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Abstract—The focus is on Wyner-Ziv type distributed fronthaul
compression for the uplink of Cloud Radio Access Networks with
single-hop topology to leverage the correlation among the received
signals of neighboring Radio Access Points. For this, we highlight
the relation between the problem at hand and the Chief Executive
Officer source coding under logarithmic-loss distortion and depict
that the achievability arguments from the latter verify addressing
the postulated optimization. Subsequently, we derive the pertinent
optimal solution and utilize that as the backbone of the Generalized
Distributed Information Bottleneck (G-DIB) routine proposed here
to tackle the considered remote source coding problem. As its name
suggests, this novel approach in its very core spirit extends the
State-of-the-Art Distributed Information Bottleneck (DIB) method
byenabling individual rate constraints for various fronthaul links.

I. INTRODUCTION

CloudRadioAccessNetworks (Cloud-RANs) featureanumber
of advantages compared to the conventional cellular architecture,
incorporating more efficient interference management and traffic
handling [1], [2]. These fortes are secured mostly due to the
centralized processing of data that is realized by transferring the
baseband information to (and from) the cloud using a fronthaul
network. However, it is well known that the fronthaul capacity
limitations inflict an overwhelming bottleneck on the overall
performance. Hence, advanced compression schemes are highly
requested to ameliorate the aforementioned situation.

At the uplink, a practical (optimal under obliviousness [3])
strategy to tackle this problem is the Compress-and-Forward
wherein Radio Access Points (RAPs) quantize their baseband
signals ahead of forwarding them to the cloud-based Central
Processor (CP). Point-to-point and multiterminal compression
are various techniques for realizing such a strategy [4]. In our
previous investigation [5] we studied the point-to-point fronthaul
compression for the uplink of single-hop Cloud-RAN topology
in which all RAPs are directly connected to the CP. To address
the system design problem we tailored the flexible structure of
Multivariate Information Bottleneck [6]. In this work, we focus
on the multiterminal compression. Contrary to the point-to-point
compression, the multiterminal technique allows for the joint
decompression of signals from adjacent RAPs to exploit their
correlations. The focal idea behind is to perform the Wyner-Ziv
type coding [7], [8] that is based on the consecutive leveraging of
side information by decompressors for enabling the compressors
to enhance their descriptions’ granularity.

Explicitly, first we provide an information-theoretic validation
regarding our considered design optimization. To that end, we
exploit the single-letter characterization of the achievable rate-
information region for the Distributed Information Bottleneck
(DIB) setup presented in [9]. This result is, indeed, based on the
study of the Chief Executive Officer (CEO) multiterminal source
coding problem under logarithmic-loss [10]. Subsequently, by
exploiting the Variational Calculus we derive the formal optimal
solution per quantizer mapping of the individual RAPs and
utilize its particular structure for devising an iterative algorithm,
the Generalized DIB (G-DIB), to tackle the considered design
problem. This novel approach directly extends the State-of-the-
Art Blahut-Arimoto (BA)-type routine [9] by allowing for a set
of individual rate constraints for various fronthaul links rather
than presuming merely a single constraint on the fronthauls’ sum
rate. Furthermore, we mathematically discuss the suboptimality
of an available heuristic [11] aiming at attacking the same design
problem and, later on, through some numerical investigations we
substantiate its performance inferiority as well.

Notation: The random variable, a, with the probability mass
function,p(a), accepts particular realizations,a, from its domain,
A. With boldface counterparts, the same applies to the random
vector, a. H( · ), DKL( · ∥ · ), D{ · , · }

JS ( · ∥ · ) and I( · ; · ) denote
Shannon’s and relative entropy, Jensen-Shannon divergence and
mutual information [12], [13]. By a1:j is meant {a1, · · · , aj}
and, more generally, by aJ is meant {aj |j ∈ J } for a given
set, J , while a-ℓ

J excludes aℓ from aJ . Further, J c denotes the
complement set ofJ , and [ · ]+=max{0, · }.

