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ABSTRACT

We consider globally optimal precoder design for rate splitting mul-

tiple access in Gaussian multiple-input single-output downlink chan-

nels with respect to weighted sum rate and energy efficiency max-

imization. The proposed algorithm solves an instance of the joint

multicast and unicast beamforming problem and includes multicast-

and unicast-only beamforming as special cases. Numerical results

show that it outperforms state-of-the-art algorithms in terms of nu-

merical stability and converges almost twice as fast.

Index Terms— rate splitting, global optimization, resource al-

location, energy efficiency, interference networks

1. INTRODUCTION

Rate splitting multiple access (RSMA) is a powerful non-orthogonal

transmission and robust interference management strategy for be-

yond 5G communication networks [1–3]. The key idea is to split

each message into common and private parts and transmit them

by superposition coding [4]. The common message is decoded

by multiple users, while the private message is only decoded by

the corresponding user employing successive interference cancel-

lation (SIC). This approach allows arbitrary combinations of joint

decoding and treating interference as noise by flexibly adjusting

the message split. Recent results show that RSMA outperforms

existing multiple access schemes such as space division multiple

access, power-domain non-orthogonal multiple access, orthogonal

multiple access, and multicasting in terms of weighted sum rate

(WSR) [2, 5, 6] and energy efficiency (EE) [6, 7].

This paper treats the important question of downlink multiple-

input single-output (MISO) beamforming for RSMA with respect

to WSR and EE maximization. The corresponding optimization

problem is related to joint multicast and unicast precoding that is

known to be NP-hard [8, 9]. Existing works on RSMA focus on

suboptimal strategies to obtain computationally tractable algorithms

[2, 6, 7, 10–13]. While several globally optimal algorithms for uni-

cast beamforming [14, 15] and multicast beamforming [16] exist,

joint solution methods are scarce. In particular, the procedure in

[17] solves the power minimization problem and [18] maximizes the

WSR for joint multicast and unicast beamforming. All these meth-

ods are based on branch and bound (BB) in combination with the

second-order cone (SOC) transformation in [19]. However, as this

transformation moves the complexity into the feasible set, pure BB

methods are prone to numerical problems, see Section 3. Instead,
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in this paper we design a successive incumbent transcending (SIT)

BB algorithm to solve this beamforming problem with improved nu-

merical stability and faster convergence. To the best of the authors

knowledge, this is the first globally optimal solution algorithm for

an instance of the joint unicast and multicast problem with respect

to EE maximization. It is also the first global optimization method

specifically targeted at RSMA.

2. SYSTEM MODEL & PROBLEM STATEMENT

Consider the downlink in a wireless network where an M antenna

base station (BS) serves K single-antenna users. The received sig-

nal at user k, k ∈ K = {1, . . . ,K}, for each channel use is yk =
hH

k x + nk, where the transmit signal x ∈ C
M×1 is subject to an

average power constraint P , hk is the complex-valued channel from

the BS to user k, and nk is circularly symmetric complex white

Gaussian noise with unit power at user k.

The transmitter employs 1-layer rate splitting [2,10], i.e., it splits

the message Wk intended for user k into a common part Wc,k and

a private part Wp,k. Then, the common messages are combined into

a single message Wc and these K + 1 messages are encoded with

independent Gaussian codebooks into sc, s1, . . . , sK , each having

unit power. These symbols are combined with linear precoding into

the transmit signal x = pcsc +
∑

k∈K pksk. The BS is subject to

an average power constraint, i.e., ‖pc‖2 +
∑

k∈K ‖pk‖2 ≤ P .

Each receiver uses SIC to first recover sc and then sk, treating

all other messages as noise. Asymptotic error free decoding of Wc

and Wp,k is possible if the rates of these messages satisfy Rc ≤
log(1+ γc,k) and Rp,k ≤ log(1+ γp,k), with signal to interference

plus noise ratios (SINRs)

γc,k =
|hH

k pc|2
∑

j∈K |hH
k pj |2 + 1

, γp,k =
|hH

k pk|2
∑

j∈K\k |hH
k pj |2 + 1

. (1)

The rate Rc is shared across the users, where user k is allocated a

portion Ck corresponding to the rate of Wc,k such that
∑

k∈K Ck =
Rc. Then, the total rate of user k is Rk = Ck +Rp,k.

