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Abstract—A main challenge of 5G and beyond wireless sys-
tems is to efficiently utilize the available spectrum and si-
multaneously reduce the energy consumption. From the radio
resource allocation perspective, the solution to this problem is
to maximize the energy efficiency instead of the throughput.
This results in the optimal benefit-cost ratio between data rate
and energy consumption. It also often leads to a considerable
reduction in throughput and, hence, an underutilization of the
available spectrum. Contemporary approaches to balance these
metrics based on multi-objective programming theory often lack
operational meaning and finding the correct operating point
requires careful experimentation and calibration. Instead, we
propose the novel concept of hierarchical resource allocation
where conflicting objectives are ordered by their importance.
This results in a resource allocation algorithm that strives to
minimize the transmit power while keeping the data rate close the
maximum achievable throughput. In a typical multi-cell scenario,
this strategy is shown to reduces the transmit power consumption
by 65% at the cost of a 5% decrease in throughput. Moreover,
this strategy also saves energy in scenarios where global energy
efficiency maximization fails to achieve any gain over throughput
maximization.

Index Terms—multi-objective programming, global optimiza-
tion, hierarchical optimization, mixed monotonic programming

I. MOTIVATION AND PROBLEM STATEMENT

The goal of resource allocation in communication networks
is to best utilize the available resources ensuring good Quality
of Service (QoS) to all users. While the QoS constraints
are mainly determined by the user’s requirements or network
slice configuration, the choice of a suitable utility function
is entirely up to the operator or system designer [1]–[3].
Common choices are maximizing the throughput (TP) to best
utilize the available spectrum [4], minimizing the total transmit
power to save energy [5], or maximizing the energy efficiency
(EE) to obtain a trade-off between these two [6], [7]. In general,
these are conflicting metrics that can not be maximized simul-
taneously. Indeed, the multi-objective optimization problem
(MOP)

max
p∈P

[

f1(p), f2(p), . . .
]

(1)
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with network utility functions f1, f2, . . . is known to posses
an infinite number of noninferior solutions [8]. The MOP (1)
is usually solved by transforming it into a scalar optimization
problem, e.g., with the scalarization approach [9] where the
weighted sum of the objectives is maximized, i.e.,

max
p∈P

∑

i
wifi(p),

or by the utility profile approach [9] where the intersection
of a ray in the direction w and the outer boundary of the
performance region is computed, i.e.,

max
t,p∈P

t s. t. ∀i : twi ≤ fi(p).

Both methods obtain Pareto optimal points but share the weak-

ness that the weights w often have no operational meaning and

need to be chosen heuristically or by experimentation.
For example, consider balancing the TP with the total

transmit power. This problem is formally stated as
{

max
p,r

[∑

i
ri, −

∑

i
pi
]

s. t. r ∈ R(p) ∩Q, 0 ≤ p ≤ P
(2)

where P is the maximum transmit power, R(p) the achiev-
able rate region, and Q contains the QoS constraints. After
scalarization, the problem becomes







max
p,r

w1

∑

i

ri − w2

∑

i

pi

s. t. r ∈ R(p) ∩Q, 0 ≤ p ≤ P

(3)

with nonnegative weights w1, w2. By varying these weights

such that w1 + w2 = 1, the convex hull of the Pareto

boundary is obtained. However, these weights do not have

much operational meaning and there is no other guidance

than experience or experimentation to choose them for a given

system. Another approach to balance TP and transmit power

is the notion of global energy efficiency (GEE), which is

defined as the benefit-cost ratio of system throughput and total

dissipated power, i.e., GEE =
∑

i
ri∑

i
µipi+Pc

, where µi ≥ 0

and Pc > 0 are modeling constants reflecting the power

amplifier inefficiency and static circuit power consumptions.

Maximizing the GEE results in a Pareto optimal solution of (2)

[7, p. 241] and has a well defined operational meaning. With
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Fig. 1. Typical solution of TP and GEE maximization.

energy and spectrum being similarly scarce resources, the TP

and GEE are considered to be the most important network

utility functions in 5G and beyond networks.