II. MULTITERMINAL FRONTHAUL COMPRESSION

A. System Model & Problem Formulation

Consider the depicted system model in Fig. 1 where a certain
User Equipment (UE) signal, x, is presumed to be supported by
a number, J , of RAPs. The noisy observation signals, yπ(j) for
j = 1, · · · , J , must be compressed prior to getting transmitted
over the respective fronthaul channels with limited capacities,
Cπ(j), to the CP (with a fixed processing order, π). There, the
decompression of the received signals is supposed to be done in
a consecutive manner such that at the π(j)-th decompressor, the
already retrieved signals, ŷπ(1):π(j−1), can be exploited as side
information. It is presumed that given the UE signal,x, the signals
of different RAPs, yπ(j) and yπ(ℓ) for j ̸=ℓ, are independent.
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Fig. 1. Multiterminal fronthaul compression at the uplink of Cloud-RAN

Following the information-theoretic arguments [14] and under
purely Gaussian assumptions, the relation between each RAP
signal, yπ(j), and its compressed counterpart, ŷπ(j), can be
modeled as [4]

ŷπ(j) = yπ(j) + qπ(j), (1)

wherein the quantization noise, qπ(j), that is independent of yπ(j)
is considered as a complex Gaussian random variable with zero
mean and the variance, Ωπ(j). A classical information-theoretic
result ensures the attainability of the quantization error variance,
Ωπ(j), utilizing the Wyner-Ziv type compression if the fronthaul
capacity,Cπ(j), satisfies the inequality

I(yπ(j); ŷπ(j)|ŷπ(1):π(j−1)) ≤ Cπ(j) . (2)

The respective system design problem is then formulated as a
constrained optimization in which the overall transmission rate,
I(x; ŷπ(1):π(J)), is intended to be maximized under a set of
side constraints stipulated in (2) for a fixed π (that is subject
to optimization). This maximization is performed over the set
of all quantization error variances, W = {Ωπ(1), · · · ,Ωπ(J)}.
Explicitly, one has to address the following problem

W∗ = argmax
W: ∀j (2) applies

I(x; ŷπ(1):π(J)) . (3)

Aside from Gaussian assumptions, in practice, the UE signal,
x, is usually chosen from a finite constellation, X . Moreover, as
the received signals of the individual RAPs are first discretized
and sampled, the same can also be presumed for yπ(j), i.e.,
having a finite alphabet, Yπ(j). Now, the relation between each
RAP signal, yπ(j), and its compressed counterpart, ŷπ(j), can
be described by a (possibly soft) mapping, p(ŷπ(j)|yπ(j)). As a
direct ramification, at the very first step the design problem (3)
shall be modified such that now the aforementioned constrained
maximization should be performed over the set of all quantizer
mappings, Q= {p(ŷπ(1)|yπ(1)), · · · , p(ŷπ(J)|yπ(J))}. A basic
question arising at this point is about the information-theoretic
verification for this generalized discrete arrangement. In other
words, one has to ponder whether it still makes sense to consider
the same optimization for system design, i.e.,

Q∗ = argmax
Q: ∀j (2) applies

I(x; ŷπ(1):π(J)) . (4)

The clear answer to this basic question lies in the achievability
arguments of the CEO problem under logarithmic-loss [10].

B. Apposite Achievability Arguments

In [10], the authors provided the single-letter characterization
of the achievable rate-distortion region for the general setup of
CEO problem [15] featuring J encoders under logarithmic-loss
distortion. The roadmap there was to provide an inner- and a
matching outer-bound for the achievable region and to show that
the outer-bound is, indeed, a subset of the inner-bound, indicating
that both are tight. This brilliant result was, later on, leveraged
in [9] for single-letter characterization of the achievable rate-
information region of the considered Distributed Information
Bottleneck setup. The connecting trick was to depict that the
relation between the distortion upper-bound,D, in the former and
the information lower-bound, I , in the latter will be set through
D=H(x)−I , withH(x)denoting the entropy of the source (UE)
signal, x. In this part, we minimally recap the main results of [9],
[10] to demonstrate that both the inner- and outer-bounds from
the achievability arguments are in full accordance with the stated
optimization (4) regarding the system design for multiterminal
compression at the uplink of Cloud-RAN (under obliviousness
assumption at RAPs, i.e., no knowledge on the UE codebook).

