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Abstract—Multiple Input Multiple Output (MIMO) and mas-
sive MIMO (mMIMO) are key-enabling technologies for 4G and
5G communications systems. mMIMO uses a high number of
antennas, where the number of antennas at the base station
exceeds in general the number of antennas in the mobiles. For un-
correlated channels, linear equalizers already achieve promising
performance in the uplink due to the channel hardening effect.
In contrast, we will focus on large symmetrical MIMO systems in
this paper, where many antennas are employed at the transmitter
and the receiver side resulting in a more challenging task for
the receiver. Traditionally, receiver algorithms have been derived
based on models for the communications system. Recently, ma-
chine learning approaches have been proposed where the design is
data driven. In order to overcome the drawbacks of model-based
and pure data driven approaches, hybrid approaches combining
the benefits of both worlds have emerged. In this paper, we
present the novel hybrid approach entitled Deep Equalization
(DeEQ) based on model knowledge and a neural network like
structure. As demonstrated by simulation results, this novel
approach achieves very good performance with the advantage
of only a very low error floor.

Index Terms—MIMO, Equalization, Machine Learning, Deep
Learning, Neural Networks

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) systems and in
particular massive MIMO (mMIMO) become more and more
popular due to the demand for higher data rates and more
spectral efficiency. For mMIMO the number of antennas at
the base station is usually higher than the number of antennas
of the mobiles.

Due to the channel hardening effect, linear equalizers al-
ready achieve promising performance in the uplink for uncor-
related channel matrices [1]. In this paper we will focus on
large symmetrical MIMO systems with many transmit and re-
ceive antennas, where the number of transmit antennas is equal
or about the number of receive antennas. Linear equalizers as
commonly applied for mMIMO will not achieve convincing
error rate performance, but the computational complexity for
calculating the filter matrix based on the Zero-Forcing (ZF)
criterion or Minium Mean Square Error (MMSE) criterion
grows cubically with the matrix dimension. Algorithms like
the Ordered Succesive Interfernce Cancellation (OSIC) [2]
achieve better performance while still being too complex. On
the other hand algorithms based on the maximum likelihood
(ML) criterion, e.g., the sphere detector (SD) achieve optimal
performance at the cost of being far too complex to use in large
systems. In order to achieve good performance with reasonable

complexity, several new learning based receiver concepts for
MIMO systems have been proposed recently.

In general, algorithms can be developed using a model-
based approach, a data driven approach or a combination
of both which is commonly known as hybrid approach [3].
Model-based approaches can have the problem of a model
bias since not every model reflets all the effects of the real
system precisely. Pure data driven approaches on the other
hand have to learn the complete underlying processes purely
by data that describes the system, which can fail if the structure
of the problem is too complex. The idea of combing these
two approaches is therefore promising, as model knowledge
is introduced into the training procedure in order to learn
complex environments.

To give an example for a classical model-based MIMO
approach, the Approxmimate Message Passing (AMP) algo-
rithm [4], [5] is used. This algorithm has been derived under
the assumption of infinitely many antennas and therefore
suffers from a performance degradation for small system
dimensions. In contrast, a pure data driven approach, using
deep neural networks, has to learn the underlying MIMO
equalizer structure on its own. Therefore, this approach will
not be able to generalize for every possible channel matrix and
has to be retrained for every channel matrix indivudually [6].
As a reason, this approach requires a huge training overhead
and is impractical. Due to the mentioned drawbacks of either
these approaches, hybrid approaches have been developed by
combining model knowledge and the power of deep learning
[6]–[8]. The two examples considered here are Detection
Network (DetNet) [6], [7] and MMNet [8]. DetNet is a
heuristic approach that incorporates knowledge of the MIMO
system model into a neural network like structure and requires
many learned weights. MMNet on the other hand is more strict
in preserving the incorporated model structure and uses less
weights as a consequence. These hybrid approaches seem to
be a promising approach as they show excellent performance
while being moderatly complex to implement.