A qualitative solution of TP and GEE maximization in

wireless interference networks is displayed in Fig. 1. While

leading to similar operating points in the low signal-to-noise

ratio regime, it is characteristic for the GEE to saturate. The

link and power budget in a wireless network often allow

for an operating point far in this saturation region. In such

a scenario, selecting the operating point by TP or GEE

maximization either results in poor EE or in low spectral

efficiency. Thus, it has been proposed in [10] to balance TP

and GEE with multi-objective programming theory. While the

obtained performance region provides valuable insights for

system design, the weights still have little operational meaning.

A more straightforward method is to maximize the GEE under

QoS constraints which is expected to provide the best rate-

energy trade-off while still providing satisfactory service to

all users.

Taking the operator’s perspective, saving energy is just a

secondary concern, while generating revenue from their costly

equipment and spectrum licenses is the primary goal. This

requires good service quality to outperform competitors and

thereby ensure customer loyalty. Satisfying QoS constraints

and providing good connectivity is undoubtedly the foundation

for good service but from there it’s up to the operator to

choose an operating point in the resource allocation design

space. A viable strategy is to prioritize high service quality

and minimize energy consumption as a secondary objective to

reduce operational expenditures and further increase revenue.

This could be achieved by solving (3) with w1 ≫ w2.

A more rigorous approach is to use lexicographic ordering

[11, §4.2], a recursive multi-objective programming technique

where objectives are strictly ordered by priority. In the context

of this paper and (2), a lexicographic ordering approach is

to maximize the TP first and then select the solution with

lowest transmit power, i.e., p⋆ = min{
∑

i pi |p ∈ T ⋆} where

T ⋆ is the set of throughput optimal power allocations, i.e.,

T ⋆ = argmax{
∑

ri | r ∈ R(p), 0 ≤ p ≤ P }. When the

solution to the TP maximization problem is (almost) unique,

i.e., the volume of T ⋆ is close to zero, the possible power re-

duction due to this approach is negligible. However, significant

gains are possible by slightly relaxing this strict ordering of the

objectives. For example, the goal could be to achieve at least

95 % of the maximum TP instead of strictly maximizing it, i.e.,

p⋆ = min{
∑

i pi |
∑

i ri ≥ 0.95 ·r⋆Σ, r ∈ R(p)}, where r⋆Σ is

the optimal value of the TP maximization problem. Selecting

a power allocation within this tight TP region leaves more

freedom than lexicographic ordering, while still ensuring high

service quality.

Leaving economical considerations aside, there are plenty

of other technical motivations to strictly prioritize a high

TP over other metrics. One application arises from cross-

layer optimization where the queue of a base station (BS)

needs to be stabilized. Regardless of the underlying queuing

model, the total storage capacity is essentially limited by

the BS’s installed memory. The TP determines the maximum

departure rate of this joint queue and, hence, maximizing the

TP ultimately enlarges the stability region. Please refer to [4]

for further application examples.

The goal of this paper is to obtain a hierarchical Pareto

optimal solution of (2) for wireless interference networks, and

to evaluate the benefits of this approach over GEE maximiza-

tion numerically. As the resulting optimization problem is NP-

hard and numerically very challenging, this requires the careful

design of a solution algorithm. We show that, by reducing the

TP by just 5 %, almost 65 % of transmit power can be saved

in a typical wireless network.

A. System Model

We consider a Gaussian interference network with power
allocation p = (p1, p2, . . . ) and average power constraint
P . The receive signal to interference plus noise ratio (SINR)
is αipi∑

j 6=i
βijpj+σ2

i

and, under the assumption that interference

is treated as noise, asymptotic error free communication is
possible at all rates r satisfying

ri ≤ B log

(

1 +
αipi

∑

j 6=i
βijpj + σ2

i

)

for all i, where B is the communication bandwidth. In this

setting, αi is the effective channel gain of the direct channel

from transmitter i to receiver i, βij are the effective channels

from transmitter j to receiver i, and σ2
i is the variance of

circularly-symmetric complex Gaussian noise.

