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Abstract—Following the great success of Machine Learn-
ing (ML), especially Deep Neural Networks (DNNs), in many
research domains in 2010s, several ML-based approaches were
proposed for detection in large inverse linear problems, e.g.,
massive MIMO systems. The main motivation behind is that
the complexity of Maximum A-Posteriori (MAP) detection grows
exponentially with system dimensions. Instead of using DNNs,
essentially being a black-box, we take a slightly different
approach and introduce a probabilistic Continuous relaxation
of disCrete variables to MAP detection. Enabling close approx-
imation and continuous optimization, we derive an iterative
detection algorithm: Concrete MAP Detection (CMD). Fur-
thermore, extending CMD by the idea of deep unfolding into
CMDNet, we allow for (online) optimization of a small number
of parameters to different working points while limiting com-
plexity. In contrast to recent DNN-based approaches, we select
the optimization criterion and output of CMDNet based on
information theory and are thus able to learn approximate
probabilities of the individual optimal detector. This is crucial
for soft decoding in today’s communication systems. Numerical
simulation results in MIMO systems reveal CMDNet to feature
a promising accuracy complexity trade-off compared to State of
the Art. Notably, we demonstrate CMDNet’s soft outputs to be
reliable for decoders.

Index Terms— Maximum a-posteriori (MAP), individual opti-
mal, massive MIMO, concrete distribution, Gumbel-softmax,
machine learning, neural networks.

I. INTRODUCTION

OMMUNICATIONS is a long standing engineering dis-
cipline whose theoretical foundation was laid by Claude
Shannon with his landmark paper “A Mathematical Theory
of Communication” in 1948 [1]. Since then, the theory has
evolved into an own field known as information theory today
and found its way into many other research areas where data
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or information is processed including artificial intelligence and
especially its subdomain Machine Learning (ML). Information
theory relies heavily on description with probabilistic models
playing a significant role for design of new generations of
cellular communication systems from 2-6G with respective
increases in data rate. Probabilistic models have shown to be
advantageous also in the ML research domain. Accordingly,
both fields, communications and ML, have touched repeatedly
in the past (see, e.g., [2]-[4]).

In the early 2010s, a special class of these models gave rise
to several breakthroughs in data-driven ML research: Deep
Neural Networks (DNNs). Inspired by the brain, several layers
of artificial neurons are stacked on top of each other to create
an expressive feed forward DNN able to approximate arbi-
trarily well [5] and thus to learn higher levels of abstraction,
i.e., features, present in data [6]. This is of crucial importance
for tasks where there are no well-established models but data
to be collected. Previously considered intractable to optimize,
dedicated hardware and software, i.e., Graphics Processing
Units (GPU) and automatic differentiation frameworks [7],
innovation to DNN models [8], [9] and advancements in
training [8] have made it possible to build algorithms that equal
or even surpass human performance in specific tasks such as
pattern recognition [10] and playing games [11]. The impact
included all ML subdomains, e.g., classification [9], [10]
in supervised learning, generative modeling in unsupervised
learning [12] and Q-learning in reinforcement learning [11].

A. ML in Communications

The great success of DNNs in many domains has stimu-
lated large amount of work in communications just in recent
years [6]. Especially in problems with a model deficit, e.g.,
detection in molecular and fiber-optical channels [13], [14],
or without any known analytical solution, e.g., finding codes
for AWGN-channels with feedback [15], DNNs have already
proven to allow for promising application. Notably, the authors
of the early work [16] demonstrate a complete communication
system design by interpreting transmitter, channel and receiver
as an autoencoder which is trained end-to-end similar to one
DNN. The resulting encodings are shown to reach the Bit
Error Rate (BER) performance of handcrafted systems in a
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simple AWGN scenario. A model-free approach based on
reinforcement learning is proposed in [17]. Using advances
in unsupervised learning, also blind channel equalization can
be improved [18].

In contrast to typical ML research areas, a model deficit
does not apply to wireless communications. The models,
e.g., AWGN, describe reality well and enable development of
optimized algorithms. However, those algorithms may be too
complex to be implemented. This algorithm deficit applies to
the core problem typical for communications: classification
in large inverse problems. Therefore, it is crucial to find
an approximate solution with an excellent trade-off between
detection accuracy and complexity.

B. Related Work

A prominent example for large inverse problems under
current deep investigation and a key enabler for better spec-
tral efficiency in 5G/6G are massive Multiple Input Mul-
tiple Output (MIMO) systems [19]. In an uplink scenario,
a Base Station (BS) is equipped with a very large number of
antennas (around 64-256) and simultaneously serves multiple
single-antenna User Equipments (UEs) on the same time-
frequency resource. As a first step in receiver design, different
tasks such as channel equalization/estimation and decoding
are typically split to lower complexity. But still, an algorithm
deficit applies to both MIMO detection and decoding of
large block-length codes, e.g., LDPC and Polar codes, since
Maximum A-Posteriori (MAP) detection has high computa-
tional complexity growing exponentially with system or code
dimensions. Even its efficient implementation, the Sphere
Decoder (SD), remains too complex in such a scenario [20].

Hence, in communications history, many suboptimal solu-
tions have been proposed to overcome the complexity bottle-
neck of the optimal detectors. One key approach is to relax the
discrete Random Variables (RV) to be continuous: Remarkable
examples include Matched Filter (MF), Zero Forcing and
MMSE equalization. But linear equalization with subsequent
detection leads to a strong performance degradation compared
to SD in symmetric systems.

A heuristic based on the latter is the V-Blast algorithm
which first equalizes and then detects one layer with largest
Signal-to-Noise Ratio (SNR) successively to reduce interfer-
ence iteratively. A more efficient and sophisticated implemen-
tation, MMSE Ordered Successive Interference Cancellation
(MOSIC), is based on a sorted QR decomposition of a MMSE
extended system matrix with post sorting and offers a good
trade-off between complexity and accuracy [21].

Pursuing another philosophy of mathematical optimiza-
tion, the SemiDefinite Relaxation (SDR) technique [22] treats
MIMO detection as a non-convex homogeneous quadratically
constrained quadratic problem and relaxes it to be convex by
dropping the only non-convex requirement. Proving to be a
close approximation, SDR is more complex than MOSIC and
solved by interior point methods from convex optimization.

Furthermore, also probabilistic model-based ML techniques
were introduced to improve the trade-off and to integrate
detection seamlessly with decoding: Mean Field Variational
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Inference (MFVI) provides a theoretical derivation of soft
Successive Interference Cancellation (SIC) and the Bethe
approach lays the foundation for loopy belief propagation [23].
Simplifying the latter, Approximate Message Passing (AMP)
is derived known to be optimal for large system dimensions
in ii.d. Gaussian channels and computational cheap [24].
As a further benefit, soft outputs are computed, today a strict
requirement to account for subsequent soft decoding. But in
practice, the performance of probabilistic approximations like
MFVI and AMP suffers if the approximating conditions are
not met, i.e., from the full-connected graph structure and finite
dimensions in MIMO systems, respectively.

