
1

Ground-Assisted Federated Learning in
LEO Satellite Constellations

Nasrin Razmi, Student Member, IEEE, Bho Matthiesen, Member, IEEE,
Armin Dekorsy, Senior Member, IEEE, and Petar Popovski, Fellow, IEEE

Abstract—In Low Earth Orbit (LEO) mega constellations, there
are relevant use cases, such as inference based on satellite imaging,
in which a large number of satellites collaboratively train a
machine learning model without sharing their local data sets. To
address this problem, we propose a new set of algorithms based
of Federated learning (FL). Our approach differs substantially
from the standard FL algorithms, as it takes into account the
predictable connectivity patterns that are immanent to the LEO
constellations. Extensive numerical evaluations highlight the fast
convergence speed and excellent asymptotic test accuracy of the
proposed method. In particular, the achieved test accuracy is
within 96 % to 99.6 % of the centralized solution and the proposed
algorithm has less hyperparameters to tune than state-of-the-art
asynchronous FL methods.

Index Terms—Satellite communication, Low Earth Orbit (LEO),
Federated Optimization

I. INTRODUCTION

Constellations of small satellites flying in Low Earth Orbit
(LEO) are a cost-efficient and versatile alternative to traditional
big satellites in medium Earth and geostationary orbits. Several
of these constellations are currently deployed by private
companies with the goal of providing ubiquitous connectivity
and low latency Internet service [1], [2]. Their integration into
terrestrial mobile networks is an active research area, covering
various use cases such as Earth observation missions [3]–[6].
Presumably, machine learning (ML) will become an essential
tool to manage these constellations and utilize their sensor
measurements [7], [8].

The traditional approach to ML is to aggregate all data
in a central location and then solve the learning problem.
Considering the vast amounts of data necessary to train modern
deep neural networks [9], this involves high transmission costs
and delays. Moreover, it might simply be prohibited to share the
raw data with a central entity due to privacy or data ownership
concerns. The obvious solution to this dilemma is to train
locally and aggregate the derived model parameters only. This
is achieved by solving the ML problem collaboratively and

N. Razmi, B. Matthiesen, and A. Dekorsy are with the Gauss-Olbers
Center, c/o University of Bremen, and the Department of Communica-
tions Engineering, University of Bremen, 28359 Bremen, Germany (e-
mail: {razmi,matthiesen,dekorsy}@ant.uni-bremen.de). P. Popovski is with
the Department of Electronic Systems, Aalborg University, 9100 Aalborg,
Denmark (e-mail: petarp@es.aau.dk). P. Popovski is also holder of the
U Bremen Excellence Chair in the Department of Communications Engineering,
University of Bremen, 28359 Bremen, Germany.

This work is supported in part by the German Research Foundation (DFG)
under Germany’s Excellence Strategy (EXC 2077 at University of Bremen,
University Allowance) and by the North-German Supercomputing Alliance
(HLRN).

only sharing updated model parameters. The distributed ML
paradigm taking data heterogeneity and limited connectivity
into account is known as federated learning (FL) [10], [11].

A core assumption of the FL setting is intermittent and
unpredictable participation of the clients. In order to cope with
that, asynchronous algorithms have been proposed recently
[12]. However, the distinctive feature of the LEO learning
scenario is the predictable availability of clients combined
with very long periods between visits to the same ground
station (GS). In this paper, we investigate how this predictive
availability can be incorporated into FL algorithms when the
training process is orchestrated by a GS. We conclusively show
that this approach leads to superior training performance when
compared to generic FL algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a LEO constellation of K satellites in L orbital
planes. Each orbital plane l, l ∈ L = {1, . . . , L}, contains the
satellites Ol. Clearly, Oi ∩Oj = ∅ for all i, j ∈ L : i 6= j, and⋃
l∈LOl = K = {1, . . . ,K}. Satellite k, k ∈ K, has position

rk(t) at time t with coordinates in an Earth-centered inertial
(ECI) coordinate system, i.e., a Cartesian coordinate system
with origin at Earth’s center of mass and fixed with respect to
the stars. Satellites in the same orbital plane follow the same
trajectory, i.e., rk2(t) = rk1(t + ∆k1k2) for all k1, k2 ∈ Ol,
l ∈ L, and some delay ∆k1k2 . In addition, there is a fixed
position GS. Due to Earth’s rotation in the ECI frame, the GS
follows a time dependent trajectory rg(t).