Denoting byRDlog
CEO the achievable rate-distortion region for

the CEO problem with J encoders under logarithmic-loss [10],
the following propositions apply (ruling out time-sharing):
Proposition 1 (Berger-Tung Inner-Bound [16], [17]): Define
RDlog, inn.

CEO as the set of all rate-distortion tuples (D,R1, · · · , RJ)
satisfying (symbol-wise description length,Rj , for j-th encoder)

I(yJ ; zJ |zJ c) ≤
∑
j∈J

Rj (5a)

H(x|z1:J) ≤ D, (5b)

with J ⊆{1, · · · , J} for the source signal, x, the observations,
y1:J , and a set of auxiliary random variables, z1:J , such that
the Markov chain zj↔ yj↔ x↔ yℓ↔ zℓ is formed for every
pair j, ℓ∈{1, · · · , J} and j ̸=ℓ. It holds RDlog, inn.

CEO ⊆RDlog
CEO.

Proposition 2 (Courtade-Weissman Outer-Bound [10]): Define
RDlog, out.

CEO as the set of all rate-distortion tuples (D,R1, · · · , RJ)
satisfying (symbol-wise description length,Rj , for j-th encoder)[∑

j∈J
I(yj ; zj |x) +H(x|zJ c)−D

]+
≤

∑
j∈J

Rj (6a)

H(x|z1:J) ≤ D, (6b)

with J ⊆{1, · · · , J} for the source signal, x, the observations,
y1:J , and a set of auxiliary random variables, z1:J , such that
the Markov chain zj↔ yj↔ x↔ yℓ↔ zℓ is formed for every
pair j, ℓ∈{1, · · · , J} and j ̸=ℓ. It holds RDlog

CEO⊆RD
log, out.
CEO .

Proposition3 (Tightness [10]): ItholdsRDlog, out.
CEO ⊆RDlog, inn.

CEO ,
indicating both are tight, i.e.,RDlog

CEO=RD
log, inn.
CEO =RDlog, out.

CEO .

Substituting D by H(x)−I , the respective inner- and outer-
bounds for RIDIB, i.e., the achievable rate-information region
for the DIB problem [9], are directly obtained. Explicitly, using
I(x; z1:J)=H(x)−H(x|z1:J), (5b) and (6b) will be replaced by

H(x|z1:J) ≤ H(x)−I ⇒ I ≤ I(x; z1:J) . (7)



Analogously, (6a) will be rewritten as[∑
j∈J

I(yj ; zj |x)− I(x; zJ c) + I
]+
≤

∑
j∈J

Rj . (8)

Focusing on the presented inner-bound, for the special case of
J ={1, · · · , J} the DIB-adapted version of (5) boils down to

I(y1:J ; z1:J) ≤
J∑
j=1

Rj (9a)

I ≤ I(x; z1:J) . (9b)

Through the substitutions zj = ŷπ(j) and Rj = Cπ(j) and with
the application of the chain rule for mutual information, the sum
over all individual constraints in (2) brings about (9a). Naturally,
thegoal is then tomaximize the (achievable)upper-bound in (9b).
This is fully aligned with the stated design optimization (4).

Now, we consider the presented outer-bound. Rewriting (8) as

I ≤
∑
j∈J

(
Rj − I(yj ; zj |x)

)
+ I(x; zJ c), (10)

with two extreme choices of J =∅ and J ={1, · · · , J}, it is
directly inferred that

I ≤ min

I(x; z1:J),
J∑
j=1

Rj −
J∑
j=1

I(yj ; zj |x)

 . (11)

This, in turn, justifies the definition of information-rate function
in [9] for the DIB setup. From the Markov chain x↔y1:J↔z1:J
it can be deduced that the following holds

J∑
j=1

I(yj ; zj |x) = I(y1:J ; z1:J |x)

= I(y1:J ; z1:J)− I(x; z1:J) .