In this paper, a new hybrid approach named Deep Equaliza-
tion (DeEQ) is proposed which incorporates model knowledge
into a neural network like structure in order to build an effi-
cient equalizer which shows excellent performance for large
MIMO systems with a moderate complexity. The remainder
is structured as follows: after discussing the system model in
Section II, in Section III the hybrid approaches DetNet and
MMNet are revised and the the novel DeEq is proposed. In
Section IV the performance is evaluated and conclusions are



provided in Section V.

II. SYSTEM MODEL

A. The Equalization Problem

RxTx
yc =Hcxc + nc...xc

... yc

Fig. 1. MIMO system model with Nt transmit and Nr receive antennas

We consider the MIMO system in Fig. 1 with Nt transmit
and Nr receive antennas where the complex receive signal
yc ∈ CNr is given by

yc =Hcxc + nc , (1)

with the complex transmit symbols xc ∈ ANt
c , the complex

channel matrix Hc ∈ CNr×Nt , and complex white Gaussian
noise nc ∈ CNr . The channel matrix H is a realization of a
stochastic process, where the real and imaginary part are iid
Gaussian distributed. Ac defines the normalized QAM symbol
alphabet and in this paper we restrict ourselves to 4-QAM
Ac =

{
± 1√

2
± j 1√

2

}
. In order to enable the application of

common deep learning libraries, we will use the equivalent
real valued system model

y =Hx+ n (2)

of (1). The equivalent real valued vectors and matrices are
given by

y =

[
<(yc)
=(yc)

]
,x =

[
<(xc)
=(xc)

]
,n =

[
<(nc)
=(nc)

]
H =

[
<(Hc) −=(Hc)
=(Hc) <(Hc)

] (3)

with <(xc) and =(xc) representing the real and imaginary part
of xc, respectively. The dimensions double by this procedure,
e.g., for the real valued receive vector follows y ∈ R2·Nr .
Furthermore, we define A = {±1/

√
2} to be the equivalent

real valued symbol alphabet, i.e., BPSK per dimension. In this
paper, we restrict ourselves to uncoded systems.

The ML criterion to estimate the transmit vector x is given
by

x̂ = argmin
x∈A2Nt

‖ y −Hx ‖22 . (4)

It requires exhaustive search over all possible transmit signal
vectors x, which grows with the cardinality of A and exponen-
tially with the number of transmit antennas 2Nt and becomes
too computationally demanding for large system dimensions.
An efficient algorithm to solve this problem is the SD which
is still to complex for large system dimensions. Due to this
fact, several algorithms have been proposed to estimate the
transmit signal x in an efficient way while achieving good

performance. As the hybrid approaches considered in section
III are based on linear equalization, we will introduce them
subsequently.

B. Linear MIMO equalizer

In this subsection we revise the linear equalizer (LE) based
on the ZF and the MMSE criterion. For the ZF criterion, we
relax the demand of x ∈ A2Nt in (4) to x ∈ R2Nt leading to
the estimate

x̃ZF = argmin
x∈R2Nt

‖ y −Hx ‖22 . (5)

The estimate vector x̃ZF is continuous and by element-wise
quantization to the next symbol in A, the estimate x̂i =
QA {x̃i} for the ith transmit signal is calculated. To get an
estimate for (5), we take the derivative of the argument with
respect to x and set it to 0, leading to

∂

∂x
‖ y −Hx ‖22 =

∂

∂x

[
(y −Hx)T (y −Hx)

]
= 2HTHx− 2HTy

!
= 0 .

(6)

Thus, the soft estimate x̃ZF for the transmit vector x is given
by

x̃ZF =
(
HTH

)−1
HTy =H+y . (7)

x̃ZF is a soft estimate for the transmit vector x and H+ is the
Moore-Penrose pseudoinverse.