More recent work considers DNNs for application in MIMO
systems and focus on the idea of deep unfolding [25], [26].
In deep unfolding, the number of iterations of a model-based
iterative algorithm is fixed and its parameters untied. Further,
it is enriched with additional weights and non-linearities to
create a computational efficient DNN being optimized for
performance improvements in MIMO detection [27], [28],
belief propagation decoding [29]-[31] and MMSE channel
estimation [32]. The former approach DetNet, a generic DNN
model with a large number of trainable parameters based
on an unfolded projected gradient descent, proves DNNs
to allow for a promising trade-off between accuracy and
complexity. In [33], unfolding of an extension of AMP to
unitarily-invariant channels, the Orthogonal AMP (OAMP),
into OAMPNet is proposed adding only 2 trainable parame-
ters per layer. Offering promising performance, the complex-
ity bottleneck of one matrix inversion per iteration makes
this model-driven approach rather unattractive compared to
DetNet. Another DNN-like network MMNet is inspired by
iterative soft thresholding algorithms and AMP [34]: Strik-
ing the balance between expressiveness and complexity, and
exploiting spectral and temporal locality, MMNet can be
trained online for any realistic channel realization if coherence
time is large enough. Since online training is in general
wasteful, an efficient implementation non-trivial and requires
particularly deep analysis, we focus in this work on offline
learning. One major drawback of the latter approaches is that
they focus on MIMO detection and do not provide soft outputs.

C. Main Contributions

The main contributions of this article are manifold: Inspired
by recent ML research, we first introduce a CONtinuous relax-
ation of the probability mass function (pmf) of the disCRETE
RVs by a probability density function (pdf) from [35], [36]
to the MAP detection problem. The proposed CONCRETE
relaxation offers many favorable properties: On the one hand,
the pdf of continuous RVs converges to the exact pmf in the
parameter limit. On the other hand, we notice good algorith-
mic properties like avoiding marginalization and allowing for
differentiation instead. By this means, we replace exhaustive
search by computationally cheaper continuous optimization to
approximately solve the MAP problem in any probabilistic
non-linear model. We name our approach Concrete MAP
Detection (CMD).
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Second, following the idea of Deep Unfolding, we unfold
the gradient descent algorithm into a DNN-like model
CMDNet with a fixed number of iterations to allow for
parameter optimization and to further improve detection
accuracy while limiting complexity. By this means, we are
able to combine the advantages of DNNs and model-
based approaches. As the number of parameters is small,
we are able to dynamically adapt them to easily adjust
CMDNet to different working points. Further, the result-
ing structure potentially allows for fast online training
of CMDNet.

Thirdly, we derive the optimization criterion from an infor-
mation theoretic perspective and are hence able to provide
probabilities of detection, i.e., reliable soft outputs. We show
that optimization is then equivalent to learning an approxima-
tion of the Individual Optimal (IO) detector. This allows us
to account for subsequent decoding, e.g., in MIMO systems,
in contrast to literature [28], [34].

Finally, we provide numerical simulation results for use of
CMD and CMDNet in MIMO systems including a variety of
simulation setups, e.g., correlated channels, revealing CMDNet
to be a generic and promising approach competitive to State
of the Art (SotA). Notably, we show superiority to other
recently proposed ML-based approaches and demonstrate with
simulations in coded systems CMDNet’s soft outputs to
be reliable for decoders as opposed to [28]. Furthermore,
by estimating the computational complexity, we prove CMD
to feature a promising trade-off between detection accuracy
and complexity. Notably, only the Matched Filter has lower
complexity.

In the following, we first introduce the concrete relaxation
to MAP detection in Section II using the example of an inverse
linear problem. In Section III, we follow a different route
and explain how to learn the posterior, i.e., replacing it by
some tractable approximation. To yield a suitable model for
this approximation, we propose to unfold CMD into CMDNet
which we are then able to train by variants of Stochas-
tic Gradient Descent (SGD). Finally in Section IV and V,
we provide numerical results of the bit error performance in
comparison to other SotA approaches using the example of
uncoded and coded MIMO systems and summarize the main
results, respectively.

II. CONCRETE RELAXATION OF MAP PROBLEM

A. System Model and Problem Statement

To motivate the concrete relaxation, we consider a proba-
bilistic and (possibly) non-linear observation model described
by a continuous and differentiable pdf p(y|x). Based on this
model, the task is to classify/detect the discrete multivariate
RV x, ie., x = {xn}ﬁil whose i.i.d. elements are from a set
M, given the observation y € CNex1,

To illustrate our findings with an example typically encoun-
tered in communications, we focus on a linear complex-valued
observation model, e.g., MIMO system, although the following
derivations hold without loss of generality for general p(y|x).
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We first exclude coding from our model:

y =Hx+n (1a)
. 1 -4 (y—Hx)" (y—Hx)
2\ __ o2
with p(y|x,H, o) = Nag2Ne . (Ib)

There, a linear channel H € CMNeXNT with statistic
p(H), e.g., such that taps h,, ~ CAN(0,1/Ng) are i.i.d.
Gaussian distributed, introduces correlation between the ele-
ments x, with E[|z,|?] = 1 from typical modulation sets
M, e.g., BPSK, 8-PSK or 16-QAM. Then, Gaussian noise
n ~ CN(0, 021 y,) with variance o2 distributed according to
p(02) interferes. The matrix Iy, denotes the identity matrix of
dimension Ny X Ng. For the following derivations, note that
we are able to replace y by one total observation y including
RVs H and o2 without loss of generality since x, H and o2
are statistically independent:

p(¥x) = p(y, H,07x) = p(y|x, H,07) - p(H) - p(03). (2)

In this detection problem, there exist two optimal detectors
from a probabilistic Bayesian viewpoint: First, we have the
likelihood function p(y|x) but would like to infer the most
likely transmit signal x based on an a-posteriori pdf p(x|y).
Using Bayes rule, we are able to reform the MAP problem
w.r.t. the known likelihood into

X = argmax p(x|y) (3a)
xEMNTXl

— argmax p(y}x) - p(x) (3b)
xEMNTXl

= argmin — Inp(y|x) — Inp(x) (3c)
xEMNTXl

where p(x) is the known a-priori pdf. Since the RV is
discrete, i.e., x,, € M, an exhaustive search over all element
combinations is required to solve the MAP problem becoming
computational intractable for large system dimensions. Note
that the Sphere Detector (SD) provides an efficient implemen-
tation [20]. Second, we notice that the MAP detector only
delivers the most likely received vector x. Hence, it minimizes
frame error rate and provides hard decisions.