Observe that this system model includes multi-user linear pre-

coding and multicast beamforming as special cases.

2.1. Problem Statement

We consider the following resource allocation problem under mini-

mum rate Rth
k quality of service constraints

max
p1,...,pK ,
pc,c,γc,γp

∑

k∈K uk (Ck + log(1 + γp,k))

µ
(

‖pc‖2 +
∑

k∈K ‖pk‖2
)

+ Pc

(2a)

s.t. γc,k and γp,k as in (1) (2b)
∑

k′∈K
Ck′ ≤ log(1 + γc,k),∀k ∈ K (2c)
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Ck ≥ max
{

0, Rth
k − log(1 + γp,k)

}

,∀k ∈ K (2d)

‖pc‖2 +
∑

k∈K
‖pk‖2 ≤ P (2e)

with nonnegative weight vector u = [u1, . . . ,uK ] 6= 0, nonnegative

power amplifier inefficiency µ, and positive static circuit power con-

sumption Pc. This problem has two operational meanings: With unit

weights, it maximizes the EE and, with µ = 0, Pc = 1, it maximizes

the WSR.

The following problem is equivalent to (2) and will be solved by

the developed algorithm:

max
pc,p1,...,pK ,
c,γp,s,d,e

∑

k∈K uk (Ck + log(1 + γp,k))

µ
(

‖pc‖2 +
∑

k∈K ‖pk‖2
)

+ Pc

(3a)

s.t.
√
γp,k

(

∑

j∈K\k
|hH

k pj |2 + 1

)1/2

≤ h
H
k pk (3b)

√
s
(

∑

j∈K
|hH

1 pj |2 + 1
)1/2

≤ h
H
1 pc (3c)

√
s
(

∑

j∈K
|hH

k pj |2 + 1
)1/2

≤ dk,∀k > 1 (3d)

(ek, dk) ∈ C,∀k > 1 (3e)

ℜ{hH
k pk} ≥ 0, ℑ{hH

k pk} = 0 (3f)

ℜ{hH
1 pc} ≥ 0, ℑ{hH

1 pc} = 0 (3g)

∀k > 1 : dk ≥ 0, ek = h
H
k pc (3h)

∑

k∈K
Ck ≤ log(1 + s) (3i)

(2d) and (2e) (3j)

with (e, d) ∈ C = {e ∈ C, d ∈ R : d ≤ |e|}. (4)

A crucial observation is that this problem is a second-order cone

program (SOCP) for fixed s, γp, except for constraint (3h). Hence,

the nonconvexity of (2) is only due to the SINR expressions and

not due to the beamforming vectors. We will exploit this partial

convexity in the final algorithm to limit the numerical complexity.

Proposition 1. Problems (2) and (3) have the same optimal value

and every solution of (3) also solves (2).

Proof. Omitted due to space constraints. Use the SOC reformulation

from [19] for the SINRs, with additional auxiliary variables for the

multicast beamformer pc [16].

3. GLOBALLY OPTIMAL BEAMFORMING

Problem (3) is an NP-hard nonconvex optimization problem due to

the multicast beamforming [8] and the power allocation in the private

messages [9]. Previous global optimization algorithms for similar

problems rely on BB procedures with SOCP bounding [14, 15, 17,

18]. However, this either leads to an infinite algorithm or requires

the additional solution of several SOCPs to obtain a feasible point

in each iteration [14] which is required to obtain a finite algorithm.

Moreover, the auxiliary SOCP that is solved in every iteration of the

BB procedure is numerically challenging and leads to problems even

with commercial state-of-the-art solvers like Mosek [20]. This can

be alleviated by the modified auxiliary problem in [14, §2.2.2] but

this approach greatly increases convergence times. Instead, we de-

sign an algorithm based on the SIT scheme [21–24] and combine

it with a branch reduce and bound (BRB) procedure. The result-

ing algorithm is numerically stable, has proven finite convergence,

also solves EE maximization, and is the first global optimization al-

gorithm specifically designed for RSMA. Practically, it outperforms

algorithms for similar problems as will be verified in Section 4.

