
Neural Network-based Forecasting of Decodability
for Early ARQ

Matthias Hummert, Dirk Wübben and Armin Dekorsy
Department of Communications Engineering

University of Bremen, 28359 Bremen, Germany
Email: {hummert, wuebben, dekorsy}@ant.uni-bremen.de

Abstract—Forecasting the decodability of a received packet
of a given decoder is a hard task as many State-of-the-Art
(SoTA) decoders are of high complexity and not easy to analyse
in an analytical fashion. Gathering this forecast on the other
hand would enable to save computational complexity and latency
as a decoder execution can be saved if it is unlikely that the
received packet is decoded correctly. On top, we can provide early
feedback for Automatic Repeat Request (ARQ) schemes before
actually running the decoding chain. Guided by this motivation,
several approaches of classifying the received packet before the
actual decoding process have been discussed. We propose to
use neural networks (NN) in the context of forecasting received
packets for a given receiver chain. We evaluate the performance
of the NN by evaluating different performance metrics and
perform an efficiency analysis of ARQ.

Index Terms—Supervised Machine Learning, Link Abstrac-
tion, Belief Propagation, error-correcting codes, Early ARQ

I. INTRODUCTION

In a time where ultra reliable low latency communication
(URLLC) is getting more and more important, knowing in
advance whether a packet is likely correctly decodable or
not can save decoder executions and schedule retransmissions
faster. Therefore, classification algorithms have been proposed
to make a decision, if a packet is decocable or not before
the actual decoding process takes place. This process of
classification based on the received signal is discussed in
the context of Early Automatic Repeat Request (E-ARQ).
In case of a negative forecast, a negative acknowledgement
(NACK) is immediately feed back to ask for a retransmission
without executing the decoder. If the forecast is positive, the
positive acknowledgment (ACK) is immediately feed back and
the packet is decoded. A wrong E-ARQ feedback actually
has the same impact as transmission errors on the feedback
channel and are handled by additional mechanisms based
on time references [1]. In the literature, E-ARQ has been
discussed based on Bit-Error-Rate (BER) estimations using
Log-Likelihood-Ratios (LLR) [2] and by exploiting subcode
structures of Low-Density-Parity-Check (LDPC) codes [3].
Another approach to provide early feedback is the exploitation
of different bounds for the error probability and the calculation
of an outage rate [4]. Recently, machine learning techniques
have been applied to E-ARQ [5] [6], where subcode structures

This work was partly funded by the German ministry of education and
research (BMBF) under grant 16KIS1180K (FunKI).

have also been exploited and different algorithms like Random
Forest (RF) or Linear Regression (LR) have been applied for
the classification of packets. To our knowledge, the first NN
based classifier has been proposed just recently, to predecide
between 2 decoders or to ask for a retransmission [7].

Due to the difficulty of analyzing the decodability in an
analytical faschion, we propose to apply NNs as a classifier
in order to decide for a specific received signal whether it is
correctly decodable or not. The received packet is used as the
input and the NN will output a probability whether the packet
is correctly decodable by the receiver chain. Furthermore, we
perform an efficiency analysis for E-ARQ with the proposed
NN. We name our NN-classifer as NN-FoC (NN ForeCast).

II. PRELIMINARIES

A. Nomenclature

We will note matrices by upper bold symbols H , vectors
by bold symbols x and an entry of the vector with subscripts,
e.g., xi for the ith entry. Hard decisions are marked with x̂
and soft estimates are noted as x̃.

B. System model

w

ûu c x y
ENC BPSK Demod. & Dec.

