
1

Learning a Probabilistic Relaxation of Discrete
Variables for Soft Detection with Low Complexity:

CMDNet
Edgar Beck , Graduate Student Member, IEEE, Carsten Bockelmann , Member, IEEE,

and Armin Dekorsy , Senior Member, IEEE

Abstract—Following the great success of Machine Learning
(ML), especially Deep Neural Networks (DNNs), in many re-
search domains in 2010s, several ML-based approaches were
proposed for detection in large inverse linear problems, e.g.,
massive MIMO systems. The main motivation behind is that
the complexity of Maximum A-Posteriori (MAP) detection grows
exponentially with system dimensions. Instead of using DNNs, es-
sentially being a black-box, we take a slightly different approach
and introduce a probabilistic Continuous relaxation of disCrete
variables to MAP detection. Enabling close approximation and
continuous optimization, we derive an iterative detection algo-
rithm: Concrete MAP Detection (CMD). Furthermore, extending
CMD by the idea of deep unfolding into CMDNet, we allow
for (online) optimization of a small number of parameters to
different working points while limiting complexity. In contrast
to recent DNN-based approaches, we select the optimization
criterion and output of CMDNet based on information theory
and are thus able to learn approximate probabilities of the
individual optimal detector. This is crucial for soft decoding in
today’s communication systems. Numerical simulation results in
MIMO systems reveal CMDNet to feature a promising accuracy
complexity trade-off compared to State of the Art. Notably, we
demonstrate CMDNet’s soft outputs to be reliable for decoders.

Index Terms—Maximum a-posteriori (MAP), Individual op-
timal, Massive MIMO, Concrete distribution, Gumbel-softmax,
Machine learning, Neural networks

I. INTRODUCTION

COMMUNICATIONS is a long standing engineering dis-
cipline whose theoretical foundation was laid by Claude

Shannon with his landmark paper "A Mathematical Theory
of Communication" in 1948 [1]. Since then, the theory has
evolved into an own field known as information theory today
and found its way into many other research areas where data
or information is processed including artificial intelligence and
especially its subdomain Machine Learning (ML). Information
theory relies heavily on description with probabilistic models
playing a significant role for design of new generations of
cellular communication systems from 2-6G with respective
increases in data rate. Probabilistic models have shown to be
advantageous also in the ML research domain. Accordingly,
both fields, communications and ML, have touched repeatedly
in the past, e.g, [2], [3], [4].
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In the early 2010s, a special class of these models gave rise
to several breakthroughs in data-driven ML research: Deep
Neural Networks (DNNs). Inspired by the brain, several layers
of artificial neurons are stacked on top of each other to create
an expressive feed forward DNN able to approximate arbi-
trarily well [5] and thus to learn higher levels of abstraction,
i.e., features, present in data [6]. This is of crucial importance
for tasks where there are no well-established models but data
to be collected. Previously considered intractable to optimize,
dedicated hardware and software, i.e., Graphics Processing
Units (GPU) and automatic differentiation frameworks [7],
innovation to DNN models [8], [9] and advancements in
training [8] have made it possible to build algorithms that equal
or even surpass human performance in specific tasks such as
pattern recognition [10] and playing games [11]. The impact
included all ML subdomains, e.g., classification [9], [10]
in supervised learning, generative modeling in unsupervised
learning [12] and Q-learning in reinforcement learning [11].

A. ML in Communications

The great success of DNNs in many domains has stimulated
large amount of work in communications just in recent years
[6]. Especially in problems with a model deficit, e.g., detection
in molecular and fiber-optical channels [13], [14], or without
any known analytical solution, e.g., finding codes for AWGN-
channels with feedback [15], DNNs have already proven
to allow for promising application. Notably, the authors of
the early work [16] demonstrate a complete communication
system design by interpreting transmitter, channel and receiver
as an autoencoder which is trained end-to-end similar to one
DNN. The resulting encodings are shown to reach the BER
performance of handcrafted systems in a simple AWGN sce-
nario. A model-free approach based on reinforcement learning
is proposed in [17]. Using advances in unsupervised learning,
also blind channel equalization can be improved [18].

In contrast to typical ML research areas, a model deficit
does not apply to wireless communications. The models,
e.g., AWGN, describe reality well and enable development of
optimized algorithms. However, those algorithms may be too
complex to be implemented. This algorithm deficit applies to
the core problem typical for communications: classification
in large inverse problems. Therefore, it is crucial to find
an approximate solution with an excellent trade-off between
detection accuracy and complexity.
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B. Related Work

A prominent example for large inverse problems under
current deep investigation and a key enabler for better spectral
efficiency in 5G/6G are massive Multiple Input Multiple
Output (MIMO) systems [19]. In an uplink scenario, a Base
Station (BS) is equipped with a very large number of antennas
(around 64-256) and simultaneously serves multiple single-
antenna User Equipments (UEs) on the same time-frequency
resource. As a first step in receiver design, different tasks such
as channel equalization/estimation and decoding are typically
split to lower complexity. But still, an algorithm deficit applies
to both MIMO detection and decoding of large block-length
codes, e.g., LDPC and Polar codes, since Maximum A-
Posteriori (MAP) detection has high computational complexity
growing exponentially with system or code dimensions. Even
its efficient implementation, the Sphere Decoder (SD), remains
too complex in such a scenario [20].

Hence, in communications history, many suboptimal solu-
tions have been proposed to overcome the complexity bottle-
neck of the optimal detectors. One key approach is to relax the
discrete Random Variables (RV) to be continuous: Remarkable
examples include Matched Filter (MF), Zero Forcing and
MMSE equalization. But linear equalization with subsequent
detection leads to a strong performance degradation compared
to SD in symmetric systems.

A heuristic based on the latter is the V-Blast algorithm
which first equalizes and then detects one layer with largest
Signal-to-Noise Ratio (SNR) successively to reduce interfer-
ence iteratively. A more efficient and sophisticated implemen-
tation, MMSE Ordered Successive Interference Cancellation
(MOSIC), is based on a sorted QR decomposition of a MMSE
extended system matrix with post sorting and offers a good
trade-off between complexity and accuracy [21].

Pursuing another philosophy of mathematical optimiza-
tion, the SemiDefinite Relaxation (SDR) technique [22] treats
MIMO detection as a non-convex homogeneous quadratically
constrained quadratic problem and relaxes it to be convex by
dropping the only non-convex requirement. Proving to be a
close approximation, SDR is more complex than MOSIC and
solved by interior point methods from convex optimization.

Furthermore, also probabilistic model-based ML techniques
were introduced to improve the trade-off and to integrate
detection seamlessly with decoding: Mean Field Variational
Inference (MFVI) provides a theoretical derivation of soft
Successive Interference Cancellation (SIC) and the Bethe
approach lays the foundation for loopy belief propagation [23].
Simplifying the latter, Approximate Message Passing (AMP)
is derived known to be optimal for large system dimensions
in i.i.d. Gaussian channels and computational cheap [24]. As
a further benefit, soft outputs are computed, today a strict
requirement to account for subsequent soft decoding. But in
practice, the performance of probabilistic approximations like
MFVI and AMP suffers if the approximating conditions are
not met, i.e., from the full-connected graph structure and finite
dimensions in MIMO systems, respectively.

More recent work considers DNNs for application in MIMO
systems and focus on the idea of deep unfolding [25], [26].

In deep unfolding, the number of iterations of a model-based
iterative algorithm is fixed and its parameters untied. Further,
it is enriched with additional weights and non-linearities to
create a computational efficient DNN being optimized for
performance improvements in MIMO detection [27], [28],
belief propagation decoding [29], [30], [31] and MMSE chan-
nel estimation [32]. The former approach DetNet, a generic
DNN model with a large number of trainable parameters
based on an unfolded projected gradient descent, proves DNNs
to allow for a promising trade-off between accuracy and
complexity. In [33], unfolding of an extension of AMP to
unitarily-invariant channels, the Orthogonal AMP (OAMP),
into OAMPNet is proposed adding only 2 trainable param-
eters per layer. Offering promising performance, the complex-
ity bottleneck of one matrix inversion per iteration makes
this model-driven approach rather unattractive compared to
DetNet. Another DNN-like network MMNet is inspired by
iterative soft thresholding algorithms and AMP [34]: Striking
the balance between expressiveness and complexity, and ex-
ploiting spectral and temporal locality, MMNet can be trained
online for any realistic channel realization if coherence time is
large enough. Since online training is in general wasteful, an
efficient implementation non-trivial and requires particularly
deep analysis, we focus in this work on offline learning. One
major drawback of the latter approaches is that they focus on
MIMO detection and do not provide soft outputs.