To better illustrate the core principles of SIT, consider the gen-

eral optimization problem

max(x,ξ)∈D f(x, ξ) s. t. gi(x, ξ) ≤ 0, i = 1, . . . , n (5)

with continuous, real valued functions f, g1, . . . , gn and nonempty

feasible set. Further, assume that f is concave,1 g1, . . . , gn are con-

vex in ξ for fixed x, and D is a closed convex set. Depending on

the structure of g1, . . . , gn in x, this problem might be quite hard to

solve for BB methods [23, 25].2 Instead, consider the problem

min(x,ξ)∈D maxi{gi(x, ξ)} s. t. f(x, ξ) ≥ δ (6)

that is obtained from (5) by exchanging the objective and constraints.

If the optimal value of (6) is less than or equal to zero, the optimal

value of (5) is greater than or equal to δ. Instead, if the optimal

value of (6) is greater than zero, the optimal value of (5) is less than

δ [22, Prop. 7]. Hence, the optimal solution of (5) can be obtained

by solving a sequence of (6) with increasing δ. Since the feasible

set of (6) is closed and convex, it can be solved much easier by BRB

than (5) [22].

The SIT and BRB procedures can be integrated into a single

BRB algorithm that solves (6) with low precision and updates δ
whenever a point xk feasible in (5) is encountered that achieves an

objective value f(xk) > δ. This BRB procedure relaxes the feasible

set and subsequently partitions it in such a way that upper and lower

bounds on the minimum objective value of (6) can be computed ef-

ficiently for each partition element. In particular, we use rectangular

subdivision and define the initial box as M0 = [r0, s0] = {x :
r0i ≤ xi ≤ s0i } satisfying M0 ⊇ projx D. The algorithm subse-

quently partitions the relaxed feasible set M0 into smaller boxes and

stores the current partition of M0 in Rk. In iteration k, the algorithm

selects a box Mk = [rk, sk] and bisects it into two new subrectan-

gles. For each of these new boxes, a lower bound on the objective

value is computed using a bounding function β(M) that computes a

lower bound on the objective value of (6) with additional constraint

x ∈ M. If this problem is infeasible, then β(M) = ∞. To ensure

convergence, the bounding needs to be consistent with branching,

i.e., β(M) has to satisfy

β(M)− min
(x,ξ)∈F,
x∈M

max
i

{gi(x,ξ)} → 0 as max
x,y∈M

‖x−y‖ → 0, (7)

and a dual feasible point xk ∈ projx F ∩ Mk is required, where

F = {x ∈ D : f(x) ≥ δ} is the feasible set of (6).

The following lemma is essential to establish the convergence

of the SIT procedure. It follows that it can be incorporated in a

BB procedure with pruning criterion β(M) < −ε and termination

criterion 0 > minξ g(xk, ξ) s. t. (xk, ξ) ∈ F .

Lemma 1 ([24, Prop. 5.9]). Let ε > 0 be given and define g(x,ξ) =
maxi{gi(x, ξ)}. Either g(xk, ξ∗) < 0 for some k and (xk, ξ) ∈
F , or β(Mk) > −ε for some k. In the former case, (xk, ξ∗) is a

nonisolated feasible solution of (5) satisfying f(xk, ξ∗) ≥ δ. In the

latter case, no ε-essential feasible solution (x,ξ) of (5) exists such

that f(x, ξ) ≥ δ.

Next, we design a suitable bounding procedure that satisfies (7).

3.1. Bounding Procedure

The SIT dual should contain all of the problem’s nonconvexity in

the objective function. Following the discussion in Section 2.1, the

1Although this assumption does not hold for (3), the approach is still ap-
plicable since the sole purpose of this assumption is to obtain a convex feasi-
ble set in (6).