This adequately models the effective channel for multi-

antenna transmission in 5G networks after precoder matrix

selection [12, §11], for multi-cell networks with overlapping

frequencies, and for dense low earth orbit (LEO) satellite

constellations [13]. Other applications include, e.g., massive

MIMO and relay-assisted CoMP networks [14].

II. HIERARCHICAL OPTIMIZATION

Hierarchical optimization [11, §4.2.2], [15] is a solution
method for the MOP (1) where the objectives are arranged
a priori by their absolute importance. Without loss of general-
ity, assume that fi is more important to the system designer
than fi+1. The optimization is carried out recursively by first
maximizing f1 and ignoring all other objectives f2, f3, . . . .
Then, the next objective f2 is maximized with additional
constraint that the value of f1 is close to the optimal value of
the previous optimization. Mathematically, the ith optimization
problem is

max
p∈Di

fi(x) with Di = {p ∈ Di−1 | fi−1(p) ≥ ωi−1f
⋆
i−1}

for all i > 1 and some initial feasible set D1. Here, f⋆
i

denotes the optimal value of the ith problem and ω1, ω2, . . .



are so-called worsening factors. These are selected a priori by

the system designer and have, contrary to the weights in the

multi-objective programming solution approaches discussed

in Section I, a clearly defined operational meaning in many

engineering problems. Lexicographic ordering [11, §4.2] is a

special case of this approach obtained by setting all worsening

factors to one. For a MOP with two objectives, the second

(and final) optimization step is equivalent to the ε-constraint

method [11, §3.2] and its solution is a strictly Pareto optimal

point if it is unique [11, Thm. 3.2.4].

Applying this approach to the MOP (2) and prioritizing the

TP over the transmit power, we obtain two scalar optimization

problems1































max
p,r

∑

i
log

(

1 +
αipi

∑

j 6=i βijpj + σ2
i

)

s. t. ∀i : log

(

1 +
αipi

∑

j 6=i βijpj + σ2
i

)

≥ ri,min

0 ≤ p ≤ P

(4a)

(4b)

(4c)

for minimum rate constraints ri,min ≥ 0, and










































min
p,r

∑

i
pi

s. t.
∑

i
log

(

1 +
αipi

∑

j 6=i
βijpj + σ2

i

)

≥ ωr
⋆
Σ

∀i : log

(

1 +
αipi

∑

j 6=i
βijpj + σ2

i

)

≥ ri,min

0 ≤ p ≤ P

(5a)

(5b)

(5c)

(5d)

where r⋆Σ is the optimal value of (4) and ω ∈ [0, 1] is the

worsening factor that determines the acceptable TP reduction.

Clearly, it is necessary to solve (4) before (5).

Both problems (4) and (5) are challenging global optimiza-

tion problems due to the nonconvexity of the objective in

(4) and constraint (5b). In particular, (4) is known to be NP-

hard [16], and, hence, (5) is also NP-hard due to constraint

(5b). While (4) can be solved efficiently using the mixed

monotonic programming (MMP) framework as discussed next,

problem (5) needs a novel algorithm that is developed in

Section III.

A. Solution of Problem (4)

MMP is a global optimization framework that exploits

partial monotonicity in the objective and constraints [17]. It

is much more versatile than classical monotonic optimization

[18] and shows tremendous performance gains over state-

of-the-art algorithms for global optimal power allocation in

interference networks and other scenarios [17, §IV].
The concept of mixed monotonic (MM) functions general-

izes differences of increasing functions. Let M0 be a box in
R

n, i.e., M0 = [r0, s0] = {x ∈ Rn | ∀i : r0i ≤ xi ≤ s0i }. A
continuous function F : Rn×Rn → R is called MM function
if it satisfies

F (x,y) ≤ F (x′
, y) if x ≤ x

′
,

F (x,y) ≥ F (x,y′) if y ≤ y
′
.