(12)

Through the same substitutions as previously mentioned and
by assuming individual rate constraints in the form of (2) it is
directly inferred that the second operand at the right-side of (11)
becomes greater or equal than the first one. Consequently, (11)
boils down to (9b) and, once again, it is straightly deduced that
the provided outer-bound is in full accordance with the stated
design optimization (4). All in all, the conducted analysis yields
the information-theoretic verification regarding the validity of
(4) when considering a purely discrete model. In the next part,
employing the Variational Calculus we characterize the formal
optimal solution per quantizer mapping of the individual RAPs.
The obtained result will be utilized as the backbone of the devised
iterative algorithm, the G-DIB, to tackle the design problem (4).

C. Characterization of the Optimal Solution

Henceforth, for simplicity we will presume π(j)= j and also
adhere to the aforementioned substitutions. Applying the method
of Lagrange Multipliers, the constrained optimization (4) can be
transformed into an unconstrained one (up to the validity of the
pertinent quantizer mappings) by augmenting the objective as

Q∗ = argmax
Q

I(x; z1:J)−
J∑
j=1

λjI(yj ; zj |z1:j−1), (13)

with the non-negative Lagrange multiplier, λj , representing the
counterpart of Cj in the original formulation (4). The following
theorem provides a complete characterization of the optimal
solution to the multiterminal compression problem (13).

Theorem 1 (Optimal Solution per Mapping): Assume the joint
distribution, p(x, y1:J), and λj are given for all j = 1, · · · , J .
The (local) quantizers, {p(zj |yj) |j}, make a stationary point of
L=I(x; z1:J)−

∑J
j=1λjI(yj ; zj |z1:j−1) if and only if for each

pair (yj , zj)∈Yj×Zj

p(zj |yj) =
p(zj)

ψzj(yj , βj)
exp

(
−d(yj , zj)

)
, (14)

wherein ψzj(yj , βj) is a partition function ensuring the validity
of the pertinent conditional distribution and βj= 1

λj
. Further, the

relevant distortion, d(yj , zj), is calculated as

d(yj , zj)=βj
∑
z-j
1:J

p(z-j
1:J |yj)DKL

(
p(x|yj , z-j

1:J)∥p(x|zj , z
-j
1:J)

)
−
∑

z1:j−1

p(z1:j−1|yj) log p(z1:j−1|zj) (15)

−βj
J∑

k=j+1

1

βk

∑
z-j
1:k

p(z-j
1:k|yj) log p(zk|z1:k−1) .

Proof: Introducing a Lagrange multiplier, λyj , per realization,
yj ∈Yj , of the observation (RAP) signal, yj , all the pertinent
mappings’ validity conditions are incorporated into the overall
Lagrangian,LOv., being defined as

LOv. = L+

J∑
j=1

∑
yj∈Yj

λyj

( ∑
zj∈Zj

p(zj |yj)− 1
)

. (16)

Since LOv. is, in fact, a functional of all individual conditional
distributions {p(zj |yj) |j}, to come into a stationary point of
it, its derivative w.r.t. every quantizer mapping, p(zj |yj), must
be equated to zero. For that, fixing {p(zℓ|yℓ) |ℓ ̸=j}, to obtain
the functional derivative of LOv. w.r.t. p(zj |yj), the pertinent
derivatives of its individual components have to be calculated.
Applying the chain rule for mutual information to decompose
I(x; z1:J), it is discerned that

δI(x; z1:J)

δp(zj |yj)
=
δI(x; zj |z-j

1:J)

δp(zj |yj)
, (17)

as fixing {p(zℓ|yℓ) |ℓ ̸=j} also fixes the other appearing terms in
the conducted decomposition. Hence, it applies

δI(x; zj |z-j
1:J)

δp(zj |yj)
=

δ
(
H(zj |z-j

1:J)−H(zj |x, z-j
1:J)

)
δp(zj |yj)

= p(yj)

∑
z-j
1:J

p(z-j
1:J |yj) log

1

p(zj |z-j
1:J)
−1

− (18)

p(yj)

∑
z-j
1:J

p(z-j
1:J |yj)

∑
x

p(x|yj , z-j
1:J)log

1

p(zj |x, z-j
1:J)
−1


= p(yj)

∑
z-j
1:J

p(z-j
1:J |yj)

∑
x

p(x|yj , z-j
1:J) log

p(x|z1:J)
p(x|z-j

1:J)
.