A ground to satellite link (GSL) is feasible if a satellite
k ∈ K is visible from the GS at a minimum elevation angle
αe, expressed as π

2 − ∠(rg(t), rk(t)− rg(t)) ≥ αe or:

arccos

(
〈rg(t), rk(t)− rg(t)〉
‖rg(t)‖ ‖rk(t)− rg(t)‖

)
≤ π

2
− αe. (1)

At time instant t, the set of feasible GSL is CGSL(t) =
{k ∈ K : (1)}. In general, only a subset of satellites is con-
nected to the GS at any point in time and the time between
contacts is much longer than the actual online time.

Satellite k ∈ K collects data from its on-board instruments
and stores it in a data set Dk. Due to different orbits and orbital
positions, the data sets of two distinct satellites k1, k2 ∈ K
are disjunct, i.e., Dk1 ∩ Dk2 = ∅, and possibly non-IID. After
the data collection phase, the satellites collaboratively solve
an optimization problem of the form

min
θ∈Rd

1

n

∑
x∈D

f(x;θ) = min
θ∈Rd

∑
k∈K

nk
n

∑
x∈Dk

1

nk
f(x;θ) (2)

2

with the goal of training a machine learning model, where
D =

⋃
k∈KDk, nk = |Dk|, and n = |D| =

∑
k∈K nk. The

objective 1
n

∑
x∈D f(x;θ) is an empirical loss function defined

by the training task, where f(x;θ) is the training loss for a
(labeled) data point x and model parameters θ. This process
is orchestrated by the GS and performed iteratively without
sharing data sets between satellites. In particular, at iteration i,
the GS receives parameter updates {θik1 ,θ

i
k2
, . . . } computed

by a subset of currently visible satellites k1, k2, . . . based on
their local version of the global model and their local data
set. The GS incorporates these updates into the global model
parameters θi where the ultimate goal is that limi→∞ θ

i = θ?

with θ? being a optimal solution to (2).
We assume that the satellites have very limited computational

resources available to compute model updates. This could be
due to, e.g., a small form factor that limits heat dissipation,
other computational tasks running in parallel, and energy
constraints. Hence, we consider the case where the satellites
work on (2) between visits to the GS and use the contact
time to do a parameter exchange. The communication protocol
during one pass is the following. Upon contact, satellite k
makes its presence known to the GS and, optionally, sends its
updated model parameters. Then, the GS updates the global
model (θi,θik) 7→ θi+1 and decides whether satellite k should
continue working on (2) until its next GS contact. If yes, it
transmits the updated parameter vector to satellite k. This is
formalized in the next two subsections.

A. Satellite Operation for Federated Learning

Satellite k receives the current global model parameters θτ

and the corresponding global epoch τ from the GS. Then, it
performs one or more iterations of minibatch stochastic gradient
descent (SGD) over its complete local data set. In particular,
in each iteration (“epoch”) the local data set is partitioned in
dnkB e random batches B ∈ B of size B = |B| and, for each
minibatch, a SGD step is performed with learning rate η [9],
[11]. This is repeated until a predefined number of epochs
is performed or until the GS is visited again. Since the time
point of the next GS contact is deterministic, the satellite can
terminate the SGD procedure in time for the next contact.

To avoid large deviations from the global model, L2-
regularization is used [12] and the satellite computes its gradient
updates based on the surrogate objective with a regularization
parameter λ:

gθ′(B;θ) =
1

|B|
∑
x∈B

f(x;θ) +
λ

2

∥∥θ − θ′∥∥2
2
. (3)

Upon connecting to the GS, the satellite sends the locally
updated model θτk and the time stamp τ to the GS. Then, the
satellite waits for a new version of the global model that might
be sent during the current GS connection or at a later contact.
Please refer to Algorithm 1 for pseudo-code of this algorithm.