The corresponding MMSE solution is given by

x̃MMSE =
(
HTH + σ2

nINt

)−1
HTy . (8)

As the calculation of the inverses in (7) and (8) are costly,
especially for higher matrix dimensions, an iterative approach
to calculate the ZF solution has been proposed using a
Gradient Descent approach [9]. Here, the estimate x̃k+1 in
iteration k + 1 is given by

x̃k+1 = x̃k − δ
(
HTHx̃k −HTy

)
(9)

with the non-negative step size δ and the initialization x̃0 = 0.
For sufficiently large number of iterations, the estimate x̃k+1

will converge to the closed form solution x̃ZF in (7). The main
advantage of this approach is the avoidance of the inverse of
the closed form solution (7).

Subsequently, (9) will be used as base equation to derive the
novel DeEQ algorithm. Similarly, this base equation has been
used to derive the DetNet [6], [7] and MMNet [8] approaches.

III. HYBRID APPROACHES

In general iterative algorithms can be interpreted as a layer k
in a neural network. This layer k can consist of several steps
to generate its output, depending on the iterative algorithm
structure. Extending this layer k with trainable weights, biases
and nonlinearities we arrive at a neural network structure. This
general procedure is now applied to the base equation (9)
and we introduce zk as an intermediate variable for it. zk

is hence the first step in the layer k of the resulting neural



network. The following steps thereafter add weights, biases
and nonlinearities to end up at the hybrid approaches presented
here. The open question remains, where to introduce weights
and biases. As this question cannot yet be answered with
a theoretical foundation, DetNet, MMNet and our approach
are based on heuristics and the usage of model knowledge.
Subsequently, we note the total number of layers by K.

A. Detection Network (DetNet)

DetNet [6], [7] is a hybrid approach based on the combina-
tion of deep neural networks and the model knowledge of the
MIMO system in (2). The derivation of DetNet follows [6]
and is heuristic, but directly incorporates model knowledge
into its update equations. With the help of the base equation
(9) and the intermediate variable zk the update equations read

zk = x̃k + δk1H
Ty − δk2H

THx̃k (10a)

uk =

[(
W k

1

(
zk

vk

)
+ bk1

)]
+

(10b)

vk+1 =W k
2u

k + bk2 (10c)

x̃k+1 =W k
3u

k + bk3 (10d)

where [·]+ = max {·, 0} is a representation for the well known
ReLu function and uk ∈ R8·2Nt and vk ∈ R2·2Nt are inter-
mediate variables with chosen dimensions. The design of the
dimensions of uk and vk is heuristic. The calculation of the
intermediate variable zk in (10a) follows the base equation (9),
but introduces two scalar trainable variables δk1 and δk2 which
can be interpreted as a split step size. The intermediate variable
zk is then concatenated with the variable vk and mapped
to a higher dimensional space via W k

1 ∈ R8·2Nt×3·2Nt and
the bias bk ∈ R8·2Nt followed by the ReLu function. The
intermediate step vk+1 is calculated via the application of a
weight matrix W k

2 ∈ R2·2Nt×8·2Nt and a bias bk2 ∈ R2·2Nt .
Finally, the estimate for x̃k+1 is given by the last step with
the variable uk, the weight matrix W k

3 ∈ R2Nt×8·2Nt and
the bias bk3 ∈ R2Nt , δk1 ∈ R. The trainable parameters
are θk = {W k

1 ,W
k
2 ,W

k
3 ,W

k
4 , b

k
1 , b

k
2 , b

k
3 , δ

k
1 , δ

k
2} and the

total number of trainable weights are 192N2
t + 22Nt + 2 in

each layer k. DetNet is parametrized with a total number of
K = 3 · 2Nt layers and trained offline and used for inference
only afterwards.