Next, it has to be noticed that

δ
( J∑
ℓ=1

λℓI(yℓ; zℓ|z1:ℓ−1)
)

δp(zj |yj)
=

δ
( J∑
ℓ=j

λℓI(yℓ; zℓ|z1:ℓ−1)
)

δp(zj |yj)
, (19)

as the first j−1 appearing summands in the numerator do not
depend on p(zj |yj). Further, noting the presumed Markov chain
and via some intermediate reformulations, it holds

δI(yj ; zj |z1:j−1)

δp(zj |yj)
=
δ
(
H(zj |z1:j−1)−H(zj |z1:j−1, yj)

)
δp(zj |yj)

=

p(yj)

logp(zj |yj)
p(zj)

−
∑

z1:j−1

p(z1:j−1|yj)log
p(z1:j−1|zj)
p(z1:j−1)

, (20)

and in case of j<ℓ≤J
δI(yℓ; zℓ|z1:ℓ−1)

δp(zj |yj)
=
δH(zℓ|z1:ℓ−1)

δp(zj |yj)
− δH(zℓ|z1:ℓ−1, yℓ)

δp(zj |yj)

=
δH(zℓ|z1:ℓ−1)

δp(zj |yj)
− δH(zℓ|yℓ)
δp(zj |yj)︸ ︷︷ ︸

0

=
δH(zℓ|z1:ℓ−1)

δp(zj |yj)
(21)

= p(yj)
∑
z-j
1:ℓ

p(z-j
1:ℓ|yj) log

1

p(zℓ|z1:ℓ−1)
.

Moreover, it holds

δ
( J∑
ℓ=1

∑
yℓ∈Yℓ

λyℓ
( ∑
zℓ∈Zℓ

p(zℓ|yℓ)− 1
))

δp(zj |yj)
= λyj . (22)

Due to the positivity of p(yj) and by application of the required
optimality condition, i.e., δLOv.

δp(zj |yj) =0, it is directly deduced that

−
∑
z-j
1:J

p(z-j
1:J |yj)DKL

(
p(x|yj , z-j

1:J)∥p(x|zj , z
-j
1:J)

)
−λj log

p(zj |yj)
p(zj)

+ λj
∑

z1:j−1

p(z1:j−1|yj) log p(z1:j−1|zj)

+

J∑
k=j+1

λk
∑
z-j
1:k

p(z-j
1:k|yj) log p(zk|z1:k−1) + λ̃yj = 0,

(23)
with λ̃yj being equal to

−λj
∑

z1:j−1

p(z1:j−1|yj) log p(z1:j−1) +
λyj
p(yj)

+
∑
z-j
1:J

p(z-j
1:J |yj)DKL

(
p(x|yj , z-j

1:J)∥p(x|z
-j
1:J)

)
.

(24)

Bringing the second summand in (23) to the other side of the
equality, multiplying both sides by βj =

1
λj

, exponentiating
them and, eventually, multiplying by p(zj), one obtains

p(zj |yj) = p(zj) exp
(
−d(yj , zj) + βj λ̃yj

)
. (25)

Enforcing the validity condition,
∑
zj
p(zj |yj)=1, and noting

that λ̃yj does not depend on zj , one can treat exp(−βj λ̃yj ) as
the respective normalization (partition) function, ψzj(yj , βj), to
come into the form given in (14). �

D. The G-DIB Algorithm
In this part, based on the particular format of the derived

optimal solution per quantizer mapping of the individual RAPs,
we propose the G-DIB algorithm to jointly design the local
quantizers for the considered problem (13). It should be noticed
that the provided solution (14) has an implicit form as the relevant
distortion, d(yj , zj), on its right-hand side is a functional of all
involved quantizer mappings, {p(zj |yj) |j}. This indicates that,
mathematically, (14) can be viewed as (fj denoting a functional)

p(zj |yj) = fj
(
p(z1|y1), · · · , p(zJ |yJ)

)
, (26)

for the j-th RAP. Going through all different RAPs then leads
to the following non-linear system of equations

p(z1|y1) =f1
(
p(z1|y1), · · · , p(zJ |yJ)