B. Ground Station Operation

The GS implements an asynchronous FL procedure, i.e.,
satellites can work, in principle, on different version of the
global model and updates are incorporated into the global
model as they arrive at the GS. In contrast, in a synchronous

Algorithm 1 Client Update Procedure at Satellite k
1: Receive (θτ , τ) from GS

2: θτ,0k ← θτ , j ← 0
3: while stopping criterion not met do
4: D̃k ← Randomly shuffle Dk
5: B ← Partition D̃k into minibatches of size B
6: for each batch B ∈ B do
7: θτ,j+1

k ← θτ,jk − η∇θ gθτ(B;θ
τ,j
k) . cf. (3)

8: j ← j + 1
9: end for

10: end while

11: Push (θτk , τ) to GS

Algorithm 2 Ground Station Operation
1: Initialize epoch i = 0, model θ0, wall time t

2: while stopping criterion not met do
3: Wait for any satellite. Upon connection to satellite k:
4: if received model update (θτk , τ) then
5: i← i+ 1
6: θi ← SERVERUPDATE(i, τ,θi−1,θτk)
7: end if
8: if SCHEDULE(k, t) then
9: Transmit (θi, i) to satellite k

10: end if
11: end while

FL procedures, e.g., FedAvg [11], all workers operate on the
same version of the global model which is only updated once
all scheduled workers have sent their updates.

Algorithm 2 outlines the operation of the GS. The imple-
mentation of the SERVERUPDATE and SCHEDULE procedure
depends on the FL scheme and will be discussed in Section III.
The stopping criterion in line 2 can be any of the usual termina-
tion criteria in ML, e.g., number of epochs, elapsed wall time,
or early stopping [9, §7.8]. We assume that the communication
in Algorithm 2 is non-blocking, i.e., communication delay is
hidden from Algorithm 2. Thus, the only part of Algorithm 2
that might lead to delays for other satellites are lines 3–6. Due
to the computational simplicity of these operations, we assume
this delay is negligible.

An obvious extension of this procedure is to allow several
parameter exchanges during a single satellite pass. This
complicates scheduling but likely results in faster convergence.
Due to space limitations, we postpone this extension to future
work.

III. FEDERATED LEARNING

This FL scenario is characterized by long delays, ranging
from the time of one orbital period to half a day, occurring
between the assignment of a computation task to a satellite
and receiving its result. The typical operation of FL algorithms
is to assign a task to a subset of workers and then wait
for all of them to return their result before continuing. This
is known as synchronous FL and prone to the straggler
problem [13]. Applied to the task at hand, it is apparent that a
straightforward adaption of a synchronous algorithm will lead
to slow convergence. Nevertheless, we sketch the operation of

3

Algorithm 3 Synchronous Ground Station Operation (FedAvg)
1: Initialize epoch i = 0, model θ1, wall time t
2: while stopping criterion not met do
3: i← i+ 1
4: Si = SCHEDULE(t) . Predictive scheduling of workers
5: Initialize Ri = Si, θi+1 = 0

6: while Si ∪Ri 6= ∅ do
7: Wait for any satellite. Upon connection to satellite k:
8: if k ∈ Si then
9: Transmit θi to satellite k

10: Si ← Si \ {k}
11: else if k ∈ Ri then
12: Receive model update θik from satellite k
13: θi+1 ← θi+1 + nk

n
θik

14: Ri ←Ri \ {k}
15: end if
16: end while
17: end while

the well-known FedAvg algorithm [11] in Section III-A and
use it as baseline.

One way to address the straggler problem is to incorporate
client updates whenever they arrive in an asynchronous fashion.
Such an algorithm was first published in [12] under the name
FedAsync. It is shown in [12] to often outperform FedAvg
and will be adapted to the satellite setting in Section III-B.
However, this algorithm was designed under the premise that
device availability is driven by a random, unpredictable process.
While the satellite scenario best described as asynchronous
it is far from being random as the client updates come in a
highly predictable manner. We exploit this in Section III-C to
unroll the FedAvg algorithm to work asynchronously.