Fig. 1. System model of coded BPSK transmission over an AWGN channel
and Demodulation & Decoding

Consider the given communication chain in Fig. 1 where a
binary information word u ∈ Fk2 of length k is encoded (ENC)
into the codeword c ∈ Fn2 of length n by a linear block code
Γ of code rate Rc = k/n. The BPSK modulated codeword
x = 1 − 2c is transmitted over an Additive White Gaussian
Noise (AWGN) channel leading to the receive vector y given
by y = x+w. The received packet is then fed to demodulation
and decoding to gather the estimated information word û. The
decoding algorithms considered here are Belief Propagation
[8] and the optimal maximum-likelihood (ML) decoder. For
BP decoding LLRs of the receive signals need to be calculated
by

Ly = log

(
P (yi|xi = 1)

P (yi|xi = −1)

)
=

2

σ2
w

yi = Lchyi (1)

The input Ly of the BP decoder equals the receive signal y
scaled by the so called channel reliability Lch = 2/σ2

w with
the noise variance σ2

w.

III. FORECASTING OF DECODABILITY VIA NN
A. Predicition model

Since the decoder is the most complex part of the receiver
chain when considering computational resources, and as itera-
tive decoders introduce processing latency, it would be advan-
tageous to allocate computational resources to decoding only
when it is likely that decoding will be successful. Therefore,
a classification algorithm can be used, which forecasts the
decoder success, as shown in Fig. 2.

Ly ˜̀
classifier Hard decision

NACK

Decoding & ACK

ˆ̀= 0

ˆ̀= 1

Fig. 2. Classificiation scheme forecasting whether a retransmission should
be scheduled or run the receiver chain, depending on the likelihood of the
classifier output

We propose to use the LLRs as an input of the classifier as
they implicitly contain the SNR and the output is an estimated
label ˜̀ between 0 and 1, i.e. (0 ≤ ˜̀ ≤ 1). The estimated
label denotes the probability of a successfull packet decoding
for the given receive signals. By a threshold decision ˆ̀ =
Qα(˜̀) a hard forecast initiating either a NACK feedback (ˆ̀=
0 for ˜̀ < α) or the execution of the decoder and a ACK
feedback (ˆ̀= 1 for ˜̀> α). Here we use α = 0.5, but notice
that adaptation of α is currently under investigation. In this
paper, we propose to use a NN as a classifier. Essentialy, NNs
are nonlinear function combinations with trainable parameters
Θ. For a detailed explanation of them we refer to [9]. The NN-
FoC is trained using the supervised learning approach which
is described hereafter.

B. Supervised Learning Approach

The general idea of supervised learning is to tune learnable
parameters Θ of a function (a NN in this case) using input data
(observations) to match the corresponding labeled output data
(˜̀= f(Θ, Ly)) [9]. Here, the NN should mimic the decoder.
Thus, the observations are the received LLRs Ly and the labels
are determined by the outcome û of the decoder. In case of a
successful decoding û = u the label is ` = 1 and otherwise
` = 0, i.e. for û 6= u.

Having the dataset at hand, we can minimize a loss L(`, ˜̀)
so that the estimated labels ˜̀ are as close as possible to

the actual decoder success given by the labels `. The loss
reflects some form of distance between the output ˜̀ of the
function and the labels `. To formalize this, we define the
training set consisting of T training samples as (Lty, `

t)
for t = {1, . . . , T}. Therefore the set containts T vectors
Ly ∈ Rn and T scalar labels `, which are either 1 or 0.
As loss function the binary crossentropy (BCE)

L(˜̀, `) = − 1

T

T∑
t=1

`t · log(˜̀t) + (1− `t) · log(1− ˜̀t) (2)

is used. To minimize the loss function, the learnable parame-
ters Θ are adapted, e.g. by using a form of Stochastic Gradient
Descent (SGD) approach based on Steepest Descent. For initial
values of Θ the whole NN is executed and soft predicisions
˜̀ are calculated leading to the loss L(`t, ˜̀t). From the loss
the derivative w.r.t. Θ can be determined and the parameter
Θ updates via SGD. The most basic form of SGD is given by
the iteration

Θi+1 = Θi − η

|Sr|
∑
t∈Sr

∇ΘL(`t, ˜̀t) (3)

where i denotes the iteration index, η is the step size or
learning rate and ∇ΘL(`t, ˜̀t) is the gradient of the loss
function L(`t, ˜̀t) w.r.t. the learning paramter Θ. The training
set is divided into subsets |Sr| < T of equal size in the way
that no training data is present twice in any subset. These
subsets are called batches and |Sr| is named batch size. When
all subsets Sr are processed the whole training set T has been
used once which is called an epoch. For implementation, Keras
[10] and Tensorflow [11] have been used here.