C. Main Contributions

The main contributions of this article are manifold: Inspired
by recent ML research, we first introduce a CONtinuous relax-
ation of the probability mass function (pmf) of the disCRETE
RVs by a probability density function (pdf) from [35], [36]
to the MAP detection problem. The proposed CONCRETE
relaxation offers many favorable properties: On the one hand,
the pdf of continuous RVs converges to the exact pmf in the
parameter limit. On the other hand, we notice good algorith-
mic properties like avoiding marginalization and allowing for
differentiation instead. By this means, we replace exhaustive
search by computationally cheaper continuous optimization to
approximately solve the MAP problem in any probabilistic
non-linear model. We name our approach Concrete MAP
Detection (CMD).

Second, following the idea of Deep Unfolding, we unfold
the gradient descent algorithm into a DNN-like model CMD-
Net with a fixed number of iterations to allow for parameter
optimization and to further improve detection accuracy while
limiting complexity. By this means, we are able to combine
the advantages of DNNs and model-based approaches. As the
number of parameters is small, we are able to dynamically
adapt them to easily adjust CMDNet to different working
points. Further, the resulting structure potentially allows for
fast online training of CMDNet.

Thirdly, we derive the optimization criterion from an in-
formation theoretic perspective and are hence able to provide
probabilities of detection, i.e., reliable soft outputs. We show
that optimization is then equivalent to learning an approxima-
tion of the Individual Optimal (IO) detector. This allows us to
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account for subsequent decoding, e.g., in MIMO systems, in
contrast to literature [28], [34].

Finally, we provide numerical simulation results for use of
CMD and CMDNet in MIMO systems including a variety of
simulation setups, e.g., correlated channels, revealing CMDNet
to be a generic and promising approach competitive to State
of the Art (SotA). Notably, we show superiority to other
recently proposed ML-based approaches and demonstrate with
simulations in coded systems CMDNet’s soft outputs to be
reliable for decoders as opposed to [28]. Furthermore, by
estimating the computational complexity, we prove CMD
to feature a promising trade-off between detection accuracy
and complexity. Notably, only the Matched Filter has lower
complexity.

In the following, we first introduce the concrete relaxation
to MAP detection in Section II using the example of an inverse
linear problem. In Section III, we follow a different route
and explain how to learn the posterior, i.e., replacing it by
some tractable approximation. To yield a suitable model for
this approximation, we propose to unfold CMD into CMDNet
which we are then able to train by variants of Stochastic
Gradient Descent (SGD). Finally in Section IV and V, we
provide numerical results of the bit error performance in
comparison to other SotA approaches using the example of
uncoded and coded MIMO systems and summarize the main
results, respectively.

II. CONCRETE RELAXATION OF MAP PROBLEM

A. System Model and Problem Statement

To motivate the concrete relaxation, we consider a proba-
bilistic and (possibly) non-linear observation model described
by a continuous and differentiable pdf 𝑝(y|x). Based on this
model, the task is to classify/detect the discrete multivariate
RV x, i.e., x = {𝑥𝑛}𝑁T

𝑛=1 whose i.i.d. elements are from a set
M, given the observation y ∈ C𝑁R×1.

To illustrate our findings with an example typically encoun-
tered in communications, we focus on a linear complex-valued
observation model, e.g., MIMO system, although the following
derivations hold without loss of generality for general 𝑝(y|x).
We first exclude coding from our model:

y = Hx + n (1a)

with 𝑝(y|x,H, 𝜎2
n ) =

1
𝜋𝑁R𝜎

2𝑁R
n

𝑒
− 1

𝜎2
n
(y−Hx)𝐻 (y−Hx)

. (1b)

There, a linear channel H ∈ C𝑁R×𝑁T with statistic 𝑝(H),
e.g., such that taps ℎ𝑚𝑛 ∼ CN(0, 1/𝑁R) are i.i.d. Gaussian
distributed, introduces correlation between the elements 𝑥𝑛
with E[|𝑥𝑛 |2] = 1 from typical modulation sets M, e.g., BPSK,
8-PSK or 16-QAM. Then, Gaussian noise n ∼ CN(0, 𝜎2

n I𝑁R )
with variance 𝜎2

n distributed according to 𝑝(𝜎2
n ) interferes.

The matrix I𝑁R denotes the identity matrix of dimension
𝑁R×𝑁R. For the following derivations, note that we are able to
replace y by one total observation ỹ including RVs H and 𝜎2

n
without loss of generality since x, H and 𝜎2

n are statistically
independent:

𝑝(ỹ|x) = 𝑝(y,H, 𝜎2
n |x) = 𝑝(y|x,H, 𝜎2

n ) · 𝑝(H) · 𝑝(𝜎2
n ) . (2)

In this detection problem, there exist two optimal detectors
from a probabilistic Bayesian viewpoint: First, we have the
likelihood function 𝑝(y|x) but would like to infer the most
likely transmit signal x based on an a-posteriori pdf 𝑝(x|y).
Using Bayes rule, we are able to reform the MAP problem
w.r.t. the known likelihood into

x̂ = arg max
x∈M𝑁T×1

𝑝(x|y) (3a)

= arg max
x∈M𝑁T×1

𝑝(y|x) · 𝑝(x) (3b)

= arg min
x∈M𝑁T×1

− ln 𝑝(y|x) − ln 𝑝(x) (3c)

where 𝑝(x) is the known a-priori pdf. Since the RV is
discrete, i.e., 𝑥𝑛 ∈ M, an exhaustive search over all element
combinations is required to solve the MAP problem becoming
computational intractable for large system dimensions. Note
that the Sphere Detector (SD) provides an efficient implemen-
tation [20]. Second, we notice that the MAP detector only
delivers the most likely received vector x. Hence, it minimizes
frame error rate and provides hard decisions.

In coded systems with soft decoders usually employed
today, delivering soft information is a strict requirement. The
Individual Optimal (IO) detector delivers such soft output as
probabilities and is optimal in terms of minimizing the Symbol
Error Rate (SER) per individual symbol without coding. It is
obtained by evaluating the marginal posterior distribution w.r.t.
every single 𝑥𝑛:

𝑥𝑛 = arg max
𝑥𝑛∈M

𝑝(𝑥𝑛 |y) = arg max
𝑥𝑛∈M

∑
x\𝑥𝑛

𝑝(y|x) · 𝑝(x)∑
𝑥𝑛

∑
x\𝑥𝑛

𝑝(y|x) · 𝑝(x)
. (4)

However, it has higher complexity due to required marginal-
ization w.r.t. x. Since the MAP detector performance coincides
with the IO detector in the high SNR regime and is of lower
complexity, we restrict to the MAP detector as a benchmark
in simulations without coding.

B. Concrete Distribution

We now focus on the following question to improve the
performance complexity trade-off: How to model the prior
information 𝑝(x) accurately by some approximation 𝑝(x̃)?
In [37], we proposed to use ML tricks from [35], [36] to
achieve this and to make inference computationally tractable.
The idea was recently discovered in the ML community in
the context of unsupervised learning of generative models
[35], [36]. There, marginalization to compute the objective
function, the evidence, becomes intractable. Therefore, the
Evidence is replaced by its Lower BOund (ELBO) by means
of an auxiliary posterior function. But optimizing w.r.t. the
ELBO results in high variance of the gradient estimators.
For variance reduction, the so called reparametrization trick
is used and leads to an optimization structure similar to an
autoencoder known as the variational autoencoder [23]. There,
the stochastic node is reparametrized by a continuous RV, e.g.,
a Gaussian, and its parameters, e.g., mean and variance. In
contrast to continuous RVs, reparametrization of discrete RV
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is not possible. Hence, a CONtinuous relaxation of disCRETE
RVs, the CONCRETE distribution, was proposed in [35], [36]
independently.