A. Federated Averaging Algorithm
The FedAvg server selects, in iteration i, a subset Si of

workers to perform updates on the current model θi and then
waits for the arrival of all scheduled results before updating
the model according to the rule

θi+1 =
∑
k∈Si

nk∑
k∈Si nk

θik. (4)

A naïve adaption of this algorithm to the satellite scenario is
given in Algorithm 3. The difference to the original FedAvg
algorithm is that the communication is asynchronous to allow
scheduling of satellites that are not simultaneously visible to
the GS, while the update is still computed synchronously.

Observe that the server update loop in lines 6–16 is blocking,
i.e., it waits for all scheduled satellites to connect twice to the
GS before scheduling a new set of satellites. The implication is
that very careful scheduling is necessary to avoid long delays.
An alternative is to use a completely asynchronous algorithm.

B. Asynchronous Federated Learning Algorithm
The FedAsync algorithm from [12] incorporates client

updates asynchronously as they are received. At iteration i, it
obtains the updated global model from the convex combination
of the received client update and the current global model
parameters, i.e.,

θi+1 = (1− α)θi + αθik (5)

Algorithm 4 FedAsync Update Procedure [12]
Require: Mixing factor α′ ∈ (0, 1), staleness function s(t) ∈ [0, 1]

1: procedure SERVERUPDATE(i, τ,θ,θk)
2: α← α′s(ti − tτ) . Account for staleness
3: return (1− α)θ + αθk
4: end procedure

where α ∈ (0, 1) defines how much weight is given to incoming
client updates. Updates that are based on older versions of
the global model are likely to introduce an error into the
solution and, hence, should receive less weight. This staleness
is incorporated by augmenting the base weight α′ by a so-called
staleness function s(t) prior to updating the global model, i.e.,
α = α′ · s(ti − tτ), where i is the current model epoch, τ is
the epoch the client update is based on (cf. Algorithm 2), and
tj is the time epoch j was processed at the GS. Pseudo-code
for this implementation of the SERVERUPDATE procedure is
given in Algorithm 4.

As no client update can be fresher than one orbital period,
a hinged staleness function as proposed in [12, §5.2] seems
appropriate. In particular, we choose

s(t) =

{
1 if t ≤ (1 + ε)To,max

(1 + a(t− (1 + ε)To,max))
−1 otherwise

(6)
for some small ε ≥ 0 and a positive constant a, where To,max is
the maximum orbital period in the constellation {Ol}l∈L. The
scheduler can easily calculate the value of s(·) at the next pass
of a given satellite. Hence, it is possible to conserve energy and
computational resources by setting SCHEDULE(k, t) to false
if the weight α will be below a certain threshold.

The update rule in (5) is considerably different to the FedAvg
rule in (4), which is motivated by (2) to obtain a solution that
is unbiased towards any particular local data set. Given the fact
that the timing of all future model parameter updates can be
predicted, it would be desirable to choose α for each update
individually such that (4) is approximated. However, this is
impossible using the update rule (5) as can be verified easily.

C. Unrolled Federated Averaging Algorithm

Consider a near-polar Walker Delta Pattern Constellation
[14] with single orbital shell and a GS located at the North
Pole. This is a symmetrical scenario where every satellite visits
the GS exactly once per orbital period. Moreover, the sequence
of connecting satellites to the GS is constant, i.e., if, without
loss of generality, the satellites are ordered such that, within
some interval [t, t+ To] with To being the orbital period, the
sequence of satellite contacts is 1→ 2→ 3→ · · · → K, then
this sequence is repeated in every following orbital period.

In this case, the FedAvg update rule in (4) with full client
participation can be implemented as a moving average without
requiring synchronicity in the update phase. In particular,
suppose satellite k visits the GS at time ti1 (with epoch i1) and
again at ti2 = ti1 + To. Then, the client update θi2k received
at ti2 is based on θi1+1 and can be incorporated in the global
model as

θi2+1 = θi2 − αk(θi1k − θ
i2
k), (7)

where the weight αk = nk
n accounts for different data set sizes.