In coded systems with soft decoders usually employed
today, delivering soft information is a strict requirement. The
Individual Optimal (IO) detector delivers such soft output as
probabilities and is optimal in terms of minimizing the Symbol
Error Rate (SER) per individual symbol without coding. It is
obtained by evaluating the marginal posterior distribution w.r.t.
every single x,,:

> plylx)  p(x)

x\Zn

2, = argmax p(z,|y) = argmax .
TnEM aneM >0 >0 plylx) - p(x)

Tn x\Tp
4)

However, it has higher complexity due to required marginal-
ization w.r.t. X. Since the MAP detector performance coincides
with the IO detector in the high SNR regime and is of lower
complexity, we restrict to the MAP detector as a benchmark
in simulations without coding.
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B. Concrete Distribution

We now focus on the following question to improve the
performance complexity trade-off: How to model the prior
information p(x) accurately by some approximation p(x)?
In [37], we proposed to use ML tricks from [35], [36] to
achieve this and to make inference computationally tractable.
The idea was recently discovered in the ML community in
the context of unsupervised learning of generative models [35],
[36]. There, marginalization to compute the objective function,
the evidence, becomes intractable. Therefore, the Evidence is
replaced by its Lower BOund (ELBO) by means of an auxil-
iary posterior function. But optimizing w.r.t. the ELBO results
in high variance of the gradient estimators. For variance reduc-
tion, the so called reparametrization trick is used and leads to
an optimization structure similar to an autoencoder known as
the variational autoencoder [23]. There, the stochastic node is
reparametrized by a continuous RV, e.g., a Gaussian, and its
parameters, e.g., mean and variance. In contrast to continuous
RVs, reparametrization of discrete RVs is not possible. Hence,
a CONtinuous relaxation of disCRETE RVs, the CONCRETE
distribution, was proposed in [35], [36] independently.

To explain the introduction of this relaxation to MAP
detection, let us assume that we have the discrete binary RV
x € M with M = {—1,+1}. Further, we define the discrete
RV z as a one-hot vector where all elements are zero except for
one element, i.e., z € {0,1}2*! with two possible realizations

z1 = [1,0]T, zo = [0,1]7. In addition, we describe the values
of M by the representer vector m = [—1,1]7. That way,
we can write 7 = z'm, e.g., z = [1,0]-[-1,1]7 = —1. Now,

the one-hot vector z € {0, 1}**! represents a categorical RV
with M = | M| classes. Connecting Monte Carlo methods to
optimization [35], the Gumbel-Max trick states that we are
able to generate samples, i.e., classes, of such a categorical
RV or pmf p(x) by sampling an index ¢* from M continuous
ii.d. Gumbel RVs g; known from extreme value theory:

i* = argmax Inp(x = m;) + g;. (5)
i=1,...,M

Defining the function one-hot(i*) which sets the i*-th ele-
ment in the one-hot vector z;+ = 1 and 2;4;+ = 0, the Gumbel-
Max trick hence allows to sample one-hot vectors z. Thus,
we are able to reparametrize z through a continuous multi-
variate Gumbel RV g € RM*! and a vector o € [0, 1] *1

of class probabilities p(x = my,) with 221:1 ap =1

z = one-hot (arg max [In(a) 4+ g]) . (6)

i=1,..,M

Note that (6) and equally x are still discrete RVs,

i.e., p(z)=p(x), but represented in probabilistic sense by

continuous RVs g. To arrive at a continuous RV, we now

replace the one-hot and argmax computation in (6) by the
softmax function [35], [36]:

(n(e)+g)/7

~ — - — - 7
Z g (g) Zi\il e(lnai+gi)/T @

The resulting RV z € [0,1]M*! is the so called con-
crete or Gumbel-softmax RV and now continuous, e.g., z =
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1.5 -
o p(%la=[0.50.5]",7=0.1)
Ap(Fla =[0.5,05]",7=2)
By (%la =[0.505]",7=1)
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¥p(x|la=1[05,0.5]T)

p(Xla, 1)

:—221 +1

Fig. 1. The concrete pdf p(Z|ex, 7) shown for different parameter sets and
M = 2. It relaxes the Bernoulli pmf p(z|c) into the interior. Notably, for
7 < (M —1)71, it is log-convex and log-concave otherwise. Symmetry

results if a1 = ... = apy.
6 0—Inp(X)
¢ A—Inp(yl%)
B-Inp(%,y)
4 ¢-Inp(x.y)
2
£
I
.k ¢
O -
I I I
-1 -0.5 0 0.5 1
X
Fig. 2. Exemplary plot of the concrete binary MAP cost function (green)

for model (1) (with Ny =1, H=1,y = 0.4, 02 =4, a1 = 0.5, as = 0.5
and 7 = 0.1) and the contribution of conditional (black) and prior pdf (red)
to it. The original binary MAP cost function (blue) is shown for comparison.

[0.2,0.8]T. It is controlled by a parameter, the softmax tem-
perature 7. The distribution of z in (7) was found to have a
closed form density in [35], [36] which gives the definition of
the concrete distribution:

akzk

]\1 IH

p(zlo, 7) = (M — ®)

5—T
7, 1 iz,

With z, we are finally able to relax the discrete RV «
into a continuous RV & by defining # = z”m. Now, our
derivation of the relaxation is complete. In Fig. 1, we illustrate
the distribution p(Z) for the special case M = 2 of binary
RVs in comparison to the original categorical pmf p(z), i.e., a
Bernoulli pmf. It has the following properties [35]: First,
we are able to reparametrize the concrete RV z and hence the
RV 2 by Gumbel variables g, a direct result from the initial
idea (7). Moreover, the smaller 7, the more z approaches a
categorical RV and the approximation becomes more accurate.
Thus, the statistics of  and Z remain the same for 7 — 0.
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C. Reparametrization

In [37], our idea is to use the concrete distribution in order
to relax the MAP problem (3c) to

X = arg min —Inp(y|x) —Inp(x). ()

%€ [min(M),max(M)] VX1

Note that the original MAP problem is included or recov-
ered in the zero temperature limit 7 — 0. Moreover, the objec-
tive function in (9) may be non-convex as illustrated in Fig. 2
for M = 2. The conditional pdf p(y|x) is log-concave
and the prior concrete pdf p(x) log-convex for 7 < (M —
1)1 [35], so the negative log joint distribution p(y, X) forms
a non-convex objective function (9). The reparametrization of
z by g helps to rewrite (9) by expressing each z,, in x with
(7) by the RV g,,, n =1,..., Nt, of i.i.d. Gumbel RVs g:

T 7 s (g1)"

Xx(G)=| 1 |=]:! |m= m (10)
TNy 217\1& Or (gNT)T

with G = [g1 gNT} c RMxNr. (11)

By doing so, we will obtain an unconstrained optimiza-
tion problem w.rt. matrix G. Now, we reformulate the
relaxed MAP problem (9): This means, we replace the like-
lihood p(y|x) by p(y|G) and introduce the Gumbel distri-
bution p(gkn) = exp (—grn — exp (—grn)) as the new prior
distribution:

G = argmin —Inp(y|G) — Inp(Q) (12a)
GERMXNT
Nt M
= argmin —Inp(y|G) =D > Inp(grn) (12b)
GERMXAT n=1k=1
= argmin —Inp(y|G) +17G1+1Te 1. (120)
GE]RMXNT
L(G,T)

However, due to the softmax and exponential terms in
L(G,7), (12¢) has no analytical solution. Furthermore,
L(G, 7) may be non-convex: For real-valued model (1) with
Nr =1, H = 1 and M = 2, the first term is a verti-
cally shifted, squared and scaled two-dimensional non-convex
sigmoid function w.r.t. g; and go. The operations applied to
the sigmoid do not change non-convexity. Also the sum of
this non-convex term and convex functions, i.e., linear and
exponential functions, remains non-convex.