2This is also true for outer approximation methods [25].



nonconvexity in (3) is due to (3b)–(3e). We obtain the SIT dual as

min
pc,p1,...,pK ,
c,γp,s,d,e

max
[√

s
(

∑

j∈K
|hH

1 pj |2 + 1
)1/2

− h
H
1 pc,

max
k>1

{√
s
(

∑

j∈K
|hH

k pj |2 + 1
)1/2

− dk

}

,

max
k∈K

{√
γp,k

(

∑

j∈K\k
|hH

k pj |2 + 1

)1/2

− h
H
k pk

}

,

max
k>1

{

dk − |ek|
}

]

(8a)

s.t.

∑

k∈K uk (Ck + log(1 + γp,k))

µ
(

‖pc‖2 +
∑

k∈K ‖pk‖2
)

+ Pc

≥ δ (8b)

(3f)–(3j). (8c)

Observe that (8b) is equivalent to the SOC

∑

k∈K

uk (Ck + log(1 + γp,k)) ≥ δ

(

µ

(

‖pc‖2+
∑

k∈K

‖pk‖2
)

+Pc

)

since the denominator in (8b) is positive.

A bounding function β(M) that satisfies (7) is required. First,

observe that the objective of (8) is increasing in (γp, s). Hence, a

lower bound on [
¯
γp, γ̄p] × [

¯
s, s̄] is obtained by setting γp =

¯
γp

and s =
¯
s in the objective. Next, smoothen the objective of (8)

by using the epigraph form with auxiliary variable t, and convert

the pointwise maximum expressions to smooth constraints. Then,

the new constraints t ≥ dk − |ek|, for k > 1, are equivalent to

(ek, dk − t) ∈ C. This set C is nonconvex. Consistent bounding of

this set is obtained using argument cuts [16], i.e., introduce auxiliary

variables αk ∈ [0, 2π], k > 1, and add the constraint ∠ek = αk.

The variables α are included in the nonconvex variables handled

by the BRB solver. Then, a lower bound on the objective value of

(8) over the box [
¯
α, ᾱ] is obtained by replacing the constraints dk ≤

|ek|, ∠ek ∈ [
¯
αk, ᾱk], with their convex envelope. For ᾱk−

¯
αk ≤ π,

this is

sin(
¯
αk)ℜ{ek} − cos(

¯
αk)ℑ{ek} ≤ 0 (9a)

sin(ᾱk)ℜ{ek} − cos(ᾱk)ℑ{ek} ≥ 0 (9b)

akℜ{ek}+ bkℑ{ek} ≥ (dk − t)(a2
k + b2k) (9c)

and (ek, dk) ∈ C × R otherwise [16, Prop. 1], where ak =
1
2
(cos(

¯
αk) + cos(ᾱk)), and bk = 1

2
(sin(

¯
αk) + sin(ᾱk)).

The resulting bounding problem depends on γp and s only

through to the constraints (2d), (3i), (8b), and (γp, s,α) ∈ M.

These can be transformed into affine functions of (γp, s) by sub-

stituting s′ = log(1 + s) and γ′
p,k = log(1 + γp,k). Then, these

constraints are equivalent to
∑

k∈K

uk (Ck + γp,k) ≥ δ
(

µ
(

‖pc‖2 +
∑

k∈K

‖pk‖2
)

+ Pc

)

(10a)

∑

k∈K

Ck ≤ s, Ck ≥ max
{

0, Rth
k − γp,k

}

, ∀k ∈ K (10b)

s ∈ [log(1 +
¯
s), log(1 + s̄)] (10c)

γp,k ∈ [log(1 +
¯
γp,k), log(1 + γ̄p,k)], ∀k ∈ K (10d)

and the final bounding problem is the SOCP

min
pc,p1,...,pK ,
c,γp,s,d,e,t

t (11a)

s.t.
√

¯
γp,k

(

∑

j∈K\k

|hH
k pj |2 + 1

)1/2

≤ t+ h
H
k pk (11b)

√
¯
s
(

∑

j∈K
|hH

1 pj |2 + 1
)1/2

≤ t+ h
H
1 pc (11c)

√
¯
s

(

∑

j∈K

|hH
k pj |2 + 1

)1/2

≤ t+ dk,∀k > 1 (11d)

∀k ∈ IM : (9a)–(9c) (11e)

(2e), (3f)–(3h), (10a)–(10d) (11f)

where IM =
{

k ∈ K : k > 1∧ max
¯
α,ᾱ∈M

|ᾱk−
¯
αk| ≤ π

}

. The bound

β(M) takes the optimal value of (11) if it is feasible. Otherwise,

β(M) = ∞ otherwise.