There are exactly K updates in each orbital period and, due to

4

Algorithm 5 Unrolled FedAvg Update Procedure (FedSat)
1: procedure SERVERUPDATE(·, ·,θ,θk)
2: Let θoldk be the previous model update by satellite k
3: return θ − αk

(
θoldk − θk

)
. αk as in (8)

4: end procedure

the periodicity of the satellite-GS contact order, the resulting
model after a multiple of K epochs is expected to be close the
result from Algorithm 3. This update procedure is summarized
in Algorithm 5. Observe that the difference θoldk − θk can
be replaced by the accumulated gradient update of satellite
k. Hence, it is not necessary to actually store the last model
update of each satellite as indicated by Algorithm 5.

Now, consider adding a second orbital shell C2 to the
constellation with twice the orbital period of the first shell
C1. Satellites in C2 visit the GS only half as often as satellites
in C1. According to the discussion in [15], directly applying
(7) might lead to a bias towards the data stored in C1. Inspired
by the approach in [15], this might be alleviated by weighting
model updates of satellites in C2 with 2nkñ instead of nk

ñ ,
where ñ is chosen such that the sum of all weights is one.
Generalizing this approach to arbitrary constellations, we can
choose the weight of satellite k’s update in (7) as

αk =
α̃k∑
k α̃k

with α̃k =
nk
νk
, (8)

where nk is the size of the local data set and νk is the number of
GS contacts of satellite k over a fixed period Tν . The choice of
this interval Tν strongly depends on the particular ML scenario
and the satellite constellation. In general, a longer period will
help to average out short term fluctuations. On the other hand,
in case of strong asynchronicity and non-IID data, this might
lead to biases if some satellites have strong influence on the
model over a short period of time. Especially in the beginning
of the training process, this might drive the model towards a
local solution in favor of some satellite’s local data distribution.
In this case, better results might be obtained by using a shorter
averaging period. In some cases, it might even be beneficial
to update the weights throughout the training.

IV. EMPIRICAL RESULTS

We numerically evaluate the performance of the algorithms
presented in Section III for a logistic regression model trained
on the MNIST dataset [16], [17]. This is a classification
task with 784 inputs and 10 outputs, amounting to 7850
trainable parameters. The test/train split is 89 %/11 % and the
performance is evaluated in terms of the test accuracy over
the training time. The expected test accuracy of this model
when trained centrally is 0.87. All results are averaged over
10 different random initializations of model parameters. The
training data set is distributed randomly over all workers with
equal local data set sizes. Each satellite operates according
to Algorithm 1 where a single pass over the local data set is
done in batches of size 10 between GS contacts. The learning
rate η = 0.1 and λ = 0.001 in all experiments. The mixing
parameter α for Algorithm 4 was fine-tuned for each experiment
individually. We rely on the FedML framework [18] for our
FL implementation. In the results, we refer to Algorithm 3 as
“FedAvg”, to Algorithm 4 as “FedAsync” and to Algorithm 5

0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

Time [h]

Te
st

A
cc

ur
ac

y

FedSat
FedSat+
FedAsync α = 0.3

FedAsync α = 0.1

FedAvg

0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

Time [h]

Te
st

A
cc

ur
ac

y

FedSat
FedSat+
FedAsync α = 0.3

FedAsync α = 0.1

FedAvg

0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

Time [h]

Te
st

A
cc

ur
ac

y

FedSat
FedSat+
FedAsync α = 0.3

FedAsync α = 0.1

FedAvg

Fig. 1. Test accuracy for a GS at the North Pole with IID data distribution.

as “FedSat”. The variant with weight augmentation as in (8) is
denoted as “FedSat+”. The scheduler includes all satellites in
each round. FedAsync is used with the hinged staleness function
in (6) with parameters ε = 0.01 and a = 5(1+ε)To,max, where,
by Kepler’s third law, To,max ≈ 127 min.

A satellite constellation with two orbital shells at altitude
500 km and 2000 km, respectively, containing five satellites
each is considered. Both are Walker Delta constellations [14]
with inclination angle of 80° and five orbital planes. They are
shifted such that the minimum difference in right ascension
of the ascending node (RAAN) between shells is 36°. The
minimum elevation angle αe is 10°. For the non-IID cases, the
data set was split such that labels 0–4 and 5–9 are distributed to
satellites in the 500 km and 2000 km orbital shells, respectively.