This more heuristic approach has proven to perform well
under iid channels. The disadvantages of DetNet are twofold.
On the one hand, due to its heuristic nature its hard to
understand how and why it works and on the other hand,
the complexity grows rapidly as it uses a large number of
layers and weight matrices. Our simulation results of DetNet
are based on the source code provided by the authors [10].

B. MMNet

In [8], two low complexity hybrid approaches are presented.
An MMNetiid is discussed which is especially designed for iid
channels and has two trainable parameters per layer. MMNetiid
is trained offline and used for inference only afterwards. In
addition, MMNet is proposed which is especially designed

to cope with correlated channel matrices as it adapts it
parameters online for specific channels. MMNet can hence
outperform existing algorithms like DetNet while suprisingly
still achieving a lower complexitiy than DetNet. In this paper
only MMNetiid is discussed as we restrict the analysis to iid
channels.

The idea behind MMNetiid is to introduce more flexibility
into the update equations by using less weights and preserving
the overall structure of the intermediate variable zk. The
intermediate variable zk is used with an optimal denoiser
η(z;σ2

k) for Gaussian noise as a nonlinearity in each layer
k. The update equations for iid Gaussian channels are given
by

zk = x̃k + θk1H
Ty − θk1H

THx̃k (11a)

x̃k+1 = ηk(zk;σ2
k) (11b)

Using (11a) we observe that MMNetiid only uses one scalar
trainable variable for the intermediate variable zk and zk is
directly fed into the nonlinearity ηk(z;σ2

k) afterwards. The
optimal denoiser is given by

ηk(z;σ2
k) = E [x|z] =

∑
xi∈A xi exp

(
− ||z−xi||2

σ2
k

)
∑
xj∈A exp

(
− ||z−xj ||2

σ2
k

) (12)

which basically resembles the softmax function. This denoiser
works on a scalar basis and only uses the ith entry of zk

respectively. The sum in (12) runs over the constellation points
A and can cope with higher order modulation schemes as well.
As the denoiser is applied to the intermediate variable zk, an
adapted noise variance estimation σ2

k is needed in every layer
as the noise at the input of the denoiser is corrupted by the
residual error in the layers of MMNetiid and the channel noise.
The estimated noise variance is given by

σ2
k =

θk2
Nt


∥∥∥I −HTH

∥∥∥2
F

‖H‖2F

[∥∥∥y −Hx̃k∥∥∥2
2
−Nrσ2

n

]
+

+ σ2
n


(13)

where || · ||F denotes the Frobenius norm and σ2
n is the noise

variance per real dimension of the additive Gaussian noise in
(2). For details of this estimation the authors of [8] refer to
the derivation of the AMP algorithm [5] and the orthogonal
AMP [11]. The noise variance estimation (13) incorporates the
second trainable parameter and thus the trainable parameters
per layer k are θk = {θk1 , θk2}. They are both scalars, and
therefore a total number of two trainable parameters per layer
are needed. As a consequence MMNetiid is the least complex
hybrid approach presented here. Our simulation results of
MMNetiid are based on the source code provided by the
authors [12].

C. The Deep Equalization algorithm

1) General update equation: The DeEQ algorithm uses
the intermediate variable zk and introduces trainable weight



matrices W i, biases bi and a nonlinearity to it. We propose
the DeEq update equations

zk = x̃k + δk1H
Ty − δk2H

THx̃k (14a)

x̃k+1 = δk3 tanh
(
W k

2

[
W k

1z
k + bk1

]
+ bk2

)
(14b)

with W k
1 ∈ Rw1×2Nt , bk1 ∈ Rw1 , W k

2 ∈ R2Nt×w1 ,
bk2 ∈ R2Nt , δk1 ∈ R, δk2 ∈ R and δk3 ∈ R in each iteration
k. w1 forms a choosable parameter for this update equations
with the restriction w1 ≥ 2Nt, as w1 < 2Nt would lead to
underdetermined systems.