)
p(z2|y2) =f2

(
p(z1|y1), · · · , p(zJ |yJ)

)
...

p(zJ |yJ)=fJ
(
p(z1|y1), · · · , p(zJ |yJ)

)
, (27)

directly extending the structure of the Multivariate Fixed-Point
system [18] to the field of functionals wherein the functions of
multiple variables are substituted by the functionals of multiple
mappings. Consequently, the conventional iterative methods can
be directly applied to solve (27) as well. Following the key idea
behind the Gauss-Seidel method, here, we propose establishing
an asynchronous (sequential) iterative update procedure wherein
individual quantizer mappings of different RAPs are actualized
consecutively. Therefore, to update the j-th quantizer mapping,
p(zj |yj), one can directly apply the already available updated
versions of the quantizer mappings from its preceding RAPs.

The Generalized DIB (G-DIB) algorithm with the provided
pseudo-code in Alg. 1 proceeds as follows: Commencing with a
set of random (valid) mappings, {p(0)(zj |yj) |j}, for each pair,
(yj , zj)∈Yj×Zj , the updates are executed (till convergence by
ε≪1, or fulfillment of a stopping criterion by imax) via

p(i+1)(zj |yj) =
p(i)(zj)

ψ
(i+1)
zj (yj , βj)

exp
(
−d(i)(yj , zj)

)
, (28)

with, i, denoting the running index. The output probability,
p(i)(zj), and the pertinent relevant distortion, d(i)(yj , zj), in (28)
are calculated by exerting the current versions of all involved
quantizer mappings, {p(i)(zj |yj) |j}, to suitably marginalize
the actualized joint distribution, p(i)(x, y1:J , z1:J), for which the
presumed Markov chain implies the following factorization

p(i)(x, y1:J , z1:J)=p(x, y1:J)
J∏
j=1

p(i)(zj |yj) . (29)

As discussed, updates are performed asynchronously, i.e., when
a certain mapping, p(zj |yj), is chosen, the update is executed
solely for this RAP’s mapping and for all ℓ = 1 : J and ℓ ̸= j,
p(i+1)(zℓ|yℓ)=p(i)(zℓ|yℓ). Doing so, it is apparent that the update
of zj encompasses the implications of recent updates from all of
its preceding compressed variables, zℓ′ , with ℓ′ = 1 : j−1. To
avoid poor local optima, this procedure is repeated with different
starting points, {p(0)(zj |yj) |j}, with the best outcome retained.



Alg. 1 G-DIB for Cloud-RAN Multiterminal Compression

Input: p(x, y1:J), βj= 1
λj
>0, |Zj |, ε>0, imax>0

Output: A (generally soft) partition zj of Yj into |Zj | bins
Initialization: i=0, random mappings {p(i)(zj |yj) |j}

while i≤ imax do
for j=1:J do
• p(i)(zj)←

∑
yj

p(i)(zj |yj)p(yj) ∀zj ∈Zj

• find i-th update for all distributions involved in d(yj , zj)
by marginalizing w.r.t. p(x, y1:J)

∏J
j′=1 p

(i)(zj′ |yj′)
• p(i+1)(zj |yj)← p(i)(zj)

ψ
(i+1)
zj

(yj ,βj)
exp

(
−d(i)(yj , zj)

)
• p(i+1)(zℓ|yℓ) ← p(i)(zℓ|yℓ) ∀ ℓ=1:J, ℓ ̸=j
• i← i+1

end for
if ∀j, ∀yj :D

{ 1
2 ,

1
2}

JS

(
p(i)(zj |yj)∥p(i−J)(zj |yj)

)
≤ε then

Break
end if

end while

E. Supplementary Mathematical Discussion
The design optimization (4) has already been attacked in [11].

Alas, the proposed solution was suboptimal. The core idea there
was to decompose (4) into a series of subproblems regarding
individual RAPs and to solve each of those simpler subproblems
separately. The suboptimality of this approach lurks in this very
separation. Specifically, fixing all the other quantizer mappings,
p(zℓ|yℓ) forℓ=1:J andℓ ̸=j, the suggested routine in [11] solves
the following problem to acquire the j-th quantizer mapping

p∗(zj |yj) = argmax
p(zj |yj): I(yj ;zj |z1:j−1)≤Rj

I(x; z1:J) . (30)