First, consider the case where the GS is located at the North
Pole. As discussed in Section III-C, this is a very symmetrical
scenario and provides good insight into the general performance
of the discussed algorithms. Figure 1 shows how the accuracy
of the model evolves over time for an IID data distribution,
i.e., all satellites have data that was uniformly sampled from
the MNIST dataset. It can be observed that all algorithms
converge towards a very similar accuracy after 2To,max. In
the case of FedSat, the achieved test accuracy is 96.2 % of the
centralized accuracy. The convergence of FedAvg is almost
instantaneous after 2To,max which is due to its synchronous
operation. However, to achieve exactly the same accuracy as
FedAvg a longer training time would be necessary. Among
the asynchronous algorithms, neither FedSat nor FedAsync
has a clear edge, except that FedAsync requires an additional
hyperparameter α to be fine-tuned.

In Fig. 2, the same experiment is repeated with a non-IID data
distribution between orbital shells. As before, FedAvg exhibits
almost instantaneous convergence after a delay of 2To,max.
However, the test accuracy of FedAvg improves after additional
2To,max which gives a good indication that it will be unsuitable
to train more complicated models in this satellite setup. As
for the other algorithms, FedSat+ is fastest to converge but
asymptotically achieves a strictly worse accuracy than FedAvg
and FedSat. In particular, FedSat’s accuracy is lower bounded
by FedAvg, as should be expected from its derivation, and
comes within 99.6 % of the centralized performance. FedAsync
shows a performance similar to FedSat and FedSat+ at the
beginning but fails to converge to a stable solution and oscillates
between FedSat and FedSat+. Interestingly, the optimal α = 0.1
is different than in the IID case. Choosing α = 0.3 instead

5

0 4 8 12 16 20 24
0.4

0.6

0.8

Time [h]

Te
st

A
cc

ur
ac

y

FedSat
FedSat+
FedAsync
FedAvg

0 4 8 12 16 20 24
0.4

0.6

0.8

Time [h]

Te
st

A
cc

ur
ac

y

FedSat
FedSat+
FedAsync
FedAvg

Fig. 2. Test accuracy for a GS at the North Pole with Non-IID data distribution.

0 4 8 12 16 20 24
0.4

0.6

0.8

Time [h]

Te
st

A
cc

ur
ac

y

FedSat
FedSat+
FedAsync
FedAsync s(t) = 1
FedAvg

Fig. 3. Test accuracy for a GS in Bremen with Non-IID data distribution.

leads to increased oscillation (not shown). We conclude that
FedAsync is quite sensitive to the choice of α and that this
parameters needs to be tuned for every scenario separately.
Further, the strictly inferior long-term solution of FedSat+
combined with the fast initial training success indicates that a
multi-stage strategy for the weight augmentation is a promising
training strategy.

Next, we repeat the non-IID experiment for a GS based in
Bremen, Germany, to assess the performance in a less remote
location. Here, the satellite contacts are far less symmetrical
than at the North Pole which leads to a considerably more
difficult training scenario. This can be observed from the
evolution of the test accuracy in Fig. 3, especially in comparison
to the previous experiments. In principle, the observations made
in Fig. 2 carry over to this case, but in a more pronounced
way. Again, FedSat+ exhibits a good initial performance but
converges to an inferior solution. FedSat achieves 99.4 % of
the centrally trained model’s test accuracy. FedAsync (with
α = 0.1) converges to an even worse solution than FedSat+.
We also evaluate the effect of proposed staleness function in
(6). It can be seen from the plot labelled “FedAsync s(t) = 1”
that without this function the convergence behavior worsens.
FedSat achieves the best asymptotic accuracy and converges
at a similar speed than the other algorithms. Finally, FedAvg
requires a very long time for its initial convergence and lower
bounds the performance of FedSat. It is to be expected that it
converges to the same accuracy as FedSat given more time.