IV. SIMULATION RESULTS

A. Basic Parameters

We investigate the performance of the NN-FoC classifier
for two codes, the (7, 4) Hamming code and a (32, 16) LDPC
code [12] to get a first impression of the performance. For all
testing purposes we use the Adam optimizer [13], which is a
form of SGD and a learning rate of η = 0.001 is applied. The
BP decoder uses a maximum of 5 iterations and we note the
total number of received packets as N for our Monte Carlo
simulations. We choose N = 106 if not mentioned otherwise.
Please note that the NNs are trained offline once and only used
for inference afterwards. In order to define our performance
metrics, we need the indicator function given by

1{ˆ̀∈A}(
ˆ̀) =

{
1, ˆ̀∈ A
0, else

. (4)

where A is the set or the condition when the indicator function
is 1. As performance metrics we use the false forecast accuracy
PFF indicating how many wrong forecast are made

PFF =

∑
t 1{ˆ̀t=0|`t=1}(

ˆ̀t) +
∑
t 1{ˆ̀t=1|`t=0}(

ˆ̀t)

N
, (5)

and the false negative PFN, the false positive PFP, true negative
PTN and true positive PTP probabilities defined as

PFN =

∑
t 1{ˆ̀=0|`=1}(

ˆ̀
t)∑

t 1{`=1}(`t)
, PFP =

∑
t 1{ˆ̀=1|`=0}(

ˆ̀
t)∑

t 1{`=0}(`t)
, (6)

PTN =

∑
t 1{ˆ̀=0|`=0}(

ˆ̀
t)∑

t 1{`=0}(`t)
, PTP =

∑
t 1{ˆ̀=1|`=1}(

ˆ̀
t)∑

t 1{`=1}(`t)
. (7)

For example, the false negative probability reflects a non
decodable forecast ˆ̀ = 0, whereas the packet was actually
decodable (` = 1) normalized on the number of actually
decodable packets.

We will focus on the false probabilites, PFP and PFN, as
false decisions highly influence the performance of the overall
proposed scheme. For comparison, we will also include the
counterpart of the average Frame Error Rate (FER) given by 1-
FER for the given Eb/N0 indicating the average probability of
error-free decoding. This can be used as SNR-based classifier,
because 1-FER equals a classifier that forecasts ˆ̀

t = 1 for all
packets.

B. How to train?

Due to the natural imbalances in the number of decod-
able and non-decodable packets for different SNR, we will
introduce a bias into the training dataset and our forecast
performance varies. Due to space limitations we cannot show
a full analysis of different training datasets here but we want
to emphasize that we are aware of this issue and tested
various datasets and biases and found a training over a range
of different SNR to deliver the best performance tradeoff
between false forceast accuracy PFF and false probabilities.
The range of SNR to train over is code dependent and has to
be chosen carefully to cover a good amount of decodable and
non decodable packets.

C. Performance evaluation for different NNs

In this section we evaluate different NN-FoCs for the (7, 4)
Hamming code and the BP decoder with different structures,
in order to judge, how many weights and layers are needed for
the forceasting NN to deliver good performance. The NN-FoC
configurations follow a general form: the input layer has the
width of the codeword length n and the output layer consists
of a single neuron with a sigmoid activation. We always use
ReLU activation functions for the hidden layers of the NN-
FoCs.

We investigate different number of hidden layers and vary
the width of these layers and evaluate the performance. The
configurations can be seen in table I.