The underlying problem with this formulation is the fact that,
when considering the j-th RAP quantizer mapping, p(zj |yj),
although the other RAP mappings are presumed to be fixed, still
this does not imply that one can simply skip those constraints
regarding I(yk; zk|z1:k−1) for k>j as these terms are not fixed
and, indeed, depend on p(zj |yj). Obviously, this deviation from
the optimal solution becomes more severe when dealing with
larger numbers of RAPs. Contrarily, the conducted derivation
here does not skip any of the active constraints when treating
various RAPs. Thus, it correctly addresses the pertinent problem.

A special case of the design optimization (4) in which instead
of stipulating J rate constraints for individual RAPs, only one
constraint over the sum rate, i.e., I(y1:J ; z1:J) is imposed has
already been considered in [9]. Specifically, introducing

F = H(x|z1:J) + s

J∑
j=1

I(yj ; zj) +H(x|zj), (31)

the heart of the proposed BA-type algorithm there was to solve
Q∗ = argmax

Q
−F , (32)

with the non-negative parameter, s. After some reformulations,
it can be shown that (32) is equivalent to

Q∗ = argmax
Q

I(x; z1:J)−
(

s

1+s

)
I(y1:J ; z1:J) . (33)

The provided optimal solution in [9] for (33) follows the same
format as (14) with
d(yj , zj)=DKL

(
p(x|yj)∥p(x|zj)

)
+

1

s

∑
z-j
1:J

p(z-j
1:J |yj)DKL

(
p(x|yj , z-j

1:J)∥p(x|zj , z
-j
1:J)

)
. (34)

The solution above is in full accordance with (15) when having
only one λ= β-1 = s

1+s . To clearly perceive this, we start with
rewriting (15) for this special case. It applies

d(yj , zj)=β
∑
z-j1:J

p(z-j1:J |yj)DKL
(
p(x|yj , z-j1:J)∥p(x|zj , z

-j
1:J)

)
−
∑
z-j
1:J

p(z-j
1:J |yj) log p(z1:j−1|zj) (35)

−
∑
z-j
1:J

p(z-j
1:J |yj)

J∑
n=j+1

log p(zn|z1:n−1),

where, compared to (15), the summations in the second and third
terms are augmented as the corresponding log expressions do not
depend on the added terms. Further, since all βj for j=1, · · · , J
are required to be the same, they cancel out each other. After some
intermediate reformulations, one obtains

d(yj , zj)=β
∑
z-j1:J

p(z-j1:J |yj)DKL
(
p(x|yj , z-j1:J)∥p(x|zj , z

-j
1:J)

)
+DKL

(
p(z-j1:J |yj)∥p(z

-j
1:J |zj)

)
+H(z-j

1:J |yj) .
(36)

Note that the last term in (36) does not depend on zj . Thus, it can
be ignored (as itgetsabsorbed into thepartition function). Hence,
all one has to do at this point is to show that (34) is equivalent
to (36) when ignoring its last summand. To that end, replacing 1

s
by β−1 in (34), the following has to be proven

DKL
(
p(z-j1:J |yj)∥p(z

-j
1:J |zj)

)
=DKL

(
p(x|yj)∥p(x|zj)

)
−
∑
z-j
1:J

p(z-j
1:J |yj)DKL

(
p(x|yj , z-j

1:J)∥p(x|zj , z
-j
1:J)

)
.

(37)
Note that in (37) the term on the left, as well as the first term on the
right, do not depend on z-j

1:J . Thus, the summation (including the
prefactor) on its second term (right side of (37)) can be ignored as
one can presume the same summation (including the prefactor)
for the first term as well as the term on the left. Hence, one has to
show that the KL divergence on the left side equals the difference
of two KL divergences on the right side. The presumed Markov
chain, x↔y1:J↔z1:J , implies the following relations

p(x|yj)p(z-j
1:J |x) = p(x|yj , z-j

1:J)p(z
-j
1:J |yj)

p(x|zj)p(z-j
1:J |x) = p(x|zj , z-j

1:J)p(z
-j
1:J |zj) .