The DeEq forms a neural network by first using the same
intermediate variable zk as DetNet and feds zk into two
weight matrices W k

1 , W k
2 and the biases bk1 , bk2 . As one

may see in (14b), it is possible to write the two linear steps
as one linear step by combining W k

1 and W k
2 . However,

we found out during training that the choosable dimension
w1 can enhance the training process and we were thus able
to achieve better performance for the DeEq algorithm if we
leave the two matrices apart. The reason for this behaviour
is still under investigation. This whole procedure is followed
by the nonlinearity tanh to map the output x̃k+1

i elementwise
between −1 and 1 to get a soft estimate for the equivalent
BPSK symbol alphabet A. For higher order modulations
the nonlinearity needs to be adapted accordingly. E.g. the
nonlinearity of MMNet (12). Finally, the scaling factor δk3 is
introduced after the tanh operation as we found it helpful
during the adaptation of the parameters during learning.

The set of trainable parameters θk in each layer k consists
of θk =

{
W k

1 ,W
k
2 , b

k
1 , b

k
2 , δ

k
1 , δ

k
2 , δ

k
3

}
and therefore, the total

number of parameters per layer k is equal to 4w1Nt + w1 +
2Nt+3. We initialize x̃0 with the zero vector. To get the final
estimate for the decided symbols x̂, we make an element wise
hard decision x̂i by taking the signum function element wise
from the output x̃Ki at the last layer K. The complexity of the
DeEQ algorithm lies in between MMNetiid and DetNet since
MMNetiid has 2 trainable paramters per layer and DetNet has
many more per layer.

2) Training procedure: To optimize the trainable parame-

ters of all K layers θ =
{
θk
}K
k=1

in DeEQ, the deep learning
libraries Tensorflow [13] and Keras [14] are used. We use a
weighted squared error loss averaged over the iterations given
by

L =
1

K

K∑
k=1

k ‖ x̃k − x ‖22 . (15)

We use this loss with the Adam optimizer [15] and a learning
rate of 0.001 to train our DeEQ algorithm. A batch size of 500
is applied and we generate new training data {x,H,y} for
every batch as we have a model (2) at hand and can realize
as many new data points as needed. We randomly generate
the starting values of our weights W k

1 ,W
k
2 with the Glorot

uniform initializer [16], the biases bk1 , b
k
2 are initialized with

all zero vectors 0 and the scalar values δk1 , δ
k
2 are initiated with

0.1 and δk3 is initialized with 1 in every layer k. The actual
training of our DeEQ algorithm is carried out with no noise
to enable the focus on equalizing the channel efficiently. The
DeEq algorithm is trained offline which means the weights are
learned once and afterwards the structure (14a),(14b) is used
for inference only.

IV. PERFORMANCE EVALUATION

We evaluate the DeEQ algorithm after training in a MIMO
system for 3 different environments. First we will investigate
symmetrical MIMO system with Nt = Nr = 10 antennas,
secondly a larger symmetrical system with Nt = Nr = 30
antennas and a mMIMO system with Nt = 16 and Nr = 64
antennas. All simulations use 4-QAM modulation. We com-
pare the performance of DeEQ, MMNetiid, DetNet, linear
equalizer following the ZF and MMSE criterion and the OSIC
using the MMSE extension [2]. As a limit, we show the
performance of SD.
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Fig. 2. BER for varying Eb/N0 for the equalization algorithms in a Nt =
Nr = 10 MIMO system.

In Fig. 2 we show the Bit-Error-Rates (BER) for varying
Eb/N0 in dB for the Nt = Nr = 10 MIMO system.
During parametrization, we found a factor of w1 = 2Nt in
combination with a number of K = 30 layers to be sufficient
for the DeEQ to achieve the best performance. For MMNetiid
we choose K = 50 layers as there is no general formula
regarding the relation of the system dimension and the number
of layers K. DetNet on the other hand has the number of
layers chosen according to the MIMO system dimension and
uses K = 6Nt = 60 layer.