3.2. Feasible Point

A dual feasible point is obtained from the solution (γ⋆
p , s

⋆,e⋆, . . . )

of (11) as (γk
p , s

k,αk) with γk
p,i = 2γ

⋆
p,i −1, for i ∈ K, sk = 2s

⋆ −
1 and αk ∈ projα Mk = [

¯
αk, ᾱk]. Numerical experiments show

that the obvious choice αk
i = ∠e⋆i leads to very slow convergence.

A much faster alternative is αk
i = argminα∈{

¯
αk
i
,ᾱk

i
} |α − ∠e⋆i |.

This point is primal feasible if the optimal value of

min
p1,...,pK ,
pc,c,d,e,t

t s.t. (8b), (3f)–(3j)|γp=γk
p ,s=sk (12a)

(11b)–(11d)|
¯
γp=γk

p ,
¯
s=sk (12b)

∀i > 1 : (ei, di − t) ∈ C, ∠ei = αk
i (12c)

is less than or equal to zero. This is an SOCP since (12c) is affine.

Denote the optimal solution of (12) as (t∗, c∗,y∗). It can be

shown that the primal objective value of (c∗,y∗) is greater than or

equal to δ. This value can be further increased without impairing pri-

mal feasibility by updating c∗ with the solution of the linear program

maxc

∑

k∈K ukCk s. t. (2d), (3i), (8b)|y∗ .

3.3. Reduction Procedure

The convergence criterion (7) implies that the quality of the bound

β(M) improves as the diameter of M shrinks. Since tighter bounds

lead to faster convergence, it is beneficial to reduce the size of M
prior to bounding if possible at low computational cost. To ensure

convergence to the global solution, it is important that the reduced

box M′ ⊆ M still contains all solution candidates.

Consider the box M = [
¯
γp, γ̄p]× [

¯
s, s̄]× [

¯
α, ᾱ]. Due to mono-

tonicity, a necessary condition for the feasibility of (8) over M is

that (2d), (3i), (8b) hold for γ̄p, s̄, ᾱ. Clearly, (2d) and (3i) can only

hold if
∑

k∈I

(

Rth
k − log(1 + γ̄p,k)

)

− log(1 + s̄) ≤ 0 (13)

with I = {k ∈ K : Rth
k − log(1 + γ̄p,k) > 0}. Similarly, a

necessary condition for (8b) to hold is

max
k∈K

{uk} log(1 + s̄) +
∑

k∈K
uk log(1 + γ̄p,k) ≥ δW (14)

with W =
(

µ
(

min ‖pc‖2 +
∑

k∈K min ‖pk‖2
)

+ Pc

)

, where

the minimum is such that γp ∈ M. This can be relaxed as

minpc,...,pK
‖pκ‖2 s. t.

¯
γp,κ ≤ |hH

κ pκ|2. From the Karush-

Kuhn-Tucker conditions, the optimal value of this problem is ob-

tained as
¯
γp,κ‖hκ‖−2. Similarly, a lower bound for min ‖pc‖2 is

obtained as
¯
smaxk ‖hk‖−2. Hence,

W = µ
(

¯
smax

k
‖hk‖−2 +

∑

k∈K ¯
γp,k‖hk‖−2

)

+ Pc. (15)

Conditions (13) and (14) can be used to reduce M and as a

preliminary feasibility check before bounding. For the reduction,

let M′ = [
¯
γ′
p, γ̄

′
p] × [

¯
s′, s̄′] × [

¯
α, ᾱ] and consider (14). Every

dual feasible γp,κ ∈ M satisfies Wδ ≤ U − uκ log(1 + γ̄p,κ) +



uκ log(1 + γp,κ), where U is the right-hand side of (14). Hence,

every dual feasible γp,κ satisfies γp,κ ≥ 2
Wδ−U

uκ (1 + γ̄p,κ) − 1.