Hidden Layer width of layer # of weights Name
4 2000, 1000, 500, 200 2617901 NN-FoC 1
4 50, 50, 50, 20 9091 NN-FoC 2
2 50, 20 1441 NN-FoC 3

TABLE I
TESTED NN CONFIGURATIONS

We also show multiple instances of NN-FoC 1 which are
trained and evaluated per SNR. Using a NN-FoC 1 per SNR
is impractical but serves as a benchmark here. NN-FoC 1
has a large amount of trainable weights but only 4 hidden
layers. The lowest complexity NN-FoC 3, has 2 hidden layers
and a very low amount of trainable parameters. In Fig. 3
we show PFF in log scale for various NN-FoC versus the
SNR. As expected, the per SNR NN-FoCs show the best
performance, but are nearly indistinguishable to NN-FoC 3.
The lower the complexity of the NN becomes, the higher
the false forecast accuracy becomes. The accuracy drop seen,
is on the other hand, very low considering the amount of
computational complexity saved. All NN-FoCs outperform the
basic 1-FER classifier.

−2 0 2 4 6 8

10−4

10−3

10−2

10−1

100

Eb/N0

P
FF

NN-FoC 1
NN-FoC 2
NN-FoC 3
NN-FoC 1, Per SNR
1-FER

−2 0 2 4 6 8

10−4

10−3

10−2

10−1

100

Eb/N0

P
FF

NN-FoC 1
NN-FoC 2
NN-FoC 3
NN-FoC 1, Per SNR
1-FER

Fig. 3. False forecast accuracy PFF versus SNR for different NN-FoC and
the (7, 4) Hamming code

We further evaluate the false probabilites in Fig. 4 and 5.
We also show the performance of the NN-FoC in combination
with the ML decoder. For a detailed comparison of BP and
ML decoding we refer to subsection IV-D.

−2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

Eb/N0 in dB

P
FP

NN-FoC 1, Per SNR
NN-FoC 1
NN-FoC 2
NN-FoC 3
NN-FoC 1, ML dec

Fig. 4. False positive probabilities versus SNR for different complexity NNs
and the (7, 4) Hamming code

NN-FoC 1 shows the best performance here, especially
considering the false positive probabilites PFP. The lower the
complexity of the NN-FoC becomes, the higher the false pos-

−2 0 2 4 6 8

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

P
FN

NN-FoC 1, Per SNR
NN-FoC 1
NN-FoC 2
NN-FoC 3
NN-FoC 1, ML dec

Fig. 5. False negative probabilities versus SNR for different complexity NNs
and the (7, 4) Hamming code

itive probabilites raise. Furthermore, for our benchmark NN-
FoC 1 per SNR, the false positives show good performance
for low SNR but worsens for high SNR due to the imbalance
in the training dataset, the NN-FoC tend to forecast decodable.

On the other hand, the false negative probabilites are nearly
indistinguishable for all NN-FoC and tend to 0 for high SNR.
This is an expected behaviour as the number of decodable
packets increase for high SNR. They are, however, likely to
differ for very low SNR as the number of non decodable
packets increases.

In general, it is not worth spending so many more weights
for the shown gains.

D. Maximum-Likelihood Decoding

In order to verify the results and not solely rely on the BP
decoder for our conclusions, we provide evaluations for the
ML decoder for the (7, 4) Hamming to gain insights for an
optimal decoder. Therefore, we train the NN-FoC 1 for each
decoder separately and evaluate the performance afterwards.
In Fig. 6 we show the false forecast accuracy PFF versus the
SNR and observe that the general behaviour of the NN-FoC
matches with the NN-FoC of the BP decoder.