To explain the introduction of this relaxation to MAP
detection, let us assume that we have the discrete binary RV
𝑥 ∈ M with M = {−1, +1}. Further, we define the discrete RV
z as a one-hot vector where all elements are zero except for
one element, i.e., z ∈ {0, 1}2×1 with two possible realizations
z1 = [1, 0]𝑇 , z2 = [0, 1]𝑇 . In addition, we describe the values
of M by the representer vector m = [−1, 1]𝑇 . That way, we
can write 𝑥 = z𝑇 m, e.g., 𝑥 = [1, 0] · [−1, 1]𝑇 = −1. Now,
the one-hot vector z ∈ {0, 1}𝑀×1 represents a categorical RV
with 𝑀 = |M| classes. Connecting Monte Carlo methods to
optimization [35], the Gumbel-Max trick states that we are
able to generate samples, i.e., classes, of such a categorical
RV or pmf 𝑝(𝑥) by sampling an index 𝑖∗ from 𝑀 continuous
i.i.d. Gumbel RVs 𝑔𝑖 known from extreme value theory:

𝑖∗ = arg max
𝑖=1,...,𝑀

ln 𝑝(𝑥 = 𝑚𝑖) + 𝑔𝑖 . (5)

Defining the function one-hot(𝑖∗) which sets the 𝑖∗-th element
in the one-hot vector 𝑧𝑖∗ = 1 and 𝑧𝑙≠𝑖∗ = 0, the Gumbel-
Max trick hence allows to sample one-hot vectors z. Thus, we
are able to reparametrize z through a continuous multivariate
Gumbel RV g ∈ R𝑀×1 and a vector 𝜶 ∈ [0, 1]𝑀×1 of class
probabilities 𝑝(𝑥 = 𝑚𝑘 ) with

∑𝑀
𝑘=1 𝛼𝑘 = 1:

z = one-hot
(
arg max
𝑖=1,...,𝑀

[ln(𝜶) + g]
)
. (6)

Note that (6) and equally 𝑥 are still discrete RVs, i.e.,
𝑝(z)=̂𝑝(𝑥), but represented in probabilistic sense by contin-
uous RVs g. To arrive at a continuous RV we now replace
the one-hot and arg max computation in (6) by the softmax
function [35], [36]:

z̃ = 𝜎𝜏 (g) =
𝑒 (ln(𝜶)+g)/𝜏∑𝑀
𝑖=1 𝑒

(ln 𝛼𝑖+𝑔𝑖)/𝜏
. (7)

The resulting RV z̃ ∈ [0, 1]𝑀×1 is the so called concrete
or Gumbel-Softmax RV and now continuous, e.g., z̃ =

[0.2, 0.8]𝑇 . It is controlled by a parameter, the softmax
temperature 𝜏. The distribution of z̃ in (7) was found to have a
closed form density which gives the definition of the concrete
distribution:

𝑝(z̃|𝜶, 𝜏) = (𝑀 − 1)! 𝜏𝑀−1
𝑀∏
𝑘=1

(
𝛼𝑘 𝑧

−𝜏−1
𝑘∑𝑀

𝑖=1 𝛼𝑖𝑧
−𝜏
𝑖

)
. (8)

With z̃, we are finally able to relax the discrete RV 𝑥 into a
continuous RV 𝑥 by defining 𝑥 = z̃𝑇 m. Now, our derivation
of the relaxation is complete. In Fig. 1, we illustrate the
distribution 𝑝(𝑥) for the special case 𝑀 = 2 in comparison
to the original categorical pdf 𝑝(𝑥), i.e., a Bernoulli pmf. It
has the following properties reflecting the correctness of the
relaxation [35]: First, we are able to reparametrize the concrete
RV z̃ and hence the RVs 𝑥 by Gumbel variables g, a direct
result from the initial idea (7). Moreover, the smaller 𝜏, the
more z̃ approaches a categorical RV and the approximation
becomes more accurate. Thus, the statistics of 𝑥 and 𝑥 remain
the same for 𝜏 → 0.

−1 −0.5 0 0.5 1
0
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�̃� = −2�̃�1 + 1

𝑝
(𝑥

|𝜶
,
𝜏
)

𝑝(𝑥 |𝜶 = [0.5, 0.5]𝑇 , 𝜏 = 0.1)
𝑝(𝑥 |𝜶 = [0.5, 0.5]𝑇 , 𝜏 = 2)
𝑝(𝑥 |𝜶 = [0.5, 0.5]𝑇 , 𝜏 = 1)
𝑝(𝑥 |𝜶 = [0.8, 0.2]𝑇 , 𝜏 = 0.8)
𝑝(𝑥 |𝜶 = [0.5, 0.5]𝑇 )

Fig. 1. The conrete pdf 𝑝 ( �̃� |𝜶, 𝜏) shown for different parameter sets and
𝑀 = 2. It relaxes the Bernoulli pmf 𝑝 (𝑥 |𝜶) into the interior. Notably, for
𝜏 ≤ (𝑀 −1)−1, it is log-convex and log-concave otherwise. Symmetry results
if 𝛼1 = . . . = 𝛼𝑀 .

−1 −0.5 0 0.5 1

0

2

4

6

�̃�

−
ln

𝑝

− ln 𝑝(𝑥)
− ln 𝑝(𝑦 |𝑥)
− ln 𝑝(𝑥, 𝑦)
− ln 𝑝(𝑥, 𝑦)

Fig. 2. Exemplary plot of the concrete binary MAP cost function (green) and
the contribution of conditional (black) and prior pdf (red) to it. The original
binary MAP cost function (blue) is shown for comparison.

C. Reparametrization

In [37], our idea is to use the concrete distribution in order
to relax the MAP problem (3c) to

x̂ = arg min
x̃∈[min(M) ,max(M) ]𝑁T×1

− ln 𝑝(y|x̃) − ln 𝑝(x̃) . (9)

Note that the original MAP problem is included or recovered
in the zero temperature limit 𝜏 ( 𝑗) → 0. The reparametrization
of z̃ by g helps to rewrite (9) by expressing each 𝑥𝑛 in x̃ with
(7) by the RV g𝑛, 𝑛 = 1, . . . , 𝑁T of i.i.d. Gumbel RVs 𝑔𝑘𝑛:

x̃(G) =

𝑥1
...

𝑥𝑁T

 =


z̃𝑇1
...

z̃𝑇
𝑁T

 m =


𝜎𝜏 (g1)𝑇

...

𝜎𝜏

(
g𝑁T

)𝑇
 m (10)

with G =
[
g1 · · · g𝑁T

]
∈ R𝑀×𝑁T . (11)

By doing so, we will obtain an unconstrained optimization
problem w.r.t. matrix G. Now, we reformulate the relaxed
MAP problem (9): This means, we replace the likelihood
𝑝(y|x̃) by 𝑝(y|G) and introduce the Gumbel distribution
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𝑝(𝑔𝑘𝑛) = exp (−𝑔𝑘𝑛 − exp (−𝑔𝑘𝑛)) as the new prior distribu-
tion:

Ĝ = arg min
G∈R𝑀×𝑁T

− ln 𝑝(y|G) − ln 𝑝(G) (12a)

= arg min
G∈R𝑀×𝑁T

− ln 𝑝(y|G) −
𝑁T∑︁
𝑛=1

𝑀∑︁
𝑘=1

ln 𝑝(𝑔𝑘𝑛) (12b)

= arg min
G∈R𝑀×𝑁T

− ln 𝑝(y|G) + 1𝑇 G1 + 1𝑇 𝑒−G1︸                                  ︷︷                                  ︸
𝐿 (G,𝜏)

. (12c)

However, owing to the softmax and exponential terms
in 𝐿 (G, 𝜏), (12c) has no analytical solution. Furthermore,
𝐿 (G, 𝜏) describes a non-convex objective function which is il-
lustrated in Fig. 2 for the binary case 𝑀 = 2. This results from
log-convexity of the concrete distribution for 𝜏 ≤ (𝑀 − 1)−1

[35]. The conditional pdf 𝑝(y|x̃) is log-concave and the prior
pdf 𝑝(x̃) log-convex, so the negative log joint distribution
forms a non-convex objective function (12c).