D. Gradient Descent Optimization

One common strategy for solving the non-linear and non-
analytical problem (12c) is to use a variant of gradient
descent based approaches. Since we aim to reduce complexity,
we choose the most basic form steepest descent. The minimum
is approached iteratively by taking gradient descent steps until
the necessary condition

OL(G,T)
oG
is fulfilled. We point out that convergence to the global

solution depends heavily on the starting point initialization
since the objective function may be non-convex. A reasonable

=0 (13)
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choice of starting point value is X(*) = E[x] = a”-m, i.e., the
expected value of the true discrete RV x. We achieve this
by setting G(®) = 0 and 7 = 1. After some tensor/matrix
calculus and by noting that every Z,, only depends on one g,
the gradient descent step for (12c) in iteration j is:

GU+) — g0 _ g . 9LGT) (14a)
0G G=G)

OL(G,T) _ [oii(e) aiNT(gNT)i|

9G - og1 Ogny

1
,diag{w}Jrl_e—G (14b)
0ox

0%y, (8n 1 : T

8g(n ) - Lo [diag {0+ (gn)} - m — 0+ (8n) - Tn(gn)] -

(14c)

The operator diag {a} creates a diagonal matrix with the
vector a on its main diagonal. The step-size §/) can be chosen
adaptively in every iteration j just as the parameter 7(/). For
example, we can follow a heuristic schedule like in simulated
annealing: We start with a large 70) and decrease until we
approach the true prior pdf for 7) — 0. Finally, after the last
iteration Vi, we get as a result the continuous estimate G W),
For approximate detection of x in (3c), the estimate has to be
transformed back to the discrete domain by quantizing X onto
the discrete set M:

ox(@)],as

In the following, we name this detection approach Concrete
MAP Detection (CMD). It is generic and applicable in any
differentiable probabilistic non-linear model. For our guiding
example of a linear Gaussian model (1), we are able to give
the explicit expression of

7‘91“7;2'6") - —O_% [HYHX(G) - Hy] (16
in (14b). This means that further only elementwise
nonlinearities and matrix vector multiplications are present
in this example. As a final remark, we note that our
implementation of Section IV relies on scaling of the objective
function by the noise variance parameter, i.e., o2 - L(G,T).
Although scaling does not change the optimization problem,
we observed that this slightly modified version of (14) is
numerically more stable.

E. Special Case: Binary Random Variables

Noting that the softmax function (7) is normalized, we are
able to eliminate one degree of freedom in matrix G €
RM>*Nt along dimension M. For the special case of binary
RVs or M = 2 classes, this means that the matrix G can be
reduced to a vector s € RNT*1 of logistic RVs to derive a
different algorithm of low complexity. Here, we only briefly
summarize the result of binary CMD in a real-valued system
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model and refer the reader to [37] for the complete derivation:

G+ _ g0) _ 5 9L(s, ) (17a)
0s  |s_si
OL(s,7)  0%(s) Olnp(yls) s
S = o 0% + tanh (2) (17b)
W 1 0%(S) roper ’ s
=7 Tos [H"Hx(s) - H'y] + tanh (5)
(17¢)
ox(s) 1 . =2
s = 5y des{l-%(s)} (17d)
o In(1/a—1)+s
%(s) = tanh ('____TE;TJT_____) . (17¢)

The final step consists again of quantization - in this case
it simplifies to the sign function: x = sign(X(s))).

IIT. LEARNING TO RELAX

Although being simple and computational efficient, using
a gradient descent approach like (14) and (17) leads to sev-
eral inconveniences. Regarding theoretical properties, a major
drawback becomes apparent: Convergence of the gradient
descent steps to an optimum is slow since consecutive gra-
dients are perpendicular. Also practical questions arise: How
to choose the parameters 7(7) and 6() and the number of iter-
ations Vj for a good complexity performance trade off? And
how are we able to deliver soft information, e.g., probabilities,
to a soft decoder which is standard in today’s communication
systems?

Our idea is to improve CMD by learning and in particular
the idea of deep unfolding to address these questions. This
means we have to deal with

A. how learning is defined
B. the application of deep unfolding to CMD.

A. Basic Problem of Learning

To introduce our notation of learning, we revisit our basic
task of MAP detection. Ideally, we would like to infer the most
likely transmit signal x based on an a-posteriori pdf p(x|y).
But as pointed out earlier, evaluation of p(x|y) has intractable
complexity. For this reason, we propose to relax the MAP
problem and CMD, respectively.

Another idea to tackle this problem is to approximate this
pdf p(x|y) by another computationally tractable pdf ¢(x|y),
e.g., by calculation of ¢(x|y) using few samples/observations
x, and to use this pdf for inference. Note that this approach
includes cases where we do not know the pdf p(x|y) com-
pletely. The quality of the approximation can be quantified by
the information theoretic measure of Kullback-Leibler (KL)
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divergence:
D)= 3 »y)in zg:z; (1)
xEMNT
2]

Just as the Mean Square Error (MSE), the measure of KL
divergence can be used to define an optimization problem
targeting at a tight ¢(x|y) as a solution. This brings me
to a crucial viewpoint of this article: Learning is defined
to be the optimization process aiming to derive a good
approximation ¢(x|y) of p(x|y), i.e.,

q¢"(x|y) = argmin Dxv (p [ ). (20)
q
This kind of problem is also referred to as Variational
Inference (VI). We can rewrite the KL divergence into a sum
of cross entropy H (p, ¢) and entropy H (p):

Dxr (p || 4) = Exep(xly)[— Ing(x[y)]
- Exwp(x\y)[_ 1Hp(X|y)]
=H(p,q) —H(p).