−2 0 2 4 6 8

10−5

10−4

10−3

10−2

10−1

100

Eb/N0

P
FF

NN-FoC 1, ML dec.
NN-FoC 1, BP dec.
1-FER, BP dec
1-FER, ML dec

Fig. 6. False forecast accuracy PFF versus SNR of the NN-FoC for the ML
and BP decoder for the (7, 4) Hamming code

The obtained results indicate that forecasting for an optimal
decoder decreases the potential gains the NN-FoC can achieve,
as the ML decoder has further error correcting capabilities
which BP cannot offer. We further see in Fig. 5 and 4 the
false probabilites versus the SNR. On the other hand, the false
negative probabilites are lower for the optimal decoder. This
behaviour is expected as the number of decodable packets is
higher for the optimal decoder per SNR. The false positive
probabilities PFP rise higher than for the BP decoding. The
suboptimalities of the BP seem to lead to a better performing
NN-FoC. The general behaviour of the NN-FoC however,
remains the same.

E. Performance Evaluation for a short LDPC

For the (32, 16) LDPC code we use the NN-FoC 1 from
table I. Please note that the number of weights is slightly
increased as the input dimension of the NN-FoC is now n = 32
instead of 7. In Fig. 7 we show the forecast accuracy and the
false probabilities versus the SNR for the (32, 16) LDPC code.

0 1 2 3 4 5 6 7 8

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

P
FF

,P
FP

,P
FN

PFF, NN-FoC
PFF, 1-FER
PFP

PFN

Fig. 7. False forecast accuracy PFF and false probabilites versus Eb/N0 for
the (32, 16) LDPC code

We observe that the NN-FoC shows lower false forecast
accuracy PFF in comparison to the 1-FER classifier, especially
for low SNR. At 0 dB the false forecast accuracy actually
decreases again since more packets are non decodable than
decodable. In comparison to the 1-FER classifier, the NN-FoC
shows respectable gains. For example at an SNR of 2dB the
PFF of the NN-FoC is at 10−1 and the 1-FER is at 4 · 10−1.

Looking at the false probabilities, we notice that the false
positives highly increase the higher the SNR and vice versa for
the false negatives. This behavior indicates that the NN-FoC
tends to always give decodable forecasts at high SNR and not
decodable at low SNR, which is an undesired property that
needs further investigations.

F. Receiver Operating Characteristic

To further analyse the performance, a Receiver Operating
Characteristic (ROC) analysis is performed [14]. The ROC
is generally used to evaluate the performance of binary clas-
sifiers. An ROC curve shows the true positives PTP versus

the false positives PFP. To get different values for these
probabilities, the NN-FoC 1 is used for inference at different
SNR. In Fig. 8, the ROC curves for the (7, 4) Hamming and
(32, 16) LDPC code are shown. Furthermore the performance
for the ML decoder of the (7, 4) Hamming code and the
worst case performance, which is just guessing, is shown. As
an example, the 1-FER classifier always has a PTP = 1 and
PFP = 1 as it always classifies a packet as decodable.

-12 dB

-2 dB

8 dB 8 dBoptimal point

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

PFP

P
TP

(7, 4) Hamming, BP decoded
(7, 4) Hamming, ML decoded
(32, 16) LDPC, BP decoded
worst case
1-FER

Fig. 8. ROC curve for the NN-FoC for the Hamming and LDPC code

Everything above the red line (worst case) is a performance
gain in comparison to a random guesser. On the top left
we show the optimal point of a classifier, i.e. 100% true
posivites, while no false positives occur. We notice that all
NN-FoC classifier are capable of providing substantial gains
in comparison to a random guesser. The NN-FoC performance
of the LDPC code performs better than for the Hamming code,
which is an indication that the performance is dependent on
the codeword length n.

By comparing the NN-FoC for ML decoding of the Ham-
ming code and the BP decoded trained NN-FoC it is again
noticeable that the classifier for the BP performs better. An
interesting point is the high SNR regime of the BP decoded
NN-FoC. A clear cut is observable, where the classifier
decreases the false positives and increases the true positives.
This behaviour needs further investigation.

V. THROUGHPUT ANALYIS

In this section we demonstrate the impact of an early ARQ
feedback on the throughput as a function of the processing
latency at the receiver by using the NN-FoC in combination
with a BP decoder. To this end, the state diagram of the ARQ
scheme with early feedback is derived. The processing time of
the decoder TDec is defined as a multiple of the time duration
TB of a packet and κ = TDec/TB

The state diagram is shown in Fig. 9. This way of analysis
is well known from noisy feedback ARQ evaluations [1].

