adapts to the
unknown process noise well in this case and achieves the best
tracking performance. Fig. 2(c) illustrates that the averaged
field MSE over time instant k is decreasing along with the
increasing number of VB-iterations for VBKKF. The curves
asymptotically converge to certain solutions. However, each
solution is different from the true joint posterior distribution
in (24), i.e., KL divergence will not reach zero. The reason
is variable wk and P k|k−1 are dependent, but in VB-method
they are assumed to be independent with the mean-field ap-
proximation (30). In the previous simulations, we choose VB-
iteration to 5, which is a good choice confirmed in Fig. 2(c).
This choice makes VBKKF achieve a good estimation result
meanwhile keeping low computation effort. In other words,
the tracking performance of VBKKF in Fig. 2(a)(b) can be
further improved by increasing VB-iterations.

7. CONCLUSION

In this paper, a kernel-based Kalman filter is investigated to
track time-varying diffusion fields over hierarchical sensor
networks in a decentralized fashion. We further exploit a
decentralized VBKKF to learn the distribution of system un-
known variables. Simulations show that KKF outperforms
the KLS-based approaches. Compared to NAKKF Q, the
learning-based VBKKF has the potential to track complicated
diffusion fields, e.g., with continuously changing intensities.

8. REFERENCES

[1] S. N. Simić and S. Sastry, “Distributed environmental
monitoring using random sensor networks,” in Informa-
tion Processing in Sensor Networks. Springer, 2003, pp.
582–592.

[2] B. Schölkopf and A. J. Smola, Learning with kernels:
support vector machines, regularization, optimization,
and beyond, MIT press, 2002.

[3] B. S. Shin, H. Paul, and A. Dekorsy, “Distributed kernel
least squares for nonlinear regression applied to sensor
networks,” in 2016 24th European Signal Processing
Conference (EUSIPCO). IEEE, Sep. 2016, pp. 1588–
1592.

[4] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel adaptive
filtering, John Wiley & Sons, 2010.

[5] B. S. Shin, M. Yukawa, R. L. G. Cavalcante, and
A. Dekorsy, “Distributed adaptive learning with mul-
tiple kernels in diffusion networks,” IEEE Trans. Signal
Process., vol. 66, no. 21, pp. 5505–5519, Nov. 2018.

[6] J. B. Rosinha, S. J. M. de Almeida, and J. C. M.
Bermudez, “A new kernel Kalman filter algorithm for
estimating time-varying nonlinear systems,” in 2017
IEEE Int. Symposium on Circuits and Systems (ISCAS).
IEEE, May. 2017, pp. 1–4.

[7] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Free-
man, “Decentralized environmental modeling by mobile
sensor networks,” IEEE Trans. Robotics, vol. 24, no. 3,
pp. 710–724, Jun. 2008.

[8] M. J. Beal, Variational algorithms for approximate
Bayesian inference, University of London, 2003.

[9] Y. M. Lu, P. L. Dragotti, and M. Vetterli, “Localiz-
ing point sources in diffusion fields from spatiotemporal
samples,” in Proc. Int. Conf. on Sampling Theory and
Applications (SampTA), Jun. 2011.

[10] C. Richard, J. C. M. Bermudez, and P. Honeine, “On-
line prediction of time series data with kernels,” IEEE
Trans. Signal Process., vol. 57, no. 3, pp. 1058–1067,
Mar. 2009.

[11] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of Basic Engineering,
vol. 82, no. 1, pp. 35–45, 1960.

[12] Z. Chen, “Bayesian filtering: from Kalman filters to
particle filters, and beyond,” Statistics, vol. 182, no. 1,
pp. 1–69, 2003.

[13] S. Wang, H. Paul, and A. Dekorsy, “Distributed opti-
mal consensus-based Kalman filtering and its relation to
MAP estimation,” in 2018 IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, Apr.
2018, pp. 3664–3668.

[14] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consen-
sus and cooperation in networked multi-agent systems,”
Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

[15] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies
for distributed Kalman filtering and smoothing,” IEEE
Trans. Automat. Contr., vol. 55, no. 9, pp. 2069–2084,
Sep. 2010.

[16] C. Paleologu, J. Benesty, and S. Ciochin, “Study of
the general Kalman filter for echo cancellation,” IEEE
Trans. Audio Speech Language Process., vol. 21, no. 8,
pp. 1539–1549, Aug. 2013.

[17] Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, “A
novel adaptive Kalman filter with inaccurate process and
measurement noise covariance matrices,” IEEE Trans.
Automat. Contr., vol. 63, no. 2, pp. 594–601, Feb. 2018.

[18] J. Ma, H. Lan, Z. Wang, X. Wang, Q. Pan, and B. Moran,
“Improved adaptive Kalman filter with unknown pro-
cess noise covariance,” in 2018 21st Int. Conf. on In-
formation Fusion (FUSION), Jul. 2018, pp. 1–5.

[19] C. M. Bishop, Pattern recognition and machine learn-
ing, Springer, 2006.