Since we defined the basic learning problem (20) w.r.t.
approximation ¢, we can neglect the entropy term H (p) inde-
pendent of ¢ and use cross entropy as the learning criterion.
If we further restrict ¢ to a model ¢(x|y, @) with parameters
6, the optimization problem now reads:

21
(22)

0" = argmin H (p, q) . (23)
0

We note that problem (23) is solved separately for each
y and thus parameters 6 need to be continuously updated
in an online learning procedure. Since this procedure is
not computationally efficient, we follow an offline learning
strategy known as Amortized Inference [23] and define one
inference distribution ¢(x|y, @) for any value y:

0" = argemin Ey i [H (p(xly), a(xly, 6))] 24

arg;nin By p) [Bxmpxly) [~ a(x]y, 0)]] (25)

N
. 1
argemm -~ Zlnq(xi|yi,0), N — 0. (26)

i=1

Q

Rewriting the optimization criterion of (24) into (27), as
shown at the bottom of the page,
for our guiding example (1), we note that we are able to
amortize across all observations y from (2) and hence to
obviate the need for online training also for each channel H
and noise variance o2 at the potential cost of accuracy.

The final result (26) equals the maximum likelihood prob-
lem in supervised learning. We make use of it in the following
since it allows for numerical optimization based on N data
points {x;,y;}. Furthermore, it proves to be a Monte Carlo

Ejp() [Ex~pxls)[= 1 a(X]¥, 0)]] = Eg2p(o2) [Ernp(n) [Ey~p(y(H,02) [Exmp(xlz)[— I a(x¥, 0)]] ]

27)
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approximation of (24) and is hence well motivated from
information theory [23].

B. Idea of Unfolding and Application to CMD

Learning gives us the ability to obtain a tractable approx-
imation ¢(x|y,@). But it remains one question: How to
choose a suitable functional form of ¢(x|y,0) of low
complexity and for good performance? We follow the
idea of deep unfolding from [25], [26] and apply it to
our model-based approach CMD with parameters 6 =
(7O, 7N 50§D} e RENHDX able 1o
relax tightly. Thereby, we combine strengths of DNNs and
the latter: DNNss are known to be universal approximators [5]
and their fixed structure of parallel computations layer per
layer allows to define a good performance complexity trade
off at run time. But if the model is dynamic and changes, e.g.,
the channel or noise over time, reiterated optimization of (23),
i.e., possibly wasteful online training, is required and the ben-
efit disappears. Fortunately, we know our model (1), a MIMO
channel, well and are able to use generative model-based
approaches which mostly rely on a suitable approximation of
(20) for computational tractability. For example, MFVI and
AMP belong to this algorithm family. By model-based DNN
design, we introduce varying model parameters like channel
or noise explicitly and in a more sophisticated way into the
DNN design and thus make efficient offline learning from (26)
at only a small cost of accuracy possible. Indeed, training of a
DNN for our guiding example (1) simply fed with inputs y and
H, reshaped as a vector, does not converge/lead to satisfactory
results if trained offline [28].

This means we unfold the iterations (14) of CMD into a
DNN by untying the parameters 7() and §). Furthermore,
we fix the complexity by setting the number of iterations
Nj;. The resulting graph illustrated in Fig. 3 for binary CMD
and (1) has a DNN-like structure which should be able to
generalize and approximate well at the same time. Owing to
the skip connection from s) to sU*1) on the right hand side,
the structure resembles a Residual Network (ResNet) layer
which is SotA in image processing [9]. It is a result of the
gradient descent approach which allows to interpret optimiza-
tion of ResNets as learning gradient descent steps. The reason
for the success of ResNet lies in the skip connection: The
training error is able to backpropagate through it to early layers
which allows for fast adaptation of early weights and hence
fast training of DNNs. This makes CMD especially suitable
for online training proposed in [34] and allows for refinement
in application.

As before, we have to define a final layer which is now
also used for optimization. Usually, its output is chosen to
be a continuous estimate of x and optimized w.r.t. the MSE
criterion, see [28], [34]. This viewpoint relaxes the estimate
% into RV™*1 and assumes a Gaussian distribution for errors
at the output. In our case, the output would correspond to
%(GNw) from (15). But this is in contrast to our information
theoretic viewpoint on learning which states that we want to
approximate an output of the true pmf p(x|y). Like in MFVI,
we assume a factorization of the approximating posterior to
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make it computationally tractable and derive our learning
criterion:

H(p,q)
= = Y pxly)-Ingxly,0) (28)
xEMNT
Nt
MEVE > pxly) ] an(zaly, 0) (29)
xeMNT n=1

= -2

n €M x\z, e MNT—1

p(x|y) - Ingn(znly,0)

= =Y > pl@nly) maga(zaly,0) (30)
n x,eEM
= ZH (p(xnly), gn(znly,0)) . (31

n=1

This interesting result shows that assuming MFVI factor-
ization leads to an optimization criterion w.r.t. the soft output
p(z,|y) of the IO detector (4). This soft output is required
for subsequent decoding and thus exactly what we need.

The last step of our idea consists of inserting our unfolded
CMD structure into ¢, (x,|y, ). Hence, we propose to use
a softmax function for the last layer being a typical choice
for classification in discriminative probabilistic models. For-
tunately, CMD already includes this softmax function as part
of its structure so we rewrite

M M
qn(znly, @) ank (znly, 0) (mnimk H ;r,,—mk)
k=1 k=1
(32)
with z, = (V) (g% “)) from the last iteration Ny of

(14). To summarize, we optimize the parameter set 8 of our
approximating pdf ¢(x|y, @) based on CMD:

0" = argernin Ey~p(y)[H (p(X|Y)7 q(X|Ya 0))] (33)
1 Ny | Fim =10
~ argmin — N Z Z
’ ==t g, = ma
- In (O'.,.(Nn) (gﬁlN‘”)) . (34)

As a side effect, we also learn to relax with CMD by
7(0). We call this approach based on unfolding of CMD
CMDNet. The optimization problem (34) can be efficiently
solved by variants of SGD. Thanks to having a model, we are
able to create infinite training and test data for reasonable
approximation of (33) by (34) in every iteration of SGD.
We notice that this is in contrast to classic data sets from
the machine learning community.

IV. NUMERICAL RESULTS
A. Implementation Details/Settings

In order to evaluate the performance of the proposed
approaches CMD and CMDNet, we present numerical sim-
ulation results of application in our guiding example for
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Fig. 3. One layer of the unfolded binary CMD algorithm CMDNet when
applied to MIMO systems. In red: trainable parameters.