We use Selective-Repeat (SR) as our ARQ scheme. The
variables a,b,... describe the state transistions. We introduce
a placeholder D that sets the transitions in relation to the
block time TB. The process for each packet starts with

Tx class.

Dec

RR Sink
a

b

c

d

e

f

Fig. 9. State diagaram for the proposed classifier in an ARQ environment

the initial transmission requiring the time a = D1. The
NN-FoC forecasts the decoder success and asks for a re-
transmission (NACK) with probability c = PF (block RR)
or starts the decoding process with probability b = 1 − PF
and feedbacks ACK. In the DEC block the iterative decoder
is executed (requiring Dκ time instances) and by CRC check
the decoder success is determined. With probability Pfp the
decoder is unable to decode the packet that was forecasted to
be decodable. Thus, a NACK is transmitted with parameter
d = PfpD

k. On the other hand, with Ptp the deocder is able
to decode the packet leading to the parameter e = PtpD

k.
The Retransmission Request (RR) block actually repeats the
block based on an NACK and requires f = D1 time instances.
Please note that we assume, that the NN-FoC has no delay but
NN-FoCs with delay are currently under investigation. With
the help of the derived state diagramm, we can add up the
different times needed relative to the decoding latency κ. We
first take a look at the transfer function H:

H =
Sink
Tx

=
eba

1− cf − bdf
=

=
PtpD

κ(1− PF)D

1− PFD − (1− PF)PfpDκD

(8)

Calculating the change of the transfer function H wrt. to the
placeholder D at D = 1 yields an expression for the average
time Tavg per block time TB:

Tavg

TB
=
∂H

∂D

∣∣∣∣
D=1

=

=
Ptp(1− PF) ((κ+ 1)(1− PF) + PF)

(1− PF − Pfp(1− PF))2
.

(9)

Therefore, the effiency η is finally given by

η = Rc
TB

Tavg
= Rc

(1− PF − Pfp(1− PF))2

Ptp(1− PF) ((κ+ 1)(1− PF) + PF)
.

(10)

As shown, the efficiency is dependent on the true positive
probability PTP, false positive probability PFP and the decoder
latency expressed in terms of κ. We analogously derive the
effiencies without a forecast, i.e. standard ARQ, and a genie
classifier which perfectly forecasts all packets.

In Fig. 10 the efficiencies η for values of κ = 1, 2, 3 for
the (7, 4) Hamming code are shown. As expected, the genie

κ = 1

κ = 2

κ = 3

−12 −10 −8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Eb/N0

η
E-ARQ, Genie
Standard ARQ
E-ARQ, NN-FoC

Fig. 10. Effiency η for different decoder delays κ for (7, 4) Hamming code
in comparison for a schematic with no classifier, a genie classifier and the
actual trained NN-FoC.

classifier has the best performance. For low SNR the NN-FoC
with E-ARQ actually performs worse than the standard ARQ
scheme, as it has high amount of false positive forecasts.On the
other hand, for higher SNR the NN-FoC shows performance
in between the Genie classifier and the standard ARQ scheme.
The higher κ, the more performance can be gained by making
a forecast as the circumvented decoder runs save more time.
For example for κ = 1 at an SNR of 0 dB the performance gap
of the standard ARQ to the NN-FoC is 0.005 and for κ = 3 the
gap is 0.02. The efficiency saturates at η = Rc

κ+1 and, thus, the
maximum efficiency highly depends on the decoder latency κ.

In Fig. 11 we show the same efficiency analysis for the
(32, 16) LDPC code. Due to the low false positive rate for
low SNR, the gains are larger in comparison to the Hamming
coded scheme. Thus the early ARQ scheme with NN-FoC
outperforms the standard ARQ in nearly the whole range of
investigated SNRs.