(38)

ApplyingDKL(m1m2∥n1n2)=DKL(m1∥n1)+DKL(m2∥n2) on
both sides of (38), indeed, concludes the proof of equivalence
between the provided solution here and the one given in [9] for
the special case of stipulating merely one constraint on the sum
rate. This clearly indicates that the proposed approach here, in
its core spirit, generalizes the SotA BA-type algorithm [9] by
allowing for individual fronthaul rate constraints per RAP rather
than imposing a single constraint on the compression sum rate.
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Fig. 2. Transmission rate, I(x; z1:3), vs. compression sum rate, I(y1:3; z1:3),
equiprobable 8-ASK signaling (σ2

x =21), J=3 AWGN access channels with
noise variance σ2

n , convergence parameter ε=10−4

III. SIMULATION RESULTS

Here, we set about evaluating the performance of the G-DIB
routine over a standard digital transmission scenario. For that,
we consider an equiprobable signaling from a bipolar 8-ASK
(Amplitude Shift Keying) constellation with σ2

x = 21 to 3 RAPs.
Access channels (UE to RAP) are modeled as AWGN (Additive
White Gaussian Noise), presuming identical noise variance, σ2

n ,
for all RAPs. Specifically,100 samples per access channel output
(RAP signal) have been generated first and then clustered to |Zj |
bins for j = 1, 2, 3, once employing the G-DIB and once more
the suggested routine in [11]. As these approaches are initialized
randomly, for the sake of fairness, the same starting points are
applied for both and the best outcomes are retained out of 100
trials. The obtained trade-offs between the overall transmission
rate, I(x; z1:3), and the compression sum rate, I(y1:3; z1:3), are
illustrated in Fig. 2, when varying β= 1

λ over a particular range.
Specifically, for 3 different noise variances, σ2

n =1, 1.5, 2, the
respective trade-off parameter is varied over 1.6<β<3.2, once
presuming a fully symmetric scenario with |Zj |=4 for j=1, 2, 3
and once more considering an asymmetric case wherein different
cardinalities are set (|Z1|=6, |Z2|=4, |Z3|=2) for compressed
signals of the individual RAPs. As a general trend, by increasing
β the prefactorλ=1

β of the compression sum rate, I(y1:3; z1:3), is
diminished and, consequently, the focus leans toward the overall
transmission rate, I(x; z1:3). It can be observed that irrespective
of the certain choice of model parameters, i.e., the access channel
noise variance, σ2

n , and the chosen cardinalities of compressed
signals, |Zj | for j = 1, 2, 3, the result of G-DIB surpasses the
one achieved by the algorithm from [11]. This substantiates our
concise mathematical discussion on the suboptimality of the
suggested algorithm in [11] due to the separate (rather than joint)
consideration of individual constraints per RAP’s fronthaul rate.

As mathematically shown, in this special case (stipulating one
constraint on the compression sum rate) the G-DIB algorithm and
the BA-type routine in [9] yield identical results. Yet, once again,
it has to be reminded that the G-DIB further extends the BA-type
algorithm (its focal optimization) by allowing for J individual
constraints corresponding to various RAPs’ fronthaul rates rather
than stipulating a single constraint on the compression sum rate.

IV. SUMMARY

We focused on the multiterminal fronthaul compression at the
uplink of Cloud-RANs with single-hop topology wherein the
Wyner-Ziv type coding is presumed to leverage the correlation
among signals of adjacent RAPs. For that, after formulating the
design problem as a constrained optimization and discussing the
apposite achievability arguments, we characterized the pertinent
optimal solution. Subsequently, exploiting its specific format we
proposed the G-DIB algorithm which, in its core spirit, extends
the State-of-the-Art BA-type routine by enabling individual rate
constraints per RAP rather than a single constraint on sum rate.
Further, we discussed the suboptimality of an available algorithm
aiming at attacking the same design problem and via numerical
investigations corroborated its performance inferiority as well.
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