1The constant B is inessential and moved into ri,min for notational clarity.

for all x,x′,y,y′ ∈ M0 and a continuous optimization

problem maxx∈D f(x) with compact feasible set D ⊆ R
n

is called MMP problem if there exists an MM function F

such that F (x,x) = f(x) for all x ∈ M0, where M0 ⊇ D
encloses D. The MMP framework [17] solves such a problem

very efficiently with global optimality using a branch and

bound (BB) procedure.
Applying the MMP framework requires MM representations

of the objective and constraint functions in (4). For the
objective, such a function is x,y 7→

∑

iRi(x,y) with [17,
§IV-A]

Ri(x,y) = log

(

1 +
αixi

∑

j 6=i
βijyj + σ2

i

)

. (6)

Likewise, the QoS constraints have MM representation x,y 7→
ri,min−Ri(x,y). Theoretically, such MM constraints lead to

an algorithm without guaranteed finite convergence. This is,

because for general MM constraints and some boxes M, it

is impossible to determine whether M∩D contains feasible

points or not [17, §III-A]. However, in practise this is seldom

a problem for typical minimum rate constraints as in (4b).

The MMP framework is also applicable to (5). However, the

minimum sum rate constraint in (5b) is very tight and leads

to a tiny feasible set compared to M0 = [0,P ]. This results

in impractically slow convergence of the MMP procedure. In

the next section, we develop an algorithm with much faster

and provably finite convergence.

III. SUCCESSIVE INCUMBENT TRANSCENDING SCHEME

The main challenge in solving (5) with the MMP framework

is constraint (5b). An efficient solution to this problem is the

successive incumbent transcending (SIT) scheme developed

in [19]. The main idea is to solve a sequence of easily

implementable feasibility problems. Specifically, given a real

number γ, the core problem of the SIT algorithm is to check

whether (5) has a feasible solution p satisfying
∑

i pi ≤ γ, or,

else, establish that no such p exists. In this manner, a sequence

of feasible points (“incumbents”) with decreasing objective

value is generated until no point with lesser objective value

than the current best solution γ exists.
Consider the optimization problem

min
x∈M0

f(x) s. t. g(x) ≤ 0 (7)

which generalizes (5) and assume that f is a nondecreasing

function, g has an MM representation, and M0 is a box. The

outlined SIT scheme for this problem is given in Algorithm 1.

Algorithm 1 SIT Scheme [20, Sect. 7.5.1]

Step 0 Initialize x̄ with the best known feasible solution and set
γ = f(x̄) − η; otherwise do not set x̄ and choose some
γ ≤ f(x) ∀x ∈ M0 : g(x) ≤ 0.

Step 1 Check if (5) has a feasible solution x satisfying f(x) ≥ γ;
otherwise, establish that no such feasible x exists and go
to Step 3.

Step 2 Update x̄← x and γ ← f(x̄)− η. Go to Step 1.
Step 3 Terminate: If x̄ is set, it is an η-optimal solution; else

Problem (5) is infeasible.



Implementing the feasibility check in Step 1 of Algorithm 1
efficiently is crucial. Consider the optimization problem

min
x∈M0

g(x) s. t. f(x) ≤ γ (8)

which is dual to (7) in the sense that if the optimal value of

(8) is greater than zero, the optimal value of (7) is greater

than γ [20, Prop. 7.13]. Thus, any point x′ in the feasible set

of (8) with objective value less than zero is also a feasible

point in (7) with objective value less than γ. We can solve (7)

sequentially by solving (8) with a BB method.

At first, this approach seems to increase the computational

complexity significantly because if (7) is nonconvex, then

so is (8). However, given that f has favorable properties,2

problem (8) might be considerably easier to solve than (7).

Moreover, the SIT scheme can be combined with the BB

procedure that solves (8). This eliminates the need to solve

(8) multiple times.
Exploiting the properties of MM functions, we can obtain

a lower bound on the objective value of (8) over a box M =
[r, s] from its MM representation G as

min
x∈M:f(x)≤γ

g(x) ≥ min
x∈M

G(x,x) ≥ min
x,y∈M

G(x,y) = G(r, s).