Similarly, let V be the left-hand side of (13). From this condition, we

see that every dual feasible γp,κ satisfies γp,κ ≥ 2V (1+γ̄p,κ)−1, for

κ ∈ I, and γp,κ ≥ 2V +Rth
κ − 1, for κ /∈ I. Thus, the lower bound

for γp,k can be reduced to
¯
γ′
p,k = max{

¯
γp,k,

¯
γ′′
p,k} without losing

feasible solution candidates, where
¯
γ′′
p,k = 2

max{Wδ−U
uk

, V }
(1 +

γ̄p,k) − 1 if k ∈ I, and max{ 2
Wδ−U

uk (1 + γ̄p,κ), 2
V +Rth

k } − 1
otherwise. Likewise, the lower bound s can be reduced to

¯
s′ =

max{
¯
s, 2

max
{

Wδ−U
maxk∈K{uk}

, V
}

(1 + s̄)− 1}.

Let W ′ be as in (15), evaluated at (
¯
s′,

¯
γ′
p), and consider (14)

again. With a similar argument as before, the upper bound of M′ can

be reduced to γ̄′
p,k = min

{

γ̄p,k,
¯
γ′
k,p+(δµ)−1‖hk‖2(U−δW ′)

}

and s̄′ = min
{

s̄,
¯
s′ + (δµ)−1 mink ‖hk‖2(U − δW ′)

}

. Observe

that this reduction procedure may lead to M′ = ∅.

3.4. Algorithm and Convergence

The complete algorithm is stated in Algorithm 1. It is essentially a

BRB procedure [24, 25] that solves the SIT dual of (3) and updates

the constant δ whenever a primal feasible point is encountered.

The initial box in Step 0 is computed asM0 = [0, γ̄0
p ]×[0, s̄0]×

[0, 2π]K−1 with γ̄p,k = P‖hk‖2 and s̄ = mink∈K P‖hk‖2. The

set Rk holds the current partition of the feasible set, δk is the cur-

rent best value adjusted by the tolerance η, and x̄k is the current best

solution (CBS). In Step 1, the next box is selected as Mk and bi-

sected into Pk. These boxes are reduced according to Section 3.3

in Step 2. In Step 3, bounds for each reduced box are computed,

infeasibility is detected, and dual feasible points are obtained from

the bounding problem. For each of these points, primal feasibility is

checked in Step 4. If feasible, a feasible point is recovered as in Sec-

tion 3.2 and the corresponding primal objective value is computed.

If necessary, the CBS and δk are updated in Step 5. Boxes that can-

not contain primal ε-essential feasible solutions are pruned in Step 6.

The algorithm is terminated in Step 7.

Theorem 1. Alg. 1 converges in finitely many steps to a (ε, η)-
optimal solution of (3) or establishes that no such solution exists.

Proof. Omitted due to space constraints.

4. NUMERICAL EVALUATION

As most numerical problems of similar state-of-the-art algorithms

arise from the multiple unicast beamforming problem, i.e., where

pc = 0, we evaluate the performance of the algorithm for this case.

In particular, we have generated 100 random i.i.d. channel realiza-

tions and solved (2) for uk = 1, µ = 0, Pc = 0, Rth
k = 0,

P
dB

= −10,−5, . . . , 20, and K = M ∈ {2, 3, 4}. This results in

700 problem instances per K. As baseline comparison and verifica-

tion, we chose the straightforward BB implementation of this prob-

lem [14,15] (“BB”) and its variant with modified bounding problem

from [14, §2.2.2] (“BB2”). For K = 2, BB2 stalled in 364 prob-

lem instances, while the other algorithms solved all problems. For

K = 3, BB2 stalled 146 times and BB failed 13× due to numerical

problems of the convex solver. Finally, for K = 4, BB did not solve

a single problem instance due to numerical issues and BB2 stalled

in 27 instances. Moreover, Algorithm 1 and BB2 did not solve the

problem withing 60 minutes in 4 and 60 instances, respectively. Av-

erage computation times on a single core of an Intel Cascade Lake

Algorithm 1 SIT Algorithm for (3)

Step 0 (Initialization) Set ε, η > 0. Let k = 1 and R0 = {M0}. If
an initial feasible solution y0 = (p0

c , . . . ,p
0
K) is available, set

δ0 = η + v(2)|y0
and initialize x̄0 = (γ0

p , s
0,α0) from (1),

s0 = mink∈K γ0
c,k , and α0

k = ∠hH
k p0

c . Otherwise, do not set

x̄0 and choose δ0 = 0.

