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Abstract—The problem of finding good error correcting codes
for short block lenghts and its corresponding decoders is an open
research topic. A frequently applied soft decoder is the Belief
Propagation (BP) decoder, however with degraded performance
in case of short loops in the Tanner graph. This is especially
problematic for short length codes as loops of small length are
more likely to occur. In this paper, we propose the Machine
Learning Scaled Belief Propagation (MLS-BP) to mitigate the
performance loss of BP decoding for short length codes by
introducing a learned scaling factor for the receive signals. The
key point of this approach is the fact that the implementation
of the BP decoder is not changed and the simple scaling
leads to performance results comparable to other proposed BP
improvements.

Index Terms—Supervised Machine Learning, Belief Propaga-
tion, error-correcting codes, short block length

I. INTRODUCTION

In a time where short packet transmissions are getting more
and more important, especially for 5G, the research in finding
good error correcting codes and corresponding decoders for
these data transmissions is of huge importance. In general, the
performance of channel codes improves with the block length,
therefore finding good performing codes for short block length
is not an easy task. Furthermore, optimum maximum likeli-
hood decoding is too complex for most practical scenarios. The
Belief Propagation (BP) decoder is a frequently applied soft
decoder in particular for Low-Density-Parity-Check (LDPC)
codes [1]. This decoder has shown to perform well for long
block length, but is in general suboptimal due to loops in the
Tanner graph. These loops harm the decoding performance
as the reliability of the messages is overestimated due to the
inherent dependencies in the code. Therefore, the question
arises, if the BP decoder can be modified for decoding short
codes.

As reported in [2], Tanner already proposed to scale the
messages in each iteration to compensate for the loops in
the decoder. For minimizing the BER, [3] proposed to use
bruteforce search to find scaling factors in the check to variable
messages of the BP and [4] exploited the consistency condition
of Log-Likelihood-Ratios (LLRs) to scale the messages. In
order to avoid this bruteforce search or complicated analytical
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analyis, a machine learning (ML) search has been proposed to
find these scaling factors in [5].

Recently, the idea of learning general complete neural net-
works (NN) for soft decoding has raised significant attention
[6]. However this approach only works for small dimension of
codes since the procedure of learning a new soft input decoder
by using neural networks is doomed by the curse of dimen-
sionality. In order to overcome this drawback several strategies
have been proposed e.g. [7]. For sequential decoding numerous
approaches exists to learn the decoding of convolutional codes
and Turbo codes [8].

Another approach is to interprete the BP decoder as a NN
[9], [10]. The so-called Neural Belief Propagation (N-BP)
decoder will be discussed in Subsection II-D and used as the
benchmark.

In this paper, we propose an alternative approach by in-
troducing a scaling factor for the calculation of the LLR of
the receive signals. The key aspect is that the subsequent BP
decoder remains unchanged, i.e., no additional scaling factors
are incorporated in the passed messaged, only the input of the
decoder is changed. This is especially interesting for hardware
implementation purposes as an existing implementation of
the BP decoder can be used without any modification of
the decoder itself. The proposed approach can hence easily
be integrated in existing schemes. A supervised learning
procedure is introduced to adapt this proposed input scaling
which is trained offline without adding extra computations to
the online processing.

The paper is structured as follows: after discussing the
system model in Section II, the Machine Learning Scaled
Belief Propagaion (MLS-BP) and the training procedure are
presented in Section III. In Section IV the performance is
investigated and the conclusions are provided in Section V.

II. PRELIMINARIES

A. System model
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Fig. 1: System model of coded BPSK transmission over
AWGN channel and LLR calculation prior to BP decoding



Consider the given communication chain in Fig. 1 where
a binary information word 1 u ∈ Fk2 of length k is encoded
(ENC) into the codeword c ∈ Fn2 of length n by a linear block
code Γ of code rate Rc = k/n. BPSK modulation is applied to
the codeword by x = 1− 2c, Additive White Gaussian Noise
(AWGN) w is added by the channel leading to the receive
vector y ∈ Rn given by y = x + w. For the transmission of
BPSK symbols over AWGN channels the LLRs for the receive
signals are given by

L(yi|xi) = log

(
P (yi|xi = 1)

P (yi|xi = −1)

)
=

2

σ2
w

yi = Lchyi . (1)

This LLR equals the receive signal y scaled by the so called
channel reliability Lch = 2/σ2

w with the noise variance σ2
w.