Together with an exhaustive rectangular subdivision [20], this

bound leads to a convergent BB procedure that can be incor-

porated into the SIT scheme.

The complete algorithm is stated in Algorithm 2. It involves

a parameter ε that is related to the concept of ε-essential

feasibility explained in [21]. Its primary roles are to exclude

numerically instable points from the feasible set and ensure

finite convergence of the algorithm. The latter is established

in the theorem below. This is the first algorithm that combines

the MMP approach with the SIT scheme.

Theorem 1: Algorithm 2 converges in finitely many steps to

the (ε, η)-optimal solution of (7) or establishes that no such

solution exists.

Proof sketch: By virtue of [20, Prop. 7.14] a BB

procedure for solving (8) with pruning criterion G(r, s) > −ε

and stopping criterion g(r) < 0 or Rk = ∅ implements Step 1

in Algorithm 1. Thus, start with the MMP algorithm in [17,

Alg. 1] for (8) and modify it according to the previous sentence.

Establishing finite convergence is a minor modification of [17,

Thm. 1]. Next, integrate the SIT scheme in Algorithm 1 into

this procedure: move the termination criterion g(r) < 0 into

the incumbent update in Step 3 and update γk if a box satisfies

this criterion. It remains to show that continuing the procedure

after updating γk preserves convergence. This part of the proof

follows along the lines of the proof of [21, Thm. 1].
The purpose of the reduction in Step 2 is to speed up

the convergence. This is achieved by replacing the box under
consideration by a smaller one that still contains all candidate
solutions and, thereby, improves the quality of the computed
bounds. One approach to determine this procedure for Algo-
rithm 2 is to replace M by M′ = [r′, s′] with

r
′
i = min

x∈M:f(x)≤γk

xi, s
′
i = max

x∈M:f(x)≤γk

xi (10)

2Such favorable properties could be, e.g., linearity, convexity, or being
increasing.

Algorithm 2 SIT Algorithm for (7)

Step 0 (Initialization) Set ε, η > 0, Let k = 1 and R0 = {M0}.
If available, initialize x̄0 with the best known feasible
solution and set γk = f(x̄) − η. Otherwise, do not set
x̄0 and choose γ ≥ f(x) for all feasible x.

Step 1 (Branching) Let Mk = [rk, sk] be the oldest box in

Rk−1. Bisect Mk via (vk, jk) with jk ∈ argmaxj s
k
j −

rkj and vk = 1
2
(sk + rk), i.e., compute

M− = {x | rkj ≤ xj ≤ v
k
j , r

k
i ≤ xi ≤ s

k
i (i 6= j)}

M+ = {x | vkj ≤ xj ≤ s
k
j , r

k
i ≤ xi ≤ s

k
i (i 6= j)},

and set Pk = {Mk
−,M

k
+}.

Step 2 (Reduction) Replace each box in M ∈ Pk with some
M′ such that M′ ⊆M and

min{g(x) | f(x) ≤ γk, x ∈M}

= min{g(x) | f(x) ≤ γk, x ∈ M
′} (9)

Step 3 (Incumbent) Let I = {r | [r, s] ∈ Pk, g(r) ≤ 0}. If

not empty, set rk = argmin
r∈I

f(r). If x̄k−1 is not set

or f(rk) < γk−1 + η, set x̄ = rk and γk = f(rk) − η.

In all other cases, set x̄k = x̄k−1 and γk = γk−1.
Step 4 (Pruning) Delete every [r, s] ∈ Pk with f(r) ≥ γk or

G(r, s) > −ε. Let P
′
k be the collection of remaining sets

and set Rk = P
′
k ∪ (Rk−1 \ {Mk}).