D. Gradient Descent Optimization

One common strategy for solving the non-linear and non-
analytical problem (12c) is to use a variant of gradient descent
based approaches. Since we aim to reduce complexity, we
choose the most basic form steepest descent. The minimum is
approached iteratively by taking gradient descent steps until
the necessary condition

𝜕𝐿 (G, 𝜏)
𝜕G

= 0 (13)

is fulfilled. We point out that convergence to the global solu-
tion depends heavily on the starting point initialization since
the objective function is non-convex. A reasonable choice of
starting point value is x̃(0) = E[x] = 𝜶𝑇 · m, i.e., the expected
value of the true discrete RV x. We achieve this by setting
G(0) = 0 and 𝜏 = 1. After some tensor/matrix calculus and
by noting that every 𝑥𝑛 only depends on one g𝑛, the gradient
descent step for (12c) in iteration 𝑗 is:

G( 𝑗+1) =G( 𝑗) − 𝛿 ( 𝑗) · 𝜕𝐿 (G, 𝜏)
𝜕G

����
G=G( 𝑗)

(14a)

𝜕𝐿 (G, 𝜏)
𝜕G

= −
[
𝜕�̃�1 (g1)
𝜕g1

· · · 𝜕�̃�𝑁T (g𝑁T )
𝜕g𝑁T

]
· diag

{
𝜕 ln 𝑝(y|G)

𝜕x̃

}
+ 1 − 𝑒−G (14b)

𝜕𝑥𝑛 (g𝑛)
𝜕g𝑛

=
1

𝜏 ( 𝑗)
· [diag {𝜎𝜏 (g𝑛)} · m − 𝜎𝜏 (g𝑛) · 𝑥𝑛 (g𝑛)] .

(14c)

The operator diag {a} creates a diagonal matrix with the
vector a on its main diagonal. The step-size 𝛿 ( 𝑗) can be chosen
adaptively in every iteration 𝑗 just as the parameter 𝜏 ( 𝑗) . For
example, we can follow a heuristic schedule like in simulated
annealing: We start with a large 𝜏 ( 𝑗) and decrease until we
approach the true prior pdf for 𝜏 ( 𝑗) → 0. Finally, after the last
iteration 𝑁it, we get as a result the continuous estimate G(𝑁it) .
For approximate detection of x in (3c), the estimate has to be

transformed back to the discrete domain by quantizing x̃ onto
the discrete set M:

x̂ = arg min
x∈M𝑁T×1

x − x̃
(
G(𝑁it)

)
2
. (15)

In the following, we name this detection approach Concrete
MAP Detection (CMD). It is generic and applicable in any
differentiable probabilistic non-linear model. For our guiding
example of a linear Gaussian model (1), we are able to give
the explicit expression of

𝜕 ln 𝑝(y|G)
𝜕x̃

= − 2
𝜎2

n
·
[
H𝐻Hx̃(G) − H𝐻y

]
(16)

in (14b). This means that further only elementwise nonlin-
earities and matrix vector multiplications are present in this
example. As a final remark, we note that our implementation
of Section IV relies on scaling of the objective function by the
noise variance parameter, i.e., 𝜎2

n · 𝐿 (G, 𝜏). Although scaling
does not change the optimization problem, we observed that
this slightly modified version of (14) is numerically more
stable.

E. Special Case: Binary Random Variables

Noting that the softmax function (7) is normalized, we are
able to eliminate one degree of freedom in matrix G ∈ R𝑀×𝑁T

along dimension 𝑀 . For the special case of binary RVs or
𝑀 = 2 classes, this means that the matrix G can be reduced
to a vector s ∈ R𝑁T×1 of logistic RVs to derive a different
algorithm of low complexity. Here, we only briefly summarize
the result of binary CMD in a real-valued system model and
refer the reader to [37] for the complete derivation:

s( 𝑗+1) = s( 𝑗) − 𝛿 ( 𝑗) · 𝜕𝐿 (s)
𝜕s

����
s=s( 𝑗)

(17a)

𝜕𝐿 (s)
𝜕s

= −𝜕x̃(s)
𝜕s

· 𝜕 ln 𝑝(y|s)
𝜕x̃

+ tanh
( s
2

)
(17b)

(1)
=

1
𝜎2

n
· 𝜕x̃(s)

𝜕s
·
[
H𝑇 Hx̃(s) − H𝑇 y

]
+ tanh

( s
2

)
(17c)

𝜕x̃(s)
𝜕s

=
1

2𝜏 ( 𝑗)
· diag

{
1 − x̃2 (s)

}
(17d)

x̃(s) = tanh
(
ln (1/𝛼 − 1) + s

2𝜏

)
. (17e)

The final step consists again of quantization - in this case it
simplifies to the sign function: x̂ = sign(x̃(s(𝑁it) )).

III. LEARNING TO RELAX

Although being simple and computational efficient, us-
ing a gradient descent approach like (14) and (17) leads
to several inconveniences. Regarding theoretical properties,
a major drawback becomes apparent: Convergence of the
gradient descent steps to an optimum is slow since consecutive
gradients are perpendicular. Also practical questions arise:
How to choose the parameters 𝜏 ( 𝑗) and 𝛿 ( 𝑗) and the number
of iterations 𝑁it for a good complexity performance trade
off? And how are we able to deliver soft information, e.g.,
probabilities, to a soft decoder which is standard in today’s
communication systems?
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Our idea is to improve CMD by learning and in particular
the idea of deep unfolding to address these questions. This
means we have to deal with

A. how learning is defined
B. the application of deep unfolding to CMD.

A. Basic Problem of Learning

To introduce our notation of learning, we revisit our basic
task of MAP detection. Ideally, we would like to infer the most
likely transmit signal x based on an a-posteriori pdf 𝑝(x|y).
But as pointed out earlier, evaluation of 𝑝(x|y) has intractable
complexity. For this reason, we propose to relax the MAP
problem and CMD, respectively.

Another idea to tackle this problem is to approximate this
pdf 𝑝(x|y) by another computationally tractable pdf 𝑞(x|y),
e.g., by calculation of 𝑞(x|y) using few samples/observations
x, and use this pdf for inference. Note that this approach
includes cases where we do not know the pdf 𝑝(x|y) com-
pletely. The quality of the approximation can be quantified by
the information theoretic measure of Kullback-Leibler (KL)
divergence:

𝐷KL (𝑝 ‖ 𝑞) = −
∑︁

x∈M𝑁T×1

𝑝(x|y) ln
𝑝(x|y)
𝑞(x|y) (18)

= Ex∼𝑝 (x |y)

[
ln

𝑝(x|y)
𝑞(x|y)

]
. (19)

Just as the Mean Square Error (MSE), the measure of KL
divergence can be used to define an optimization problem
targeting at a tight 𝑞(x|y) as a solution. This brings me
to a crucial viewpoint of this article: Learning is defined
to be the optimization process aiming to derive a good
approximation 𝑞(x|y) of 𝑝(x|y), i.e.,

𝑞∗ (x|y) = arg min
𝑞

𝐷KL (𝑝 ‖ 𝑞) . (20)

This kind of problem is also referred to as Variational Infer-
ence (VI). We can rewrite the KL divergence into a sum of
cross entropy H (𝑝, 𝑞) and entropy H (𝑝):

𝐷KL (𝑝 ‖ 𝑞) = Ex∼𝑝 (x |y) [− ln 𝑞(x|y)] − Ex∼𝑝 (x |y) [− ln 𝑝(x|y)]
(21)

= H (𝑝, 𝑞) − H (𝑝) . (22)

Since we defined the basic learning problem (20) w.r.t. approx-
imation 𝑞, we can neglect the entropy term H (𝑝) independent
of 𝑞 and use cross entropy as the learning criterion. If we
further restrict 𝑞 to a model 𝑞(x|y, 𝜽) with parameters 𝜽 , the
optimization problem now reads:

𝜽∗ = arg min
𝜽

H (𝑝, 𝑞) . (23)

We note that problem (23) is solved separately for each y and
thus parameters 𝜽 need to be continuously updated in an online
learning procedure. Since this procedure is not computation-
ally efficient, we follow an offline learning strategy known as

Amortized Inference [23] and define one inference distribution
𝑞(x|y, 𝜽) for any value y:

𝜽∗ = arg min
𝜽

Ey∼𝑝 (y) [H (𝑝(x|y), 𝑞(x|y, 𝜽))] (24)

= arg min
𝜽

Ey∼𝑝 (y)
[
Ex∼𝑝 (x |y) [− ln 𝑞(x|y, 𝜽)]

]
(25)

≈ arg min
𝜽

− 1
𝑁

𝑁∑︁
𝑖=1

ln 𝑞(x𝑖 |y𝑖 , 𝜽) , 𝑁 → ∞ . (26)

Rewriting the optimization criterion of (24) into

Eỹ∼𝑝 (ỹ)
[
Ex∼𝑝 (x |ỹ) [− ln 𝑞(x|ỹ, 𝜽)]

]
(27)

=E𝜎2
n∼𝑝 (𝜎2

n )

[
EH∼𝑝 (H)

[
Ey∼𝑝 (y |H,𝜎2

n )
[
Ex∼𝑝 (x |ỹ)[− ln 𝑞(x|ỹ, 𝜽)]

] ] ]
for our guiding example (1), we note that we are able to
amortize across all observations ỹ from (2) and hence to
obviate the need for online training also for each channel H
and noise variance 𝜎2

n at the potential cost of accuracy.
The final result (26) equals the maximum likelihood prob-

lem in supervised learning. We make use of it in the following
since it allows for numerical optimization based on data
points {x𝑖 , y𝑖}. Furthermore, it proves to be a Monte Carlo
approximation of (24) and is hence well motivated from
information theory [23].

B. Idea of Unfolding and Application to CMD

Learning gives us the ability to obtain a tractable approxi-
mation 𝑞(x|y, 𝜽). But it remains one question: How to choose a
suitable functional form of 𝑞(x|y, 𝜽) of low complexity and for
good performance? We follow the idea of deep unfolding from
[25], [26] and apply it to our model-based approach CMD
with parameters 𝜽 =

{
𝜏 (0) , . . . , 𝜏 (𝑁it) , 𝛿 (0) , . . . , 𝛿 (𝑁it−1)} ∈

R(2𝑁it+1)×1 able to relax tightly. Thereby, we combine strengths
of DNNs and the latter: DNNs are known to be universal
approximators [5] and their fixed structure of parallel compu-
tations layer per layer allows to define a good performance
complexity trade off at run time. But if the model is dynamic
and changes, e.g., the channel or noise over time, reiterated
optimization of (23), i.e., possibly wasteful online training,
is required and the benefit disappears. Fortunately, we know
our model (1), a MIMO channel, well and are able to use
generative model-based approaches which mostly rely on a
suitable approximation of (20) for computational tractability.
For example, MFVI and AMP belong to this algorithm family.
By model-based DNN design, we introduce varying model
parameters like channel or noise explicitly and in a more
sophisticated way into the DNN design and thus make efficient
offline learning from (26) at only a small cost of accuracy
possible. Indeed, training of a DNN for our guiding example
(1) simply fed with inputs y and H, reshaped as a vector, does
not converge/lead to satisfactory results if trained offline [28].

This means we unfold the iterations (14) of CMD into a
DNN by untying the parameters 𝜏 ( 𝑗) and 𝛿 ( 𝑗) . Furthermore, we
fix the complexity by setting the number of iterations 𝑁it. The
resulting graph illustrated in Fig. 3 for binary CMD and (1)
has a DNN-like structure which should be able to generalize
and approximate well at the same time. Owing to the skip
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connection from s( 𝑗) to s( 𝑗+1) on the right hand side, the
structure resembles a Residual Network (ResNet) layer which
is SotA in image processing [9]. It is a result of the gradient
descent approach which allows to interpret optimization of
ResNets as learning gradient descent steps. The reason for the
success of ResNet lies in the skip connection: The training
error is able to backpropagate through it to early layers which
allows for fast adaptation of early weights and hence fast
training of DNNs. This makes CMD especially suitable for
online training proposed in [34] and allows for refinement in
application.

As before, we have to define a final layer which is now
also used for optimization. Usually, its output is chosen to
be an continuous estimate of x and optimized w.r.t. the MSE
criterion, see [28], [34]. This viewpoint relaxes the estimate
x̂ into R𝑁T×1 and assumes a Gaussian distribution for errors
at the output. In our case, the output would correspond to
x̃(G(𝑁it) ) from (15). But this is in contrast to our information
theoretic viewpoint on learning which states that we want to
approximate an output of the true pmf 𝑝(x|y). Like in MFVI,
we assume a factorization of the approximating posterior to
make it computationally tractable and derive our learning
criterion:

H (𝑝, 𝑞) = −
∑︁

x∈M𝑁T

𝑝(x|y) · ln 𝑞(x|y, 𝜽) (28)

MFVI
= −

∑︁
x∈M𝑁T

𝑝(x|y) · ln
∏

𝑥𝑛∈M
𝑞𝑛 (𝑥𝑛 |y, 𝜽) (29)

= −
∑︁

𝑥𝑛∈M
ln 𝑞𝑛 (𝑥𝑛 |y, 𝜽) ·

∑︁
𝑥/𝑛∈M𝑁T−1

𝑝(x|y) (30)

= −
∑︁

𝑥𝑛∈M
𝑝(𝑥𝑛 |y) · ln 𝑞𝑛 (𝑥𝑛 |y, 𝜽) (31)

=
∑︁

𝑥𝑛∈M
H (𝑝(𝑥𝑛 |y), 𝑞𝑛 (𝑥𝑛 |y, 𝜽)) . (32)

This interesting result shows that assuming MFVI factoriza-
tion leads to an optimization criterion w.r.t. the soft output
𝑝(𝑥𝑛 |y) of the IO detector (4). This soft output is required for
subsequent decoding and thus exactly what we need.

The last step of our idea consists of inserting our unfolded
CMD structure into 𝑞𝑛 (𝑥𝑛 |y, 𝜽). Hence, we propose to use
a softmax function for the last layer being a typical choice
for classification in discriminative probabilistic models. For-
tunately, CMD already includes this softmax function as part
of its structure so we rewrite

𝑞𝑛 (𝑥𝑛 |y, 𝜽) =
𝑀∏
𝑘=1

𝑞𝑛,𝑘 (𝑥𝑛 |y, 𝜽) (𝑥𝑛=𝑚𝑘 ) =
𝑀∏
𝑘=1

𝑧
(𝑥𝑛=𝑚𝑘 )
𝑛,𝑘

(33)

with z̃𝑛 = 𝜎𝜏 (𝑁it ) (g
(𝑁it)
𝑛 ) from the last iteration 𝑁it of (14). To

summarize, we optimize the parameter set 𝜽 of our approxi-
mating pdf 𝑞(x|y, 𝜽) based on CMD:

𝜽∗ = arg min
𝜽

Ey∼𝑝 (y) [H (𝑝(x|y), 𝑞(x|y, 𝜽))] (34)

s( 𝑗)

(•)+ln(1/𝜶−1)
𝜏 ( 𝑗)

x̃( 𝑗)

(•)2 − 1H𝑇 H(•) − H𝑇 y

�

+

+

s( 𝑗+1)

2/(𝜏 ( 𝑗) 𝜎2
n ) −

−𝛿 ( 𝑗)

𝜕𝐿 (s)
𝜕s

����
s=s( 𝑗)

Fig. 3. One layer of the unfolded binary CMD algorithm CMDNet when
applied to MIMO systems. In red: trainable parameters.