Thus, the input of the BP decoder is a scaled version of the
received signal vector y, dependent on the Signal-to-Noise-
Ratio (SNR).

B. Belief Propagation (BP) Decoder

In the following we will briefly summarize the BP decoder
[11]. In general, each linear block code is completely described
by its parity check matrix H ∈ Fm×n2 . Each row of H
represents a parity check equation of the code and each column
stands for a code bit in the code. The parity check matrix
can be graphically represented by a Tanner graph consisting
of variable nodes vi (i = 1, . . . , n) and check nodes chkj
(j = 1, . . . ,m). An edge between variable node vi and
check node chkj exists, if the code bit ci participates in
the jth check equation, i.e. hji = 1. The BP decoder now
uses these parity checks and the input LLRs L(yi|xi) (1) to
calculate extrinsic information Le(xi) for every code bit ci by
exchanging messages between the check and variable nodes
[1]. Every BP iteration consists of two steps. At first, the check
node chkj collects the corresponding data from the connected
variable nodes vi and calculate extrinsic information Lje(xi)
for every connected variable node vi using the boxplus opera-
tion. For the second step, every variable node vi sums together
all the generated extrinsic information from the connected
check nodes to calculate the complete extrinsic information
Le(xi) =

∑
j∈vi L

j
e(xi). The extrinsic information Le(xi)

is then added to the received LLR L(yi|xi) (1) to finish a
decoder iteration (L(xi) = L(yi|xi) + Le(xi)). This iterative
decoding process is repeated until a valid codeword is found
or another stopping criterion is met. The final soft output of
the BP decoder is hence given by L(x) and for estimating the
codeword ĉ a hard decision is performed ĉ = sgn (L(x)). We
note the maximum number of iterations by Nit. Due to loops
in the Tanner graph, the BP decoder is in general suboptimal.
A loop is formed, if an information flow in the Tanner graph
reaches its source node again. This is especially noticeable for
very short code length as short loops are more likely and the
performance is harmed. The shortest loop present in a code is
called girth. This suboptimality is caused by the fact that the

1We will note vectors by bold symbols x, matrices by upper bold symbols
H and an entry of the vector with subscripts, e.g., xi for the ith entry. Soft
estimates are noted as x̃ and hard decisions are marked with x̂.

BP assumes statistical independence of the passed messages
and this assumption is strictly speaking only true for infinite
long codes. Due to this assumption LDPC codes are designed
in a sparse fashion and in general, longer codes show better
performance as the assumption is less violated.

Based on the decoder output L(xi) the expected value for
each code bit xi can be calculated by

x̃i = E{xi} = tanh (L(xi)/2) . (2)

The elementwise tanh function provides a soft estimate x̃ for
the transmit word x and will be used to train our approach.

C. Neural Belief Propagation (N-BP) Decoder

The N-BP decoder [9], [10] unfolds the message exchange
in the Factor graph over the iterations and interprets it as a
NN with trainable weights in order to scale the exchanged
messages. To design the NN the number of iterations needs
to be fixed in advance and the number of weights increases
linearly with the number of BP iterations. The training of all
these weights leads to a significant training complexity. Our
implementation of the N-BP is based on [12].

III. MACHINE LEARNING SCALED BELIEF
PROPAGATION(MLS-BP)

A. Learning Model

In the MLS-BP approach the input of a common BP decoder
is rescaled and adapted via supervised learning. For the MLS-
BP we propose to feed scaled LLRs

L̃(yi|xi) = βL(yi|xi) = β
2

σ2
w

yi = βLch︸︷︷︸
LMLS

yi (3)

to the BP decoder and determine the non-negative scaling
factor β by ML. In general, the scaling factor will depend
on the channel code Γ and on the SNR. To simplify the
nomenclature, we have introduced in (3) the scaling variable
LMLS = βLch which can be interpreted as a “learned channel
reliability“. In Fig. 2, the training scheme to determine β and
LMLS is depicted.
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Fig. 2: MLS-BP learning schematic for the scaling constant
LMLS

The learning procedure is used during offline training to
adapt the rescaling factor β. Therefore the training is carried
out only once and the learned β is applied for inference
afterwards. It follows the supervised learning principle where
the BP decoder serves as a part of a function that is used to
train β accordingly. In (3), the scaling factor LMLS varies with



the SNR as the noise variance σ2
w is inverse proportional to the

SNR. As a consequence, we should learn one scaling factor
for every interesting SNR, respectively.