TABLE I
SIMULATION SCENARIOS

Scenario Sys. Dim.  Mod. Corr.  Coding
Large MIMO 32x32 QPSK no no
MIMO 8§x8 QPSK no no
Multi-class 32x32 16-QAM  no no
massive MIMO One-Ring 64 x 32 QPSK 20° no
Soft Output 32x32 QPSK no LDPC

different MIMO systems with Nt transmit and Ny receive
antennas given in Tab. I. We assume an uplink scenario
with multiple UEs, each transmitting one symbol z, with
equal a-priori probabilities oy = ... = ajs to one BS.
As an example, we assume the number of iterations or
layers to be Niy = Ny = 2Nt. For numerical optimization
of the parameters 6() and 7(/) of CMDNet according to
(34), we employ the Tensorflow framework in Python [7].
Here, we use Adam (Adaptive Moment Estimation) as
a popular variant of SGD with a default batch size of
Ny = 500 and Nepoeh = 10° training iterations. Although
providing fast convergence and requiring little hyperparameter
tuning, it is known to generalize poorly [38]. Since we
are able to generate a sufficient amount of training data,
ie, N = Ny Nepooh = 5 - 107 to fulfill (33) by (34)
approximately, we make sure that generalization to unseen
data points is possible. As Tensorflow does not natively
support computation with complex numbers, we transform
the complex-valued system model (1) into its real-valued
equivalent to allow for training and comparison to DNN-based
approaches. This means, we restrict to QAM constellations
with Gray encoding so that we have x € M?M 1 Ag a
training default, we choose the noise variance statistics p(o?)
such that Ey,/Ny = 10log;y(1/02) — 10log;,(logy(M)) is
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TABLE II
SELECTED DETECTION ALGORITHMS

Abbrev. Complexity Literature
MAP / SD O(MYNT), y € (0, 1] [20]
SDR O(max(Nr, N1)°N}? log(1/€))  [22]
OAMPNet O(NLN}) [33]
MMSE / MOSIC ~ O(N3) [34], [21]
DetNet O(NL(NTNR + N2M)) [27], [28]
MMNet (iid) O(NLNT(Nt1 + NR + M)) [34]
AMP O(NiN1(NR + M)) [24]
CMD/ CMDNet ~ O(NLN1(NR + M)) [37]

MF O(NtNR)

uniformly distributed between [4,27] dB. We set the default
parameter starting point to €y with constant 5(()7) = 1 and
heuristically motivated and linear decreasing

0.1)/Ni - j (35

(J) _
To~ = Tmax — (Tmax -

with Tax = 1/(M — 1), j € [0, Ny]. With this choice, p(Z) is
always log-convex and hence reasonably approximating p(x)
(see Fig. 1). For training of DNN-based approaches DetNet
and MMNet, we used the original implementations uploaded to
GitHub (see [28], [34]) with only minor modifications to para-
metrization if beneficial. Consequently, we trained MMNet
with CMDNet training SNR and layer number. Since we focus
on offline derived or trained algorithms which are used for
inference at run time, we used its i.i.d. variant. We always used
the soft output version of DetNet with output normalization to
1 since we noted that performance is close to or better than
the hard decision version. Furthermore, we compare CMD and
CMDNet to several SotA approaches for MIMO detection (see
Tab. II) choosing the number of Monte Carlo runs with data
batches of size 10000 so that always 1000 errors are detected
(100 for SD and SDR).

B. Symmetric MIMO System

First, we test application of CMDNet in a large symmetric
32 x 32/ 64 x 64 MIMO system with i.i.d. Gaussian channel
statistics p(H) and QPSK/BPSK modulation. Fig. 4 shows
the results in terms of BER as a function of Ey/Ny. Owing
to near-optimal performance, the SD is always provided as a
benchmark in the following. In addition, we give the AWGN
curve as a reference since it shows the maximum accuracy if
Nt = Nr — oo [24].

Linear detectors perform bad in this setup: Since the curve
of the MF remains almost constant at BER ~ 20% and
the Zero Forcer performs even worse, both are not shown
in the following. At least, MMSE equalization leads to an
acceptable BER but the curve is still separated by a 7 dB
gap at E,/Ny = 13 dB from SD’s. In contrast, nonlinear
SotA detectors like MOSIC, AMP and SDR technique (see
Sec. I for algorithm details) have a strikingly better accuracy.
Whereas AMP runs into an error floor for high SNR since
then the message statistics are not Gaussian anymore in finite
small-dimensional MIMO systems [24], SDR proves to be a
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Fig. 4. BER curves of several detection methods in a 32 x 32 MIMO

system with QPSK modulation. Effective system dimension is 64 X 64 and
for iterative algorithms Nj; = Ny, = 64.

close relaxation by only dropping the non-convex requirement
of rank(xx”) = 1 [22].

Notably, our approach CMDNet in its binary version
CMDNety, from (17) performs even better than the latter,
comparable to the best suboptimal approaches in this setup
DetNet and OAMPNet. Further, CMDNety;, does not run
into an error floor in the simulated SNR range like AMP
and DetNet. Setting the accuracy in context to complexity
(see Tab. II), this is impressive: Note that our approach is
similar in asymptotic complexity to the light-weight algo-
rithm AMP with O(Np. Nt(Nr + M)) at inference run time
after offline training whereas DetNet and OAMPNet are
very complex DNN architectures. In particular, OAMPNet
requires one costly matrix inversion per iteration resulting
in high O(N.N3). In Sec. IV-G and Fig. 12, we give a
more detailed complexity analysis and comparison illustrating
CMD’s promising accuracy complexity trade-off more clearly.
In contrast, the other DNN-based approach MMNet;;q with
comparable low complexity fails to beat CMDNety;, and runs
into an early error floor. Since we observed this behavior
similar to AMP in all settings and MMNet is actually designed
to perform well with fast online training, we omit further
results. We conjecture that the denoising layers are insufficient
expressive in the interference limited high SNR region with
offline training.

Results in a smaller 8 x 8 MIMO system plotted in Fig. 5,
show that all soft non-linear approaches except for SDR
and MOSIC run into an error floor at lower SNR. Thus,
we conjecture that they share the same suboptimality at finite
system dimensions. They may rely on the statistics of the
interference terms to be Gaussian like AMP which is only
approximately true for large system dimensions. Apart from
SDR and MOSIC, CMDNety;, manages to beat the more
expressive and complex DNN models, i.e., DetNet and OAMP-
Net, and is close in accuracy to SDR for E, /Ny < 10 dB.
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Fig. 5. BER curves of several detection methods in a 8 x 8 MIMO system

with QPSK modulation. Effective system dimension is 16 X 16 and for
iterative algorithms N, = Ny, = 16.
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Fig. 6. Parameters 6 of CMDNety, in a 32 x 32 MIMO system with QPSK

modulation. Effective system dimension is 64 X 64.

C. Algorithm and Parametrization

To investigate the influence of learning on CMDNety;, and
the values of its parameters 6, we visualize them per layer j
in Fig. 6 for the 32 x 32 MIMO system considered before.
Basically, we cannot observe any pattern after parameter
optimization and interpretation seems very difficult.