In conclusion, these experiments verify the theoretical
observations from Section III. We have observed that a naïve
implementation of FedAvg [11] leads to tremendous delays and
that directly applying a generic asynchronous algorithm leads to
unstable convergence behavior. Instead, the proposed unrolling
of FedAvg in Algorithm 5, denoted as FedSat, exhibits very
good training performance that might be improved by carefully

augmenting the learning rate based on (8).

V. CONCLUSIONS

We have considered FL in LEO constellations where
satellites collaboratively train a ML model without sharing
their local data sets. Unique challenges compared to terrestrial
networks were identified and addressed by adapting FedAvg and
FedAsync to this setting. We have demonstrated how to unroll
FedAvg by exploiting the deterministic worker availability and,
effectively, convert it from a synchronous to an asynchronous
learning algorithm without sacrificing training performance.
This reduces the training time of FedAvg by several hours and
leads to an algorithm that outperforms FedAsync, a generic
asynchronous algorithms, both in convergence time and test
accuracy. The proposed algorithm also has less hyperparameters
to tune than FedAsync.

In this initial work, several topics were left open for future
work, including proper scheduling of workers, multiple data
exchanges during a single GS pass, and employing multiple GS.
These approaches could lead to considerably faster training.

REFERENCES

[1] M. Mitry, “Routers in space: Kepler communications' CubeSats will
create an internet for other satellites,” IEEE Spectr., vol. 57, no. 2, pp.
38–43, Feb. 2020.

[2] I. del Portillo, B. Cameron, and E. Crawley, “A technical comparison
of three low earth orbit satellite constellation systems to provide global
broadband,” Acta Astronaut., vol. 159, pp. 123–135, Mar. 2019.

[3] I. Leyva-Mayorga et al., “LEO small-satellite constellations for 5G and
beyond-5G communications,” IEEE Access, vol. 8, Oct. 2020.

[4] Y. Qian, “Integrated terrestrial-satellite communication networks and
services,” IEEE Wireless Commun., vol. 27, no. 6, Dec. 2020.

[5] O. Kodheli et al., “Satellite communications in the new space era: A
survey and future challenges,” IEEE Commun. Surveys Tuts., vol. 23,
no. 1, pp. 70–109, 2021.

[6] B. Di, L. Song, Y. Li, and H. V. Poor, “Ultra-dense LEO: Integration of
satellite access networks into 5g and beyond,” IEEE Wireless Commun.,
vol. 26, no. 2, pp. 62–69, Apr. 2019.

[7] M. A. Vazquez et al., “Machine learning for satellite communications
operations,” IEEE Wireless Commun., vol. 59, no. 2, Feb. 2021.

[8] D. J. Lary et al., “Machine learning applications for earth observation,”
in Earth Observation Open Science and Innovation. New York; Berlin,
Germany; Vienna, Austria: Springer-Verlag, 2018, pp. 165–218.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[10] J. Konečný, H. B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” in Proc. 8th NIPS
Workshop Optim. Mach. Learn. (OPT2015), Dec. 2015.

[11] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y
Arcas, “Communication-efficient learning of deep networks from decen-
tralized data,” in Proc. 20th Int. Conf. Artificial Intell. Statist. (AISTATS),
ser. Proc. Mach. Learn. Res. (PMLR), vol. 54, Apr. 2017.

[12] C. Xie, O. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
in Proc. Annu. Workshop Optim. Mach. Learn. (OPT2020), Dec. 2020.

[13] P. Kairouz et al., Advances and Open Problems in Federated Learning,
ser. FnT Mach. Learn. Now, 2021, vol. 14, no. 1–2.

[14] J. G. Walker, “Satellite constellations,” J. Brit. Interplanetary Soc., vol. 37,
pp. 559–571, Dec. 1984.

[15] Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H. Rangwala, “FedAT: A
communication-efficient federated learning method with asynchronous
tiers under non-IID data,” Oct. 2020, arXiv:2010.05958.

[16] Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of
handwritten digits. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[17] T. Li et al., “Federated optimization in heterogeneous networks,” in Proc.
Mach. Learn. Syst. (MLSys 2020), vol. 2, 2020, pp. 429–450.

[18] C. He et al., “FedML: A research library and benchmark for federated
machine learning,” 2020, arXiv:2007.13518.