TABLE I
SIMULATION SCENARIOS

Scenario Sys Dim Mod Corr. Coding

Large MIMO 32 × 32 QPSK no no
MIMO 8 × 8 QPSK no no
Multi-class 32 × 32 16-QAM no no
massive MIMO One-Ring 32 × 64 QPSK 20◦ no
Soft Output 32 × 32 QPSK no LDPC

≈ arg min
𝜽

− 1
𝑁

𝑁∑︁
𝑖=1

𝑁T∑︁
𝑛=1


𝑥𝑛 = 𝑚1

...

𝑥𝑛 = 𝑚𝑀


𝑇

ln
(
𝜎𝜏 (𝑁it ) (g

(𝑁it)
𝑛 )

)
.

(35)

As a side effect, we also learn to relax with CMD by 𝜏 ( 𝑗) . We
call this approach based on unfolding of CMD CMDNet. The
optimization problem (35) can be efficiently solved by variants
of Stochastic Gradient Descent (SGD). Thanks to having a
model, we are able to create infinite training and test data for
reasonable approximation of (34) by (35) in every iteration
of SGD. We notice that this is in contrast to classic data sets
from the machine learning community.

IV. NUMERICAL RESULTS

A. Implementation Details / Settings

In order to evaluate the performance of the proposed ap-
proaches CMD and CMDNet, we present numerical simulation
results of application in our guiding example for different
MIMO systems with 𝑁T transmit and 𝑁R receive antennas
given in Tab. I. We assume an uplink scenario with multiple
UEs, each transmitting one symbol 𝑥𝑛 with equal a-priori
probabilities 𝛼1 = . . . = 𝛼𝑀 to one BS. As an example,
we assume the number of iterations or layers to be 𝑁it =
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TABLE II
SELECTED DETECTION ALGORITHMS

Abbrev. Complexity Literature

MAP / SD O(𝑀 𝛾𝑁T ) , 𝛾 ∈ (0, 1] [20]
SDR O(max(𝑁R, 𝑁T)3𝑁 1/2

T log(1/𝜖 )) [22]
OAMPNet O(𝑁L𝑁

3
T ) [33]

MMSE / MOSIC O(𝑁 3
T ) [34], [21]

DetNet O(𝑁L (𝑁T𝑁R + 𝑁 2
T 𝑀 )) [27], [28]

MMNet (iid) O(𝑁L𝑁T (𝑁T + 𝑁R + 𝑀 )) [34]
AMP O(𝑁it𝑁T (𝑁R + 𝑀 )) [24]
CMD/ CMDNet O(𝑁L𝑁T (𝑁R + 𝑀 )) [37]
MF O(𝑁T𝑁R)

𝑁L = 2𝑁T. For numerical optimization of the parameters
𝛿 ( 𝑗) and 𝜏 ( 𝑗) of CMDNet according to (35), we employ the
Tensorflow framework in Python [7]. Here, we use Adam
(Adaptive Moment Estimation) as a popular variant of SGD
with a default batch size of 𝑁b = 500 and 𝑁epoch = 105 training
iterations. Although providing fast convergence and requiring
little hyperparameter tuning, it is known to generalize poorly
[38]. Since we are able to generate a sufficient amount of
training data, i.e., 𝑁 = 𝑁b · 𝑁epoch = 5 · 107 to fulfill (34)
by (35) approximately, we make sure that generalization to
unseen data points is possible. As Tensorflow does not natively
support computation with complex numbers, we transform
the complex-valued system model (1a) into its real-valued
equivalent to allow for training and comparison to DNN-based
approaches. This means, we restrict to QAM constellations
with Gray encoding so that we have x ∈ M2𝑁T×1. As a training
default, we choose the noise variance statistics 𝑝(𝜎2

n ) such
that 𝐸b/𝑁0 = 10 log10 (1/𝜎2

n )−10 log10 (log2 (𝑀)) is uniformly
distributed between [4, 27] dB. We set the default parameter
starting point to 𝜽0 with constant 𝛿

( 𝑗)
0 = 1 and heuristically

motivated and linear decreasing

𝜏
( 𝑗)
0 = 𝜏max − (𝜏max − 0.1)/𝑁it · 𝑗 (36)

with 𝜏max = 1/(𝑀 − 1), 𝑗 ∈ [0, 𝑁it]. With this choice, 𝑝(𝑥) is
always log-convex and hence reasonably approximating 𝑝(𝑥)
(see Fig. 1). For training of DNN-based approaches DetNet
and MMNet, we used the original implementations uploaded
to GitHub (see [28], [34]) with only minor modifications
to parametrization if beneficial. Consequently, we trained
MMNet with CMDNet training SNR and layer number. Since
we focus on offline derived or trained algorithms which are
used for inference at run time, we used its i.i.d. variant. We
always used the soft output version of DetNet with output
normalization to 1 since we noted that performance is close
to or better than the hard decision version. Furthermore, we
compare CMD and CMDNet to several SotA approaches for
MIMO detection (see Tab. II) choosing the number of Monte
Carlo runs with data batches of size 10000 so that always 1000
errors are detected (100 for SD and SDR).

B. Symmetric MIMO system

First, we test application of CMDNet in a large symmetric
32 × 32 / 64 × 64 MIMO system with i.i.d. Gaussian channel

statistics 𝑝(H) and QPSK/BPSK modulation. Fig. 4 shows
the results in terms of Bit Error Rate (BER) as a function of
𝐸b/𝑁0. Owing to near-optimal performance, the SD is always
provided as a benchmark in the following. In addition, we give
the AWGN curve as a reference since it shows the maximum
accuracy if 𝑁T = 𝑁R → ∞ [24].

Linear detectors perform bad in this setup: Since the curve
of the MF remains almost constant at BER ≈ 20% and
the Zero Forcer performs even worse, both are not shown
in the following. At least, MMSE equalization leads to an
acceptable BER but the curve is still separated by a 7 dB
gap at 𝐸b/𝑁0 = 13 dB from SD’s. In contrast, nonlinear SotA
detectors like MOSIC, AMP and SDR technique (see Sec. I for
algorithm details) have a strikingly better accuracy. Whereas
AMP runs into an error floor for high SNR since then the
message statistics are not Gaussian anymore in finite small-
dimensional MIMO systems [24], SDR proves to be a close
relaxation by only dropping the non-convex requirement of
rank(xx𝑇 ) = 1 [22].

Notably, our approach CMDNet in its binary version
CMDNetbin from (17) performs even better than the latter,
comparable to the best suboptimal approaches in this setup
DetNet and OAMPNet. Further, CMDNetbin does not run
into an error floor in the simulated SNR range like AMP
and DetNet. Setting the accuracy in context to complexity
(see Tab. II), this is impressive: Note that our approach is
similar in asymptotic complexity to the light-weight algo-
rithm AMP with O(𝑁L𝑁T (𝑁R + 𝑀)) at inference run time
after offline training whereas DetNet and OAMPNet are
very complex DNN architectures. In particular, OAMPNet
requires one costly matrix inversion per iteration resulting
in high O(𝑁L𝑁

3
T). In Sec. IV-G and Fig. 12, we give a

more detailed complexity analysis and comparison illustrating
CMD’s promising accuracy complexity trade-off more clearly.
In contrast, the other DNN-based approach MMNetiid with
comparable low complexity fails to beat CMDNetbin and runs
into an early error floor. Since we observed this behavior
similar to AMP in all settings and MMNet is actually designed
to perform well with fast online training, we omit further
results. We conjecture that the denoising layers are insufficient
expressive in the interference limited high SNR region with
offline training.

Results in a smaller 8 × 8 MIMO system plotted in Fig.
5, show that all soft non-linear approaches except for SDR
and MOSIC run into an error floor at lower SNR. Thus, we
conjecture that they share the same suboptimality at finite
system dimensions. They may rely on the statistics of the
interference terms to be Gaussian like AMP which is only
approximately true for large system dimensions. Apart from
SDR and MOSIC, CMDNetbin manages to beat the more
more expressive and complex DNN models, i.e., DetNet and
OAMPNet, and is close in accuracy to SDR for 𝐸b/𝑁0 < 10
dB.