Furthermore, we notice from Fig. 7 that starting point
initialization @ has a large impact on the optimum 645 found
by SGD (after Nepoch = 10° iterations). If we use a starting
point @ggplin With linear decreasing

@ _ 50
TO,SpliI‘l - 5O,splin

=1—(1—0.01)/N; - j (36)

for j € [0,Ni], a solution 615, is learned allowing
CMDNet to perform better in the low Ey, /Ny region from 6 to
10 dB. Notably, CMDNet even reaches the performance of the
best suboptimal algorithm considered in this setup OAMPNet.
To explain the error floor in the interference limited higher
E, /Ny region in contrast to CMDNet with default training,
we conjecture that a higher starting and correlating end step
size (see Fig. 6) allows CMDNet to leave a local optimum with
higher probability and to find a better one. On the contrary,
a small step size enforces convergence to a local solution.
In the noise limited E}, /N region, noise removal is crucial and
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Fig. 7. BER curves of CMD and CMDNet with different parametrization or
algorithmics in a 32 X 32 MIMO system with QPSK modulation. Effective
system dimension is 64 x 64. Default number of iterations or layers is Ny =
Np = 64.

hence convergence. This means CMDNet can be optimized
to different working points and is sensitive to starting point
initialization. The result supports our view of a promising
accuracy complexity trade-off: Since CMDNet only has a
small parameter set, we are able to load the 6 dynamically for
each Ejy, /Ny to achieve the performance of the best suboptimal
algorithm in all Ey /Ny regions.

In particular, we are able to further decrease the number of
parameters with negligible performance loss: CMDNet with
only Np = 16 layers performs equally well compared to
default CMDNet with N;, = 64 at low FEy/Ny and slightly
worse at E, /Ny = 12 dB by 1 dB.

Without unfolding, heuristics for parameter selection are
required similar to starting point initialization. The detection
accuracy of CMD with such heuristic parameters O spjin iS
quite impressive since the BER curve is close to that of learned
CMDNet with 8¢5 1in. Therefore, we are able to use the plain
algorithm CMD for detection. We note that this is not true
with default parameters 8y and that performance can be quite
different after optimization (61(s).

Finally, we compare the accuracy of algorithm CMDNety;,
for the special case of binary RVs from (17) with that of the
generic multi-class algorithm CMDNet from (14) since both
are different. From Fig. 7, we observe that the performance
is very similar and conjecture that CMDNet is capable of
achieving the same accuracy if training is parameterized
correctly.

D. Multi-Class Detection

So far, only BPSK modulation and hence two classes have
been considered. To test multi-class detection with M = 4
classes, we show numerical results in a 32 x 32 MIMO system
with 16-QAM modulation being equivalent to a 64 x 64 4-ASK
MIMO system after transformation into the equivalent real-
valued problem. Owing to now 3 degrees of freedom in the
softmax function and denser symbol packing, we changed
our batch size to N, = 1500 and training SNR to higher
E,/Ny € [10,33], respectively. Setting the default starting
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Fig. 8. BER curves of several detection methods in a 32 x 32 MIMO
system with 16-QAM modulation. Effective system has dimension 64 x 64
and 4-ASK modulation and for iterative algorithms Nj; = Ni, = 64.

point with Tiax = 2/(M —1) = 2/3 so that the MAP criterion
In p(X,y) becomes convex for a couple of iterations proves
to be crucial for successful training of CMDNet with multiple
classes. Without training parameter tuning, CMDNet performs
even worse than the MMSE detector.

Fig. 8 shows BER curves in this system. Clearly, we can
now observe a large gap between the BER curve of SD
and that of all other suboptimal approaches. Comparing the
latter, OAMPNet is superior over the whole SNR region.
Observing a maximum 2 dB curve shift, we note that CMDNet
is competitive to OAMPNet and SDR at Ey, /Ny € [10, 17] and
when BER = [1072,10~3] which is a typical working point of
decoders whereas being much less complex. At higher SNR,
an error floor follows. Although using a more expressive DNN
model, DetNet now trained for Fy, /Ny € [9, 16] fails to beat
CMDNet especially in this region.

E. Massive MIMO System

Investigation in large symmetric MIMO systems reveals the
potential and shortcomings of the algorithms. Rather in 5G,
massive MIMO systems with Ng > Np are employed [19].
Assuming i.i.d. Gaussian channels, we shortly report the
results of a 64 x 32 MIMO system with QPSK modulation:
The BER curves of learning based approaches and SDR almost
follow that of SD and thus suggest that they fit perfectly for
application in massive MIMO.

However in practice, channels are spatially correlated at
the receiver side due to good spatial resolution of BS’ large
arrays compared to the number of scattering clusters [19].
Hence, the results for i.i.d. Gaussian channel statistics p(H)
are less meaningful as noted in [34]. As a first and quick
attempt towards a realistic channel model which captures its
key characteristics, we test performance in the so-called One-
ring model p(H) assuming a BS equipped with a uniform
linear antenna array [19], [28]. We parameterize the correlation
matrices of every column in H with reasonable values: Assum-
ing an urban cellular network, we set the angular spread to 20°
and sample the nominal angle uniformly from [—60°,60°],
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Fig. 9. BER curves of several detection methods in a correlated 64 x 32

MIMO system with QPSK modulation. The correlation matrices were gener-
ated according to a One-Ring model with 20° angular spread and 120° cell
sector. Effective system dimension is 128 x 64 and for iterative algorithms
Nit = N = 64.

i.e., 120° cell sector. Further, we place the antennas at half a
wavelength distance.

From Fig. 9, it becomes evident that the performance loss of
learning based approaches compared to SD in such a One-Ring
model of dimension 64 x 32 is similar to the symmetric setting
32 x 32 in Fig. 4. Surprisingly, MOSIC and SDR now prove to
be comparable whereas the BER of AMP degrades since the
ii.d. Gaussian channel assumption is not fulfilled anymore.
Again, CMDNet outperforms other learning-based approaches
DetNet and OAMPNet and performs very close to the best
suboptimal algorithm SDR whereas being much less complex
(see Tab. II and Fig. 12).

Considering the low complexity, we finally conclude that
CMDNet performs surprisingly well in all previous settings.
Hence, it proves to be a generic and hence promising detection
approach.

FE. Soft Output (Coded MIMO System)

After investigation of detection performance in uncoded
systems, we turn to an interleaved and horizontally coded
32 x 32 MIMO system with Rayleigh block fading reflecting
our uplink model. We aim to verify whether not only hard
decisions but also soft outputs generated by CMDNet and
the soft output version of DetNet have high quality. This is
especially important in practice since coding is an essential
component besides equalization in today’s communication
systems. Therefore, we use a 128 x 64 LDPC code with rate
Rc = 1/2 from [39] and at receiver side a belief propagation
decoder with 10 iterations. The results in terms of Coded
Frame Error Rate (CFER) as a function of Ey/Ny/Rc are
shown in Fig. 10. Owing to overwhelming computational
complexity, we refrained from using the MAP solution with
coding as a benchmark and instead show uncoded CMDNet
and SD curves for reference. Strikingly, CMDNet with coding
beats the latter and allows for a coding gain. In contrast, AMP
with coding runs into an error floor after 9 dB: The output
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Fig. 10. CFER curves of a horizontally coded 32 x 32 MIMO system with
QPSK modulation. A 128 x 64 LDPC code with belief propagation decoder
was used. Effective system dimension is 64 x 64 and for iterative soft detectors
Ny = Np, = 64.

statistics become unreliable for high SNR in finite dimensional
systems [24]. Surprisingly, although being one of the best
detection methods in the uncoded setting, DetNet with coding
performs close to MMSE equalization with soft outputs and
thus worse than expected. Actually, the soft output version of
DetNet should deliver accurate probabilities or Log Likelihood
Ratios (LLRs) according to [28] after optimization.