As expected, the linear ZF and MMSE equalizer perform
poorly in comparison to the other approaches as we have a
diversity degree of only one. All hybrid approaches like DeEQ,
MMNetiid and DetNet perform good at low Eb/N0, but they
suffer from an error floor at higher Eb/N0. Noticeable is that
DeEQ runs into a slightly lower error floor than DetNet, while
both error floors are around a BER of 10−3. In comparison,
MMNetiid runs into a higher error floor at a BER of 6 · 10−2.



The MMSE-OSIC outperforms the deep learning approaches
for high Eb/N0. All schemes witness a large performance gap
to SD, e.g., the MMSE-OSIC shows a gap of 3dB at a BER
of 10−3.
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Fig. 3. BER for varying Eb/N0 for the equalization algorithms in a Nt =
Nr = 30 MIMO system.

In Fig. 3 the BERs are given for varying Eb/N0 in dB
for the Nt = Nr = 30 MIMO system. We use K = 50
layers and w1 = 6Nt (the dimension mapping factor between
W k

1 and W k
2) to achieve the best performance for the DeEQ.

For MMNetiid we choose K = 50 layers and DetNet uses
K = 6Nt = 180 layer.

A noticeable point for the hybrid approaches is the fact that
the error floor lowers for all of them, especially MMNetiid’s
performance increases significantly in comparison to the 10×
10 MIMO system. Most surprising is the DeEQ error floor
which ends up at a BER of 5 · 10−8 (not shown in the plot).
whereas MMNetiid error floors at a BER of 10−4 and DetNet at
5 ·10−5. As a consequence, the hybrid approaches outperform
the MMSE-OSIC for a wider Eb/N0 range.

We note that the error floor for the hybrid approaches lowers
with the increased system dimension and the reason for this
behaviour may be caused by more consistent channel statistics
due to the increased matrix dimension. As all the hybrid
approaches presented here use the intermediate variable zk as
an input, we may state that they all make a systematic error
considering the error floor behaviours witnessed in Fig. 2 and
3. Due to the blackbox nature of machine learning approaches,
it is hard to draw theoretical conclusions yet.

For the last part of the simulation section, the performance
of a mMIMO system with Nt = 16 transmit and Nr = 64
receive antennas is shown in Fig. 4. DeEq is parametrized
with w1 = 6Nt in combination with K = 50 layers being
sufficient to achieve good performance. MMNet uses K = 50
layers and DetNet has K = 6Nt = 96 layers. The linear
equalizers perform close to the SD as the gap is only around
1dB due to the high diversity degree. DetNet, DeEQ and the
MMSE-OSIC approach the SD performance with a gap of
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Fig. 4. BER for varying Eb/N0 for the equalization algorithms in a Nt = 16
and Nr = 64 mMIMO system.

approximately 0.1dB. MMNetiid reaches optimal performance
while being considerably less complex to handle. A positive
effect of the high diversity degree is the fact that the error
floor of the hybrid approaches vanishes.

The behaviour of MMNetiid is interesting as it shows
optimal performance for the mMIMO case whereas in the
symmetrical MIMO systems, the performance is worse than
those of the other hybrid approaches. This behaviour may be
explained with the denoiser nonlinearity and the high diversity
degree present in the mMIMO case.

Overall, considering mMIMO systems, the performance
gap to the SD detector will be relatively small compared
to symmetrical systems as the high diversity degree and the
channel hardening effect massively increase the performance
of these algorithms.

V. CONCLUSION

We propose a new algorithm ”DeEQ” for the MIMO
equalization problem. By using a hybrid approach of inserting
model knowledge into a neural network like structure we
achieve good performance for the presented case of MIMO
systems and outperform existing state of the art schemes in
some cases. In the future the proposed algorithm will be
extended to higher order modulation techniques, the effect of
correlated channel matrices is investigated as well as a better
understanding of the error floor should be achieved.
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