C. Algorithm and Parametrization

To investigate the influence of learning on CMDNetbin and
the values of its parameters 𝜽 , we visualize them per layer 𝑗
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Fig. 4. BER curves of several detection methods in a 32× 32 MIMO system
with QPSK modulation. Effective system dimension is 64×64 and for iterative
algorithms 𝑁it = 𝑁L = 64.
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Fig. 5. BER curves of several detection methods in a 8 × 8 MIMO system
with QPSK modulation. Effective system dimension is 16×16 and for iterative
algorithms 𝑁it = 𝑁L = 16.

in Fig. 6 for the 32 × 32 MIMO system considered before.
Basically, we cannot observe any pattern after parameter
optimization and interpretation seems very difficult.

Furthermore, we notice from Fig. 7 that starting point
initialization 𝜽0 has a large impact on the optimum 𝜽105 found
by SGD (after 𝑁epoch = 105 iterations). If we use a starting
point 𝜽0,splin with linear decreasing

𝜏
( 𝑗)
0,splin = 𝛿

( 𝑗)
0,splin = 1 − (1 − 0.01)/𝑁it · 𝑗 (37)

for 𝑗 ∈ [0, 𝑁it], a solution 𝜽105,splin is learned allowing
CMDNet to perform better in the low 𝐸b/𝑁0 region from 6 to
10 dB. Notably, CMDNet even reaches the performance of the
best suboptimal algorithm considered in this setup OAMPNet.
To explain the error floor in the interference limited higher
𝐸b/𝑁0 region in contrast to CMDNet with default training,
we conjecture that a higher starting and correlating end step

0 20 40 60
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𝑗

𝛿

(a) Step size 𝛿 ( 𝑗)

0 20 40 60
0

0.5

1

𝑗

𝜏

(b) Softmax temperature 𝜏 ( 𝑗)

𝑁epoch=0
𝑁epoch=105

Fig. 6. Parameters 𝜽 of CMDNetbin in a 32 × 32 MIMO system with QPSK
modulation. Effective system dimension is 64 × 64.

size (see Fig. 6) allows CMDNet to leave a local optimum with
higher probability and to find a better one. On the contrary,
a small step size enforces convergence to a local solution. In
the noise limited 𝐸b/𝑁0 region, noise removal is crucial and
hence convergence. This means CMDNet can be optimized
to different working points and is sensitive to starting point
initialization. The result supports our view of a promising
accuracy complexity trade-off: Since CMDNet only has a
small parameter set, we are able to load the 𝜽 dynamically for
each 𝐸b/𝑁0 to achieve the performance of the best suboptimal
algorithm in all 𝐸b/𝑁0 regions.

In particular, we are able to further decrease the number
of parameters with negligible performance loss: CMDNetbin
with only 𝑁L = 16 layers performs equally well compared to
default CMD with 𝑁L = 64 at low 𝐸b/𝑁0 and slightly worse
at 𝐸b/𝑁0 = 12 dB by 1 dB.

Without unfolding, heuristics for parameter selection are
required similar to starting point initialization. The detection
accuracy of CMD with such heuristic parameters 𝜽0,splin is
quite impressive since the BER curve is close to that of learned
CMDNet with 𝜽105,splin. Therefore, we are able to use the plain
algorithm CMD for detection. We note that this is not true
with default parameters 𝜽0 and that performance can be quite
different after optimization (𝜽105 ).

Finally, we compare the accuracy of algorithm CMDNetbin
for the special case of binary RV from (17) with that of the
generic multi-class algorithm CMDNet from (14) since both
are different. From Fig. 7, we observe that the performance
is very similar and conjecture that CMDNet is capable of
achieving the same accuracy if training is parameterized
correctly.

D. Multi-class Detection

So far, only BPSK modulation and hence two classes have
been considered. To test multi-class detection with 𝑀 = 4
classes, we show numerical results in a 32×32 MIMO system
with 16-QAM modulation being equivalent to a 64 × 64 4-
ASK MIMO system after transformation into the equivalent
real-valued problem. Owing to now 3 degrees of freedom in
the soft-max function and denser symbol packing, we changed
our batch size to 𝑁b = 1500 and training SNR to higher
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Fig. 7. BER curves of CMD and CMDNet with different parametrization
or algorithmic in a 32 × 32 MIMO system with QPSK modulation. Effective
system dimension is 64 × 64. Default number of iterations or layers is 𝑁it =
𝑁L = 64.

𝐸b/𝑁0 ∈ [10, 33], respectively. Setting the default starting
point with 𝜏max = 2/(𝑀 − 1) = 2/3 so that the MAP criterion
ln 𝑝(x̃, y) becomes convex for a couple of iterations proves
to be crucial for successful training of CMDNet with multiple
classes. Without training parameter tuning, CMDNet performs
even worse than the MMSE detector.

Fig. 8 shows BER curves in this system. Clearly, we can
now observe a large gap between the BER curve of SD
and that of all other suboptimal approaches. Comparing the
latter, OAMPNet is superior over the whole SNR region.
Observing a maximum 2 dB curve shift, we note that CMDNet
is competitive to OAMPNet and SDR at 𝐸b/𝑁0 ∈ [10, 17] and
when BER= [10−2, 10−3] which is a typical working point of
decoders whereas being much less complex. At higher SNR,
an error floor follows. Although using a more expressive DNN
model, DetNet now trained for 𝐸b/𝑁0 ∈ [9, 16] fails to beat
CMDNet especially in this region.

E. Massive MIMO system

Investigation in large symmetric MIMO systems reveals
the potential and shortcomings of the algorithms. Rather in
5G, massive MIMO systems with 𝑁R > 𝑁T are employed
[19]. Assuming i.i.d. Gaussian channels, we shortly report the
results of a 32 × 64 MIMO system with QPSK modulation:
The BER curves of learning based approaches and SDR almost
follow that of SD and thus suggest that they fit perfectly for
application in massive MIMO.

However in practice, channels are spatially correlated at
the receiver side due to good spatial resolution of BS’ large
arrays compared to the number of scattering clusters [19].
Hence, the results for i.i.d. Gaussian channel statistics 𝑝(H)
are less meaningful as noted in [34]. As a first and quick
attempt towards a realistic channel model which captures its
key characteristics, we test performance in the so-called One-
ring model 𝑝(H) assuming a BS equipped with a uniform
linear antenna array [28], [19]. We parameterize the correlation
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Fig. 8. BER curves of several detection methods in a 32× 32 MIMO system
with 16-QAM modulation. Effective system has dimension 64×64 and 4-ASK
modulation and for iterative algorithms 𝑁it = 𝑁L = 64.

matrices of every column in H with reasonable values: Assum-
ing an urban cellular network, we set the angular spread to 20◦
and sample the nominal angle uniformly from [−60◦, 60◦],
i.e., 120◦ cell sector. Further, we place the antennas at half a
wavelength distance.

From Fig. 9, it becomes evident that the performance loss
of learning based approaches compared to SD in such a One-
Ring model of dimension 32 × 64 is similar to the symmetric
setting 32 × 32 in Fig. 4. Surprisingly, MOSIC and SDR now
prove to be comparable whereas the BER of AMP degrades
since the i.i.d. Gaussian channel assumption is not fulfilled
anymore. Again, CMDNet outperforms other learning-based
approaches DetNet and OAMPNet and performs very close to
the best suboptimal algorithm SDR whereas being much less
complex (see Tab. II and Fig. 12).

Considering the low complexity, we finally conclude that
CMDNet performs surprisingly well in all previous settings.
Hence, it proves to be a generic and hence promising detection
approach.