Indeed, we visualize with an exemplary histogram of LLRs
that this is not the case. In Fig. 11, we show the relative
frequencies of LLRs of one symbol x,, in one random channel
realization H for FE,/No = 10 dB. First, we note the
histograms for =, = —1 and z, = 1 to be symmetric
meaning that both algorithms fulfill a basic quality criterion.
Furthermore, it can be clearly seen that DetNet mostly pro-
vides hard decisions with ~ 97% LLRs being —oo and oo,
respectively. Only a few values are close to 0. In contrast,
CMDNet provides meaningful soft information resembling a
mixture of Gaussians as expected from literature [40] ranging
from —30 to 30. These results strongly indicate that the dif-
ference of soft output quality originates from different under-
lying optimization strategies: As pointed out in Section III-B,
CMDNet relies on minimization of KL divergence between
IO a-posteriori and approximating softmax pmf whereas the
one-hot representation in DetNet is optimized w.r.t. MSE.
We conclude that our approach yields a better optimization
strategy.

G. Complexity Analysis

Since complexity is the main driver for development of
suboptimal algorithms like CMD instead of relying on MAP
detection, we complete our numerical study by relating detec-
tion accuracy to results on the computational complexity given
in Tab. II. With regard to CMD and CMDNet applied in
our guiding example (1), the iterative asymptotic complexity
of O(Nr(2Ngr + 4M)) or O(2NrNg) for binary RVs is
dominated by the matrix vector multiplications in H7 HXx,
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Fig. 11. Exemplary histogram showing the relative frequencies of LLRs of
one symbol z,, in one random channel realization H at E,/No = 10 dB.

i.e., CMD scales linearly with the input and output dimension
as well as the number of classes. Clearly, CMD and CMDNet
have very low complexity comparable to AMP and MMNet
but with remarkable higher detection rate (see, e.g., Fig. 4).
In most analyzed scenarios, the accuracy is even higher than
DetNet’s as well as OAMPNet’s and on par with SDR’s.

Besides qualitative () analysis, we capture complex-
ity quantitatively by counting the number of Multiplicative
OPerations (MOPs) for one iteration and channel realization
being the most common and costly floating point operations.
In Fig. 12, we show the respective bar chart assuming a
realistic low-complexity implementation in a 32 x 32 with
QPSK (M = 2) and Np, = 16 and worst-case complexity
implementation with 16-QAM modulation (M = 4) and Ny, =
64, respectively. For BPSK and the lower bar of MMSE equal-
ization, we assumed Gaussian elimination to solve the linear
equation system and, for higher order QAM and the higher
bar, LU decomposition. We estimate the upper bound on SDR
MOP count by unadapted O(max(NR,NT)4NT1/2 log(1/€))
and the lower bound on MOPs to account for half of the
FLOPS from [28] with inaccurate ¢ = 0.1. The expected
number of visiting nodes O(M7N7) of the SD is SNR
dependent with v € (0,1] and was extracted from [20] for
E, /Ny =10 dB.

Apparently, only the very basic MF beats CMD and CMD-
Net in complexity at considerably worse detection accuracy.
Approaches with comparable accuracy like DetNet, OAMP-
Net and SDR are 10-100 times more complex w.r.t. MOPs.
We conclude that CMDNet offers an excellent accuracy com-
plexity trade-off and note that AMP, MMNet, DetNet and
CMDNet further come with the benefit of already delivering
soft outputs.

As a final remark, note that complexity analysis depends
on the assumptions made: If we, e.g., assume long channel
coherence time intervals, MMSE and MOSIC are able to
reuse its computations with only one matrix vector multipli-
cation remaining for any further detection inside the interval
effectively decreasing complexity. For the same reason, online
learning approaches do not require further training inside the
interval and could be feasible. Comparing training cost of all
unfolding algorithms in Tab. III, we note that Ny, and Nepoch lie
in the same range. Hence, the forward pass of backpropagation
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Fig. 12. Complexity of detection algorithms in terms of number of
multiplicative operations in a 32 X 32 / 64 x 64 MIMO system: Light colored
bars indicate a realistic low-complexity implementation with BPSK and dark
colored bars the worst-case complexity with 16-QAM modulation.

TABLE III
TRAINING COMPLEXITY

Algo. ~ Ny ~ Nepoch 6]

DetNet 2000  10° NL[({2,4}M + {6,20})N.2

{QPSK, 16-QAM}  -5000 +(M + {3,6}) Nt +2]

OAMPNet 1000 10*-10° 2Np

MMNet {iid, full} 500 10*-105  {2N_, NUNT(Nr + 1)}

CMDNet 500 10*-10° 2N +1

in SGD and respectively run time complexity from Fig. 12 as
well as the number of parameters |6| to be optimized dominate
training complexity. OAMPNet fails in the former and DetNet
in the latter category with [8] € [10°,107] assuming N =
{16,64} and {QPSK, 16-QAM]}. In contrast, CMDNet with
low runtime complexity and only |6 = {33,129} may be a
promising online training approach similar to MMNet [34].

V. CONCLUSION

In this article, we introduced the so called continuous
relaxation of discrete RVs to the MAP detection problem.
Allowing to replace exhaustive search by continuous optimiza-
tion, we defined our classification approach Concrete MAP
Detection (CMD), e.g., based on gradient descent. By unfold-
ing CMD into a DNN CMDNet, we further were able to
optimize its low number of parameters and hence to improve
detection accuracy while limiting it to low complexity. As a
side effect, the resulting structure has the potential to allow
for fast online training. Using the example of MIMO detec-
tion, simulations reveal CMDNet to be a generic detection
method competitive to SotA outperforming it in terms of
complexity and other recently proposed ML-based approaches
DetNet and MMNet in every considered scenario. Notably,
we selected an optimization criterion grounded in informa-
tion theory, i.e., cross entropy, and showed that it aims at
learning an approximation of the individual optimal detector.
By simulations in coded systems, we demonstrated its ability
to provide reliable soft outputs as opposed to [28], being a



8226

requirement for soft decoding, a crucial component in today’s
communication systems.

All these findings prove CMDNet to be a promising detec-
tion approach for application in future massive MIMO sys-
tems. Further research is required to evaluate its potential
for fast online learning and to demonstrate its applicability
to non-linear scenarios of other research domains.
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