Step 1 (Branching) Let Mk = [rk, sk] ∈ argmin{β(M) |M ∈
Rk−1}. BisectMk into

M− = {x : rj ≤ xj ≤ vj , ri ≤ xi ≤ si (i 6= j)}

M+ = {x : vj ≤ xj ≤ sj , ri ≤ xi ≤ si (i 6= j)}

where jk ∈ argmaxj s
k
j − rkj and vk = 1

2
(sk + rk). Set

Pk = {Mk
−,Mk

+}.

Step 2 (Reduction) Replace each box in Pk withM′ as in Section 3.3.

Step 3 (Bounding) For each reduced boxM ∈Pk , solve (11). If infea-
sible, set β(M) =∞. Otherwise, set β(M) to the optimal value
of (11) and obtain a dual feasible point x(M) as in Section 3.2.

Step 4 (Feasible Point) For eachM ∈Pk , if β(M) ≤ 0 solve (12) for
x(M) and denote the optimal value as t(x(M)). If t(x(M)) ≤
0, x(M) is primal feasible. Recover x′(M) from the solution of
(12) with γ ′

p, s′ as in Step 0 and α′
k = ∠e∗k, k > 1, where e∗

is from the optimal solution of (12). Update c∗ as in Section 3.2
and compute the primal objective value f(M). If β(M) > 0 or
t(x(M)) > 0, set f(M) = −∞.

Step 5 (Incumbent) Let M′ ∈ argmin{f(M) : M ∈ Pk}. If
f(M′) > δk−1 − η, set x̄k = x′(M′) and δk = f(M′) + η.

Otherwise, set x̄k = x̄k−1 and δk = δk−1.

Step 6 (Pruning) Delete everyM ∈ Pk with β(M) > −ε and collect
the remaining sets in P′

k . Set Rk = P′
k ∪ (Rk−1 \ {Mk}).

Step 7 (Termination) Terminate if R = ∅: If x̄k is not set, then (3) is ε-
essential infeasible; else x̄k is an essential (ε, η)-optimal solution
of (3). Otherwise, update k ← k + 1 and return to Step 1.

K = 2 K = 3 K = 4

Alg. 1 0.175 s / 0.099 s 4.579 s / 1.959 s 334.8 s / 126.3 s
BB 0.173 s / 0.091 s 7.605 s / 2.606 s —
BB2 42.41 s / 2.380 s 158.5 s / 12.42 s 704.1 s / 265.8 s

Table 1. Mean / median run times to obtain the optimal solution.

Problem instances where not all algorithms converged are ignored.

Platinum 9242 CPU are reported in Table 1. It can be observed that

the proposed Algorithm 1 is more efficient than the two baseline al-

gorithms especially when more users are in the system. Moreover,

the joint beamforming problem, i.e., with pc 6= 0, was solved by

Algorithm 1 for K = 2 with mean and median run times of 942 s

and 2786 s. However, 23 instances were not solved within 12 hours.

Observe from the discussion in Section 3 that the complexity

scales with O(exp(2K)) in the number of users and polynomially

in the number of antennas M . Hence, no noticeable changes in the

reported run times are to be expected by varying M .

5. CONCLUSIONS

We developed the first global optimization algorithm to solve MISO

downlink beamforming for RSMA with respect to WSR and EE

maximization. This problem is an instance of joint multicast and

unicast beamforming and also solves these problems separately. The

algorithm is numerically stable and outperforms state-of-the-art mul-

tiple unicast beamforming algorithms considerably.
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