F. Soft Output (Coded MIMO System)

After investigation of detection performance in uncoded
systems, we turn to an interleaved and horizontally coded
32 × 32 / 64 × 64 MIMO system with Rayleigh block fading
reflecting our uplink model. We aim to verify whether not only
hard decisions but also soft outputs generated by CMDNet and
the soft output version of DetNet have high quality. This is
especially important in practice since coding is an essential
component besides equalization in today’s communication
systems. Therefore, we use a 64 × 128 LDPC code with rate
𝑅C = 1/2 from [39] and at receiver side a belief propagation
decoder with 10 iterations. The results in terms of Coded
Frame Error Rate (CFER) as a function of 𝐸b/𝑁0/𝑅C are
shown in Fig. 10. Owing to overwhelming computational
complexity, we refrained from using the MAP solution with
coding as a benchmark and instead show uncoded CMDNet
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Fig. 9. BER curves of several equalization methods in a correlated 32 × 64
MIMO system with QPSK modulation. The correlation matrices were gener-
ated according to a One-Ring model with 20◦ angular spread and 120◦ cell
sector. Effective system dimension is 64 × 128 and for iterative algorithms
𝑁it = 𝑁L = 64.

and SD curves for reference. Strikingly, CMDNet with coding
beats the latter and allows for a coding gain. In contrast, AMP
with coding runs into an error floor after 9 dB: The output
statistics become unreliable for high SNR in finite dimensional
systems [24]. Surprisingly, although being one of the best
detection methods in the uncoded setting, DetNet with coding
performs close to MMSE equalization with soft outputs and
thus worse than expected. Actually, the soft output version of
DetNet should deliver accurate probabilities or Log Likelihood
Ratios (LLRs) according to [28] after optimization.

Indeed, we visualize with an exemplary histogram of LLRs
that this is not the case. In Fig. 11, we show the relative
frequencies of LLRs of one symbol 𝑥𝑛 in one random channel
realization H for 𝐸b/𝑁0 = 10 dB. First, we note the histograms
for 𝑥𝑛 = −1 and 𝑥𝑛 = 1 to be symmetric meaning that both al-
gorithms fulfill a basic quality criterion. Furthermore, it can be
clearly seen that DetNet mostly provides hard decisions with
≈ 97% LLRs being −∞ and ∞, respectively. Only a few values
are close to 0. In contrast, CMDNet provides meaningful soft
information resembling a mixture of Gaussians as expected
from literature [40] ranging from −30 to 30. These results
strongly indicate that the difference of soft output quality orig-
inates from different underlying optimization strategies: As
pointed out in Section III-B, CMDNet relies on minimization
of KL divergence between IO a-posteriori and approximating
softmax pdf whereas the one-hot representation in DetNet is
optimized w.r.t. MSE. We conclude that our approach yields
a better optimization strategy.

G. Complexity Analysis

Since complexity is the main driver for development of
suboptimal algorithms like CMD instead of relying on MAP
detection, we complete our numerical study by relating detec-
tion accuracy to results on the computational complexity given
in Tab. II. With regard to CMD and CMDNet applied in our
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Fig. 10. CFER curves of a horizontally coded 32 × 32 MIMO system with
QPSK modulation. A 64 × 128 LDPC code with belief propagation decoder
was used. Effective system dimension is 64 × 64 and for iterative algorithms
𝑁it = 𝑁L = 64.
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Fig. 11. Exemplary histogram showing the relative frequencies of LLRs of
one symbol 𝑥𝑛 in one random channel realization H at 𝐸b/𝑁0 = 10 dB.

guiding example (1), the iterative asymptotic complexity of
O(𝑁T (2𝑁R + 4𝑀)) or O(2𝑁T𝑁R) for binary RV is dominated
by the matrix vector multiplications in H𝑇 Hx̃, i.e., CMD
scales linearly with the input and output dimension as well
as the number of classes. Clearly, CMD and CMDNet have
very low complexity comparable to AMP and MMNet but with
remarkable higher detection rate (see, e.g., Fig. 4). In most
analyzed scenarios, the accuracy is even higher than DetNet’s
as well as OAMPNet’s and on par with SDR’s.

Besides qualitative O(·) analysis, we capture complexity
quantitatively by counting the number of Multiplicative OPer-
ations (MOPs) for one iteration and channel realization being
the most common and costly floating point operations. In Fig.
12, we show the respective bar chart assuming a realistic low-
complexity implementation in a 32 × 32 with QPSK (𝑀 = 2)
and 𝑁L = 16 and worst-case complexity implementation with
16-QAM modulation (𝑀 = 4) and 𝑁L = 64, respectively.
For BPSK and the lower bar of MMSE equalization, we
assumed Gaussian elimination to solve the linear equation
system and, for higher order QAM and the higher bar, LU
decomposition. We estimate the upper bound on SDR MOP



12

103

104

105

106

107

108

109
#

of
M

ul
tip

lic
at

io
ns

SD 10dB MF MMSE AMP CMD DetNet OAMP SDR

Fig. 12. Complexity of detection algorithms in terms of number of mul-
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TABLE III
TRAINING COMPLEXITY

Algo. ∼ 𝑁b ∼ 𝑁epoch |𝜽 |
DetNet 2000 105 𝑁L [ ( {2, 4}𝑀 + {6, 20})𝑁 2

T
{QPSK, 16-QAM} -5000 +(𝑀 + {3, 6})𝑁T + 2]
OAMPNet 1000 104-105 2𝑁L

MMNet {iid, full} 500 104-105 {2𝑁L, 𝑁L𝑁T (𝑁R + 1) }
CMDNet 500 104-105 2𝑁L + 1

count by unadapted O(max(𝑁R, 𝑁T)4𝑁
1/2
T log(1/𝜖)) and the

lower bound on MOPs to account for half of the FLOPS from
[28] with inaccurate 𝜖 = 0.1. The expected number of visiting
nodes O(𝑀𝛾𝑁T ) of the SD is SNR dependent with 𝛾 ∈ (0, 1]
and was extracted from [20].

Apparently, only the very basic MF beats CMD and CMD-
Net in complexity at considerably worse detection accuracy.
Approaches with comparable accuracy like DetNet, OAMPNet
and SDR are 10-100 times more complex w.r.t. MOPs. We
conclude that CMDNet offers an excellent accuracy complex-
ity trade-off and note that AMP, MMNet, DetNet and CMDNet
further come with the benefit of already delivering soft outputs.

As a final remark, note that complexity analysis depends
on the assumptions made: If we, e.g., assume long channel
coherence time intervals, MMSE and MOSIC are able to reuse
its computations with only one matrix vector multiplication re-
maining for any further detection inside the interval effectively
decreasing complexity. For the same reason, online learning
approaches do not require further training inside the interval
and could be feasible. Comparing training cost of all unfolding
algorithms in Tab. III, we note that 𝑁b and 𝑁epoch lie in the
same range. Hence, the forward pass of backpropagation in
SGD and respectively run time complexity from Fig. 12 as
well as the number of parameters |𝜽 | to be optimized dom-
inate training complexity. OAMPNet fails in the former and
DetNet in the latter category with |𝜽 | ∈ [105, 107] assuming
𝑁L = {16, 64} and {QPSK, 16-QAM}. In contrast, CMDNet
with low runtime complexity and only |𝜽 | = {33, 129} may be
a promising online training approach similar to MMNet [34].

V. CONCLUSION

In this article, we introduced the so called continuous relax-
ation of discrete RV to the MAP detection problem. Allowing
to replace exhaustive search by continuous optimization, we
defined our classification approach Concrete MAP Detection
(CMD), e.g., based on gradient descent. By unfolding CMD
into a DNN CMDNet, we further were able to optimize its low
number of parameters and hence to improve detection accuracy
while limiting it to low complexity. As a side effect, the result-
ing structure has the potential to allow for fast online training.
Using the example of MIMO detection, simulations reveal
CMDNet to be a generic detection method competitive to SotA
outperforming it in terms of complexity and other recently
proposed ML-based approaches DetNet and MMNet in every
considered scenario. Notably, we selected an optimization
criterion grounded in information theory, i.e., cross entropy,
and showed that it aims at learning an approximation of the
individual optimal detector. By simulations in coded systems,
we demonstrated its ability to provide reliable soft outputs
as opposed to [28], being a requirement for soft decoding, a
crucial component in today’s communication systems.

All these findings prove CMDNet to be a promising de-
tection approach for application in future massive MIMO
systems. Further research is required to evaluate its potential
for fast online learning and to demonstrate its applicability to
non-linear scenarios of other research domains.
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