The NN-FoC hence improves the overall system efficiency.
The gap to the Genie classifier is large, but this is a solely
theoretical curve as a genie classifier is not possible. This paper
should hence be seen as a first attempt to apply NNs in this
scenario and is by no means the final conclusion.

VI. SUMMARY AND FUTURE WORK

In this paper we propose the NN-FoC that is capable of
classifying received packets wrt. to their decodability without
actually running the decoder by applying an offline trained
NN. We have shown that low complex NN-FoC can be used
and we are able to improve the efficiency of classical ARQ
schemes.

As an outlook, the extension for codes with longer code-
word length and the best parameterization of the NN are
currently being investigated, as well as the decoupling from
the codewords. On top, a feature extraction to reduce the input
dimension n of the NN-FoC is considered, as well as using
parts of the decoder (e.g. output after first BP iteration) to
further enhance the performance of the NN-FoC. Furthermore
a practical scenario shall be considered, e.g. a specific 5G

κ = 1

κ = 2

κ = 3

−2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Eb/N0

η

E-ARQ, Genie
Standard ARQ
E-ARQ, NN-FoC

Fig. 11. Effiency η for different decoder delays κ for (32, 16) LDPC code
in comparison for a schematic with no classifying NN, a genie classifier and
the actual trained NN-FoC.

working point, to achieve further performance gains for the
NN-FoC.

REFERENCES

[1] S. B. Wicker, Error Control Systems for Digital Communication and
Storage. Prentice-Hall, Inc., 1994.

[2] G. Berardinelli, S. R. Khosravirad, K. I. Pedersen, F. Frederiksen, and
P. Mogensen, “Enabling Early HARQ Feedback in 5G Networks,” in
IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing,
China, May 2016.

[3] B. Goektepe, S. Faehse, L. Thiele, T. Schierl, and C. Hellge, “Subcode-
Based Early HARQ for 5G,” in IEEE International Conference on
Communications Workshops (ICC Workshops), Kansas City, MO, USA,
May 2018.

[4] P. Rost and A. Prasad, “Opportunistic Hybrid ARQ—Enabler of
Centralized-RAN Over Nonideal Backhaul,” IEEE Wireless Communi-
cations Letters, vol. 3, no. 5, pp. 481–484, Dec. 2014.

[5] N. Strodthoff, B. Göktepe, T. Schierl, C. Hellge, and W. Samek,
“Enhanced Machine Learning Techniques for Early HARQ Feedback
Prediction in 5G,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 11, pp. 2573–2587, Jan. 2019.

[6] N. Strodthoff, B. Göktepe, T. Schierl, W. Samek, and C. Hellge,
“Machine Learning for Early HARQ Feedback Prediction in 5G,” in
IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab
Emirates, Dec. 2018.

[7] A. Elkelesh, S. Cammerer, and S. ten Brink, “Reducing Polar Decoding
Latency by Neural Network-Based On-the-Fly Decoder Selection,” in
2020 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra,
Portugal, Oct. 2020, pp. 1–2.

[8] J. Pearl, “Reverend Bayes on Inference Engines: A Distributed Hierar-
chical Approach,” in Proceedings of the Second AAAI Conference on
Artificial Intelligence, 1982, p. 133–136.

[9] O. Simeone, “A Very Brief Introduction to Machine Learning With
Applications to Communication Systems,” IEEE Trans. Cogn. Comm.
& Networking, vol. 4, no. 4, pp. 648–664, Nov. 2018.

[10] F. Chollet et al., “Keras,” https://keras.io, 2015.
[11] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-

geneous systems,” 2015, software available from tensorflow.org.
[12] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika,

and N. Wehn, “Database of Channel Codes and ML Simulation Results,”
www.uni-kl.de/channel-codes.

[13] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in 3rd International Conference on Learning Representations, (ICLR),
San Diego, CA, USA, May 2015.

[14] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, pp. 861–874, December 2006.