However, in order to further simplify the MLS-BP approach,
we investigate the training of only one scaling factor Lrange

MLS for
a range of interesting SNRs. We will observe, that this strategy
leads only to a minor performance gap.

As a direct comparison to e.g. the N-BP with thousands
of learned scaling factors, the MLS-BP approach needs to
learn only one scalar factor β and the BP decoder remains
untouched. Therefore the computational complexity of our
approach is significantly lower as only one weight is adapted.

B. Supervised Learning Approach

The general idea of supervised learning is to tune learnable
parameters of a function using input data (observations) to
match the corresponding labeled output data [13]. Here the
observations are the received signals y and the labels are the
transmitted symbols x. Our goal is to minimize a loss L(x, x̃)
so that the BPSK soft estimates x̃ (2) are as close as possible to
the corresponding labeled data x. The loss reflects some form
of distance between the output of the function x̃ and the labels
x. In order to minimize the loss, we use a variant of Stochastic
Gradient Descent (SGD). SGD calculates the derivative w.r.t.
to learnable parameters (one parameter β here) and tunes them
to minimize the loss function iteratively.

To formalize this, we define the training set consisting of
T training samples as (yt,xt) for t = {1, ..., T}, so the
training set contains T vectors of length n for x and y,
respectively. The observations y and the BPSK soft estimates
x̃ are related via the received LLR scaling and BP decoding
function x̃ = f(y). For an initial value β the whole decoding
chain is executed and soft symbols x̃ are calculated for the
loss L(x, x̃). From the loss the derivative w.r.t. β is determined
and the parameter β updates via SGD. The most basic form
of SGD is given by the iteration

β`+1 = β` − η

|S`|
∑
t∈S`

∇βL(xt, x̃t) (4)

where ` denotes the iteration index, η is the step size or
learning rate and ∇βL(x, x̂) is the gradient of the loss
function L(x, x̃) w.r.t. the learning paramter β. We divide the
training set into subsets |S`| < T of equal size in the way that
no training data is present twice in any subset. These subsets
S` are called batches and |S`| is named batch size. When all
subsets S` are processed, the whole training set T has been
used once which is called an epoch. Usually many epochs are
used to train ML algorithms.

C. Learning procedure for MLS-BP

Considering our system model in Fig. 2 we generate new
training vector sets (yt,xt) with size T in every epoch and
show our optimizer new training data in each iteration ` to
make the training as efficient as possible. For given loss
function and SNR, the processing chain is evaluated and the
parameter β adopts accordingly. Here, the Adam optimizer

[14] is used, which is a variant of the SGD method. This
supervised learning procedure is implemented using Keras [15]
and Tensorflow [16].

Two different loss functions are considered. First the Mean-
Square Error (MSE) loss evaluates the Euclidian distance
between the labels xt and the soft estimates x̃t

LMSE
(
xt, x̃t

)
=
∥∥xt − x̃t

∥∥2
2
. (5)

Second, the MI loss considers the negative of the approximate
mutual information (MI) between xt and the LLR L(xt) given
by

LMI
(
xt, L(xt)

)
= −MI

(
xt, L(xt)

)
= −

(
1− 1

n

n∑
i=1

log2 (1 + exp (−xiL(xi)))

)
.

(6)

The approximation is motivated by the ergodic theorem and
has also been used for EXtrinsic Information Transfer (EXIT)
charts to approximate mutual information [17]. The negative
MI is considered in order to obtain a minimization problem.

IV. SIMULATION RESULTS

A. Basic Parameters

For evaluating the MLS-BP we investigate the performance
for a Bose-Chaudhuri-Hocquenghem (BCH) code, which has
been used for evaluating the N-BP in [9] and [10], and a
LDPC code from [18]. For all testing purposes a size of |S`| =
100 is used, a learning rate of η = 0.01 is applied and the
BP decoder uses a maximum of Nit = 5 iterations, if not
mentioned otherwise.