Step 5 (Termination) Terminate if R = ∅: If x̄k is not set, then
(7) is ε-essential infeasible; else x̄k is an essential (ε, η)-
optimal solution of (7). Otherwise, update k ← k+1 and
return to Step 1.

for all i. For f nondecreasing, the solution to the first problem
is always ri unless it is infeasible. For the upper bound in
(10), recall that r minimizes f(x) over M. Thus, the optimal
solution to this optimization problem is to set xj = rj for all
j 6= i. Then, the optimal xi = min{x̃i, si} where x̃i satisfies

f(r + (x̃i − ri)ei) = γk. (11)

Remark 1 (Branch selection): Most BB procedures select

the box with the largest bound for further partitioning. The

rationale is that this choice leads to fastest convergence. In

practice, when the number of boxes in Rk grows very large,

this selection rule might become the performance and memory

bottleneck of the algorithm. First, it tends to store subop-

timal boxes longer than necessary and therefore increases

memory consumption. Second, inserting new boxes into Rk

has complexity O(log|Rk|). Instead, with the oldest-first rule

employed in Algorithm 2 inserting new boxes has constant

complexity. Also, every box is visited after a fixed amount of

time and, thus, likely to be pruned much earlier than with the

best-first rule [17]. Since Algorithm 2 is essentially memory

limited, the oldest-first rule performs much better than the

standard best-first rule.

Remark 2 (Other SIT applications): Despite its tremendous

numerical advantages, the SIT approach is currently not widely

used. Besides the applications to DC and monotonic optimiza-

tion problems in [19], [20], it is only employed in [21] where

it is applied to resource allocation problems with fractional

objectives and partial convexity. The implementation most

closely related to Algorithm 2 is the monotonic optimization



variant in [20, §11.3]. The key advantage of Algorithm 2

over this procedure is that cumbersome transformations and an

auxiliary variable are required to bring (5) into a suitable form

for [20, §11.3]. This leads to much slower convergence due to

the extra variable and much looser bounds on the constraints.

A. Solution of Problem (5)

Identify M0 = [0,P ] and f(p) =
∑

i pi. Note that f(p) is
an increasing function. MM representations of (5b) and (5c)
are x,y 7→ ωr⋆Σ −

∑

i Ri(y,x) and ∀i : x,y 7→ ri,min −
Ri(y,x), respectively, with Ri(x,y) as in (6). They can be
merged into a single inequality constraint maxi gi(x) ≤ 0 with
MM representation

G(x,y) = max
{

ωr
⋆
Σ −

∑

i

Ri(y,x), max
i

{

ri,min −Ri(y,x)
}

}

due to [17, Eq. (9)]. In the reduction step, the solution to (11)

is x̃i = γk −
∑

j 6=i rj . Thus, every box M = [r, s] in Step 2

can be replaced by [r, s′] with s′i = min{si, γk −
∑

j 6=i rj}.

With these choices, Algorithm 2 solves (5) in a finite number

of iterations.

IV. NUMERICAL EVALUATION

We consider uplink transmission in a single-input single-

output multi-cell system. User equipments (UEs) are placed

randomly in a rectangular area with edge length 1 km. This

area is divided into four equal sized cells with BSs located

at the center of their cell. Path-loss is modeled according

to the Hata-COST231 [22], [23] urban scenario with carrier

frequency 1.9 GHz, 30 m BS height and 8 dB log-normal

shadow fading. Small scale effects are modeled as Rayleigh

fading. Each UE is associated to the BS with the best channel.

Scenarios where more than one UE is associated to a BS

are dropped. The receivers have noise spectral density N0 =
−174dBm and noise figure F = 3dB. The communication

bandwidth is B = 180 kHz and the noise power is calculated

as σ2
i = N0FB. The UEs RF chains have a static power

consumption Pc = 400mW and power amplifiers with an

efficiency of 25 %. No cooperation between BSs is assumed,

i.e., interference from other cells is treated as noise.

TP and GEE are maximized using the MMP framework

[17]. Algorithm 2 is used to solve (5) for ω = 0.95, i.e., the

obtained resource allocation uses the minimum total transmit

power under the constraint that the system TP is not less than

95 % of the maximum achievable system TP. We call this

resource allocation high throughput energy efficiency (HTEE)

for reasons that will become apparent below. All algorithms

obtain the global optimal solution within an absolute tolerance

of η = 0.01. In Algorithm 2, we set ε = 10−5. All results

are averaged over 1000 independent and identically distributed

channel realizations.