B. Performannce Evaluation for a BCH code

In Fig. 3 we depict the BER for the BCH code (63, 45)
versus the scaling factor LMLS for different SNRs. For a fixed
SNR, the bruteforce (BF) search sweeps the scaling factor
over a fixed range, determines the corresponding BER and
selects L∗BF resultung in the miniumun BER (4). The scaling
factors LMLS found by using the MI loss (circle) and the MSE
loss (�) are marked, respectively. For both loss functions,
the MLS-BP factor nearly matches the best BER using the
bruteforce approach. This bruteforce search yields the best
results but needs more computational power. On top our MLS-
BP approach optimizes e.g. an information theoretic criterion
like the MI (6) and has hence a more convenient motivation.

In Fig. 4 we validate this observation by showing the
BER versus the SNR. We compare the BP decoder without
scaling (”Lch”) with the found scaling factors L∗BF obtained
by bruteforce search and the learned scaling factors LMLS,MI
for the MI loss. Compared to the common BP decoder
without scaling, the demanding N-BP [9] decoder achieves
a significant performance improvement of 1.5 dB at BER of
10−4. This performance gap indicates the suboptimality of
common BP decoding for codes of small girth, here the girth
is just 4. However, the same performance improvement is
achieved by all scaling approaches with significant reduction in
computational complexity in comparison to the N-BP as many
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Fig. 3: BER performance for various scaling factors LMLS for
the (63, 45) BCH code
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Fig. 4: (63, 45) BCH code, BER over Eb/N0 compared for
the different approaches

extra weight multiplications need to be executed. The MLS-
BP with learned MI loss achieves virtually the performance
of the scaled BP with bruteforce search for the optimum
scaling factor L∗BF. Interestingly, even the adaptation of only
one learned scaling factor Lrange

MLS trained for the SNR range
2, . . . , 8 dB leads to almost the same BER for both, the MI
and the MSE loss function. This is due to the fact that the
receive LLR tend to be ”more” overestimated for high SNR
and hence even one scaling factor for all SNR works nearly
equally well. As the difference in BER performance of the
MI and the MSE loss is negligible, we will concentrate on the
MSE loss (5) subsequently.

C. Performance Evaluation for a short LDPC Codes

In Fig. 5, simulation results of the common BP and the
MLS-BP with Lrange

MLS,MSE trained between 2 dB and 8 dB are
shown for a short (32, 16) LDPC code and varying number
of maximum iterations Nit = 5, 10. Obviously, the gains of
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Fig. 5: (32, 16) LDPC code, BER over Eb/N0 compared for
the learned scaling factors Lrange

MLS over different number of
iterations compared to the channel constant Lch

scaling the receive signals are smaller in comparison to Fig.
4 as this LDPC code has a higher girth. For example, at a
BER of 10−5 the MLS-BP achieves a gain of approximately
0.8 dB for a maximum of 5 BP iterations and 0.6 dB for 10
iterations, respectively. However, the MLS-BP with Nit = 5
iterations even outperforms the common BP with Nit = 10
iterations. Thus, complexity is again saved by our approach.

D. Usability for longer codes

In Fig. 6, we show simulations for LDPC codes that have
lengths of n = 128, 256, 512 and 1008 with Rc = 1/2. We
train the scaling factors Lrange

MLS for the interesting Eb/N0 range
of 2, . . . , 4 dB. As expected the gain decrease for increasing
block length due to the higher girth. For the shown codes the
performance gains of the approach vanish at the code length
of n = 1008 in comparison to the common BP. This should
be considered as an indication until which codelength this
approach is applicable.

V. SUMMARY AND FUTURE WORK

In this paper, we propose the Machine Learning Scaled
Belief Propagation (MLS-BP) to learn an input scaling factor
of the BP decoder to improve the performance for short codes.
The MLS-BP approach has only one trainable weight that is
learned for each SNR or, with slightly degraded performance,
for a SNR range. This very simple approach improves the
BER performance of BP decoding for short codes at no
additional cost and can directly been used with existing BP
implementations.
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