Figures 2 and 3 display TP and GEE, respectively, with

very typical behavior. With increasing transmit power budget,

the maximum TP increases. Instead, the GEE saturates at

some point and the transmit power stays constant in the GEE

optimal resource allocation. Increasing the transmit power

beyond the GEE saturation point, as is done in the TP optimal
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Fig. 2. Achievable throughput with different resource allocation approaches.
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Fig. 3. Global energy efficiency of the discussed resource allocation strategies.

allocation, decreases the GEE. For a maximum transmit power

of 23 dBm, which corresponds to the typical UE power budget

[12], [24], the GEE optimal allocation achieves 22.4 % or

0.84 Mbit/s less TP than possible. Instead, the HTEE resource

allocation is within 95 % of the maximum achievable TP and

achieves a 97 % higher GEE than the maximum TP allocation

at 23 dBm. This corresponds to a gain of 1.8 Mbit/J at the cost

of 0.19 Mbit/s.

However, the GEE is not the optimal metric to evaluate

transmit power savings. Consider a second operating point at

−10 dBm, the median transmit power of 4G UEs in urban sce-

narios [24]. The TP and GEE optimal strategies both achieve

almost the same TP and GEE. Figure 4 displays the power

consumption relative to the TP optimal resource allocation. It

can be observed that the GEE strategy consumes almost as

much transmit power as the TP strategy, and, thus, is unable

to exploit the “rate reduction budget” of the system designer.

Instead, the HTEE strategy uses almost 40 % less transmit

power at a TP cost of 50 kbit/s, which is less than the data

rate of classical digital telephone line modem. Nevertheless,

its GEE is worse than that of the other strategies, despite the

tremendous transmit power reduction.

Returning to our previous scenario with 23 dBm maximum

transmit power, it can be seen from Fig. 4 that the HTEE

strategy consumes only 35.7 % of the transmit power necessary

to achieve the maximum TP. Of course the GEE strategy saves

even more transmit power but at a much higher cost to the

throughput. This trade-off is illustrated in Fig. 5 where the
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Fig. 4. Total power consumption relative to the throughput optimal strategy.
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Fig. 5. Relative power consumption as a function of the achievable through-
put.

relative transmit power is plotted over the achievable data rate.

It can be observed that a major advantage of the HTEE strategy

over the GEE optimal power allocation is that the TP does

not saturate and any data rate is achievable given a sufficient

transmit power budget. Thus, it results in an energy-efficient

resource allocation while still ensuring high TP.

Finally, to support the statement at the end of Section II-A

that (5) is hard to solve with a traditional BB method, we

have also employed the MMP framework to solve (5). Out

of 1000 problem instances that ran on an Intel Xeon E5-2680

v3 CPU with a memory usage limit of 21 GB, 483 problem

instances ran out of memory and 517 problem instances did not

complete within 24 hours, i.e., not a single problem instance

of (5) could be solved by a traditional BB algorithm with

reasonable usage of computational resources. In contrast, the

same problem instances could be solved with Algorithm 1

using a maximum of 50 MB memory and not taking longer

than 752 ms to complete. The median computation time among

all problem instances was 1.75 ms.

V. CONCLUSIONS

We have introduced the novel concept of hierarchical re-

source allocation and applied it to minimize energy con-

sumption while still ensuring high spectrum utilization. The

numerical results show a transmit power reduction of 65 % in

a multi-cell communication scenario at the cost of a 5 % drop

in TP. Instead, state-of-the-art GEE maximization results in

a TP reduction of almost 25 %. Moreover, this strategy also

saves energy in scenarios where GEE optimization fails to

provide a gain over TP maximization. The developed algo-

rithms solve the involved optimization problems with global

optimality and, therefore, rigorously demonstrate the gains of

hierarchical resource allocation and high-throughput energy

efficiency maximization over state-of-the-art